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Appendix A: Changing the denominator of the additive log-ratio
transformation

Given parameters with respect to one choice of denominator of the additive log-ratio, say πD(t), we can
obtain parameters for any other choice of denominator. For instance, if we are interested in the relationship
between species i and j, we can express how their log ratio changes over time as follows:

d

dt
log

(
πi(t)

πj(t)

)
=

d

dt
log

(
πi(t)

πD(t)

)
− d

dt
log

(
πj(t)

πD(t)

)
(1)

= (gi − gj) +

D∑
k=1

(Aik −Ajk)πk(t) +

P∑
p=1

(Bip −Bjp)up(t) (2)

Appendix B: Solving for d
dtπi(t)

We can also express cLV as a dynamical system in terms of derivatives with respect to relative abundances
d
dtπi for i = 1, ...D. First, note

πD = 1−
D−1∑
j=1

πj (3)

=⇒ d

dt
πD = −

D−1∑
j=1

d

dt
πj (4)

where the πi are implicit functions of t. Next, using d
dt log πi =

d
dtπi

πi
we have

d

dt
log

(
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πD

)
=

d

dt
log πi −

d

dt
log πD (5)

=
d
dtπi

πi
−

d
dtπD

πD
(6)

=
d
dtπi

πi
−

d
dt1−

∑
j πj

πD
(7)

=
d
dtπi

πi
+
∑
j

d
dtπj

πD
(8)

=
d

dt
πi

(
1

πi

)
+

D−1∑
j=1

d

dt
πj

(
1

πD

)
(9)

This allows us to write the derivatives d
dtπi as the solution to the following system of equations.




1
π1

0 · · · 0

0 1
π2
· · · 0

...
...

. . .
...

0 0 · · · 1
πD−1

+
1

πD


1 1 · · · 1
1 1 · · · 1
...

...
. . .

...
1 1 · · · 1





d
dtπ1
d
dtπ2

...
d
dtπD−1

 =



d
dt log

(
π1

πD

)
d
dt log

(
π2

πD

)
...

d
dt log

(
πD−1

πD

)

 (10)

2



This system has the following solution


d
dtπ1
d
dtπ2

...
d
dtπD−1

 =

(
diag

[
1

π1
, ...,

1

πD−1

]
+

1

πD
1D−11

T
D−1

)−1



d
dt log

(
π1

πD

)
d
dt log

(
π2

πD

)
...

d
dt log

(
πD−1

πD

)

 (11)

where we have written the two matrices of the previous equation with a more suggestive form. Applying the
Sherman-Morrison formula allows us to write the inverse in closed form.

(
diag

[
1

π1
, ...,

1

πD−1

]
+

1

πD
1D−11

T
D−1

)−1

= diag [π1, ..., πD−1]−


π1
π2
...

πD−1




π1
π2
...

πD−1


T

(12)

Plugging in the terms for d
dt log

(
πi

πD

)
leaves us with the following form for d

dtπi

d

dt
πi = πi

gi +

D∑
j=1

Aijπj +

P∑
p=1

Bipup

− πi
D−1∑
k=1

πk

gk +

D∑
j=1

Akjπj +

P∑
p=1

Bkpup

 (13)

d

dt
πD = −πD

D−1∑
k=1

πk

gk +

D∑
j=1

Akjπj +

P∑
p=1

Bkpup

 (14)

Appendix C: Compositional Lotka-Volterra under the isometric
log-ratio transformation

We noted in the main text that we could define a compositional version of gLV under other compositional data
transformations. Here, we demonstrate a dynamical system based on the isometric log-ratio transformation
(ilr). First, we define column vector

alr(π(t)) =
[
πi(t)
πD(t) · · · πD−1(t)

πD(t)

]T
(15)

Egozcue et al. (2003) show that the additive log-ratio transformation can be expressed as a linear transfor-
mation of the ilr transformation.

alr(π(t)) = FTUT ilr(π(t)) (16)

where

UT =

 ↑ . . . ↑
u1 . . . uD−1

↓ . . . ↓

 ∈ RD×(D−1) with uTi uj = δij (17)

FT =
[
ID−1 −1D−1

]
∈ R(D−1)×D. (18)

Here we use FT and UT since Egozcue et al. (2003) use row vectors instead of column vectors—the transpose
ensures consistency between the different notations. The vectors ui arise from a choice of basis, ei ∈ SD, in
the simplex under the Aitchison geometry that defines the isometric log-ratio transformation. If we substitute
the alr for an equivalent representation of the ilr, we get a new system

d

dt
alr(π(t)) = g +Aπ(t) +Bu(t) = FTUT

d

dt
ilr(π(t)) (19)
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Note that FTUT ∈ R(D−1)×(D−1) is invertible. Again following Egozcue et al. (2003), define the Moore-
Penrose generalized inverse of F

H =
1

D


D − 1 −1 −1 · · · −1 −1
−1 D − 1 −1 · · · −1 −1
...

...
...

. . .
...

...
−1 −1 D − 1 · · · D − 1 −1

 ∈ R(D−1)×D (20)

Then FH = ID−1, and (UF )(HUT ) = UID−1U
T = UUT = ID−1, which implies (UF )−1 = HUT . Hence

(FTUT )−1 = (UF )−T = (HUT )T = UHT . This gives us

d

dt
ilr(π(t)) = UHT g + UHTAπ(t) + UHTBu(t) (21)

:= gilr +Ailrπ(t) +Bilru(t) (22)

Given gilr, Ailr, and Bilr, we can directly solve for the relative parameters g, A, and B which correspond to
the relative parameters of gLV.

g = FTUT gilr (23)

A = FTUTAilr (24)

B = FTUTBilr. (25)
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