Supplementary Information

Single-Cell Genomics of Novel Actinobacteria with the Wood-Ljungdahl Pathway Discovered in a Serpentinizing System

Nancy Merino^{a,b,c*}, Mikihiko Kawai^{d,e}, Eric S. Boyd^f, Daniel R. Colman^f, Shawn E. McGlynn^{a,g,h}, Ken Nealson^b, Ken Kurokawa^{a,i}, Yuichi Hongoh^{a,d*}

^a Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan

^b Department of Earth Sciences, University of Southern California, Los Angeles, CA, USA

^c Biosciences and Biotechnology Division, Lawrence Livermore National Lab, Livermore, CA, USA

^d School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, Japan

^e Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan

^fDepartment of Microbiology and Immunology, Montana State University, Bozeman, MT, USA

^g Biofunctional Catalyst Research Team, RIKEN Center for Sustainable Resource Science (CSRS), Saitama, Japan

^h Blue Marble Space Institute of Science, Seattle, WA, USA

ⁱDepartment of Informatics, National Institute of Genetics, Shizuoka, Japan

Running Title: Genome of Novel Actinobacteria

*Correspondence:

Nancy Merino nmerino@elsi.jp

Yuichi Hongoh yhongo@bio.titech.ac.jp

Materials and Methods Supplementary Information

Measurement of Ions and Organic Acids

Water was collected and stored at -4°C for ion (Ca²⁺, NH₄⁺, Mg²⁺, Cl⁻, SO₄²⁻, NO₂⁻, NO₃⁻, HCO₃⁻, and HPO₄⁻) and organic acid (formate, acetate, propionate, pyruvate, and lactate) analyses using ion chromatography (Shodex Ion Chromatogram SI-90G, Japan) with an IC-C4 Shim-pack column (150 mm length, 4.6 mm ID, carboxylic polymethacrylate) connected to a guard column. Nucleosides and nucleobases were analyzed by LCMS in the ESI-positive mode and reversed phase UPLC (column: ACQUITY UPLC® BEH C18 1.7 μ m). Elution conditions included: 0.3 ml/min at a constant flow rate for 0–4 min, then 99% A (A: 0.1% TFA) and 1% B (B: acetonitrile), followed by a linear gradient for 7 min to 50% A and 50% B and then, 7.8–8.3 min of 10% A and 90% B. Finally, a linear gradient was conducted for 8.5 min until reaching the initial conditions. Analysis of amino acids was conducted by a liquid chromatograph (ICA-2000; TOA DKK) equipped with a UV detector (UV-2075; Jasco) operated at a wavelength of 200 nm. For chromatography, a reverse-phase type column (Hydrosphere C18; YMC) (Ohara et al., 2007) was used at 37°C. A 10 mM (C₆H₁₃SO₃Na solution with pH 2.5 was used as an eluent (adjusted by H₃PO₄) (Bujdák and Rode, 1999), at a flow rate of 1.0 ml/min. Measurement errors for concentrations of Gly, GlyGly, and DKP were estimated to be less than 3.0%.

FACS Parameters

Several FACS parameters were modified to prevent sorting of particles not representative of the Hakuba Happo microbial community (FSC Threshold 750, Area Scaling 0.82, Blue Scaling 0.96, SSC Threshold 200), and the microbial community was selected based on four parameters to prevent doublets: FSC vs SSC, FSC-H vs FSC-A, SSC-H vs SSC-A, and FITC-A vs FITC-H. Three different phase masks (PM) were used to sort the samples (16, 20, and 29) in the "single cell" mode and the number of cells sorted was confirmed by inverted fluorescence microscopy to ensure single sorted cells. Only one phase mask was used per 96-well plate.

Single Cell Lysis and Whole Genome Amplification

Each plate was thawed from -80°C and kept on ice during cell lysis and WGA. Three different lysing conditions were tested for each plate: 1) 10 mM Tris (Tris), 2) 50 U/µL Ready-LyseTM Lysozyme Solution (Lys) (Epicentre, WI, U.S.) (Goudeau et al., 2014), 3) 50 U/µL Lysozyme with Mid-Alkaline Buffer (Lys+MidAlk), and 4) 10 mM Tris with Mid-Alkaline Buffer (Tris+MidAlk). Mid-Alkaline Buffer contained 18 mM KOH, 0.45 mM EDTA, and 4.5 mM DTT (from REPLI-g kit). The following solutions were UV-treated in a UV Crosslinker (254nm, 100V, 8W; UVP, LLC) for 60 min: Mid-Alkaline Buffer (without DTT), Neutralization Buffer, STOP buffer, 10 mM Tris pH 8, and nuclease-free H₂O. Initially, each well was incubated with 1 µL Tris (Tris and Tris+MidAlk) or 1 µL Lysozyme (Lys and Lys+MidAlk) for 15 min at 25°C. Afterwards, each well was incubated with 0.75 µL of Buffer DB (Tris and Lys) or Mid-Alkaline Buffer (Lys+MidAlk) for 10 min at 25°C. Cell lysis was stopped using 0.75 µL STOP buffer (Tris and Lys) or Neutralization Buffer (Lys+MidAlk and Tris+MidAlk). Neutralization Buffer stock contained 20 mM HCl and 30 mM Tris-HCl. WGA was performed using (per 10 µL reaction) 2.25

 μ L H₂O, 7.25 μ L Reaction Buffer, and 0.5 μ L Phi29 polymerase. Each plate was centrifuged for 1000 g for 1 min at 4°C, followed by incubation at 30°C for 14 h, 65°C for 10 min, and 4°C infinite in a PCR instrument with cover heated to 70°C.

Gas Vesicle HMM database

Gas vesicle proteins were annotated using a manually curated hidden Markov model database. The database was created using a similar method as FeGenie (Garber et al., 2019). Briefly, gas vesicle protein sequences were obtained from the UniProt database (Bateman et al., 2017) and used as queries against the NCBI RefSeq database (Release 93) in a BLASTp (v2.3.0) (Camacho et al., 2009) search. By using a minimum amino acid identity cutoff of 35% (Rost, 1999) over at least 70% of the query length, the additional sequences expanded the diversity of each collected gas vesicle protein. Subsequently, the sequences were de-replicated and overrepresented protein sequences were removed with MMSeqs2 (Steinegger and Söding, 2017). MAFFT v7.055b (Katoh et al., 2002) was used to align each set of sequences and trimAI v1.4.rev15 (Capella-Gutierrez et al., 2009) was used to remove gaps. Manual curation was done before generating hidden Markov models using HMMER (Mistry et al., 2013). This database was then used to annotate gas vesicle proteins in the co-assembled genome and SAGs. Since no bitscore cutoff was used, the annotation was manually checked and corrected with a BLASTp search against the NCBI non-redundant (nr) database.

Split Members of an Orthologous Group of Genes at the Domain Level

Orthologous groups (OGs) were generated by the DomClust program (Uchiyama, 2006). Default parameters were used except for the following: -ai1.0 -ao1.0 -p0.0 -V0.2. Parameters of ai1.0 -ao1.0 were used to obtain a phylogenetic profile constructed for each OG using the number of domains for each gene (Kawai et al., 2011, 2014). Other parameters included were -P10 (distance of PAM10 to select sequence pairs for the input to obtain only very similar sequences as a member of an OG), -p0.0 (to cut a tree into sub-trees whenever genes of the same organism are found in sub-trees and to avoid merging paralogous groups, which are complementary and may occur because of the incomplete nature of SAGs), -V0.2 (to split clusters into domains of shorter length when a complementary pair of members of short length are included in a single cluster and can interfere with the analysis of the number of paralogs). For SAGs, there are many short, truncated genes generated through multiple displacement amplification (MDA). Following DomClust, several post-processing steps were utilized to decrease potential false positives resulting from MDA. Only members with full-length genes, i.e. genes non-truncated at the ends of a contig, were considered among the members of each OG. The gene neighborhood was also examined as short contigs (a few kb) may result in short genes and the orientation and order of genes within the contig may be different from ortholog members in genomes. Such spurious genes of different order may have been generated by the mechanism of chimera formation during MDA (Lasken and Stockwell, 2007). To reduce such spurious cases, only members with at least 3 genes

at both flanking regions (≤ 10 kb at both sides) were considered. Gene neighborhoods were examined using RECOG system (Uchiyama, 2017).

Results and Discussion Supplementary Information

The Hakuba Co-assembly Encodes Assimilatory Sulfate Reduction

The Hakuba co-assembly encodes genes for assimilatory sulfate reduction, converting sulfate to sulfide. Sulfate is likely transported into the cell by a putative sulfate ABC transporter and is subsequently activated by an ATP sulfurylase enzyme (Sat) to adenosine-5'-phosphosulfate (APS). The Hakuba co-assembly can then directly reduce APS to sulfite with APS reductase. A homolog to APS reductase was also identified in the Hakuba co-assembly: PAPS (3'-phosphoadenosine 5'-phosphosulfate) reductase. Genomes with both APS and PAPS reductase have been observed previously, such as in methanotrophs (Yu et al., 2018). Although APS and PAPS reductase utilize the same catalytic mechanism (Carroll et al., 2005), the substrate of PAPS reductase in the Hakuba co-assembly is unknown, especially when considering that PAPS is likely not produced. Indeed, the PAPS reductase from the Hakuba co-assembly phylogenetically clustered with other PAPS reductases with unknown substrate (**Figure S9**).

Split Genes Among the 10 Hakuba SAGs

The split status of genes among the 10 Hakuba SAGs were examined by generating OGs at the domain level. This revealed 179 OGs at the domain level that constitute 105 genes that are split into shorter, multiple genes in some of the 10 SAGs (**Table S12**). The non-split genes consisted of longer genes with two or more domains per gene compared to the split genes. To reduce the possibility that the split genes emerged from experimental errors, such as errors during MDA or sequencing, 12 cases among the 105 are marked in **Table S12**, in which both types of genes, split type and non-split type, were detected among more than 1 genome. For the 12 cases, the distribution pattern of split/non-split members among the 10 SAGs of 9 cases coincided with the separation of SAGs into two major intraspecies-level phylotypes observed by ANI (**Table S6**) and AAI (**Table S7**): one phylotype includes S03, S09, S34, S44, and S47 and another phylotype includes S25, S33, and S43 (S06 and S42 have weaker similarity). The gene neighborhood of the following genes, marked in the table, are illustrated in **Figure S13** (A. *narG*, B. *nox1/hcaD*, C. *acsE*, D. *cooS*, E. gas vesicle protein *gvpF*).

Figure S1. Bacterial community composition of Hakuba Happo well #3. The microbial community has low diversity and consists of six major phyla (>1% abundance). DNA was extracted from the 0.1 μ m filter fraction of the "Total" (water filtered through 0.1 μ m filter) and "Sequential" samples (water filtered through 0.22 μ m sterivex, followed by 0.1 μ m filter). The "Sequential" sample represents only the 0.1 μ m bacterial community fraction. The Illumina MiSeq platform was used to obtain the V3–V4 region 16S rRNA gene amplicon sequences, and the reads were analyzed using DADA2 (Callahan et al., 2016).

Figure S2. Taxonomy, GC content, and clustering of contigs from the 10 SAGs. (A) Anvi'o v5.3 workflow (Eren et al., 2015) was used to cluster the contigs by sequence composition (k-mer frequency = 4) and Kaiju v1.5.0 (Menzel et al., 2016) was used for taxonomic classification. Taxonomic classification is color coded by phylum level, according to the Anvi'o automatic coloring when using anvi-interactive. Since the SAGs could not be viewed together using anvi-interactive, the color code scheme is different for the contig taxonomic classification of each SAG. However, the variation in color for each SAG demonstrates the inconsistency in the taxonomic classification of contigs. GC content is shown as the inner circle in green. (B and C) ACDC (Lux et al., 2016) was used for contamination screening of SAGS (B) and Co-assembly (C) with default values and bootstrap (b) of either 10 or 20 and BH-SNE dimension reduction was plotted.

0.09

Figure S3. Bayesian phylogenetic tree of clades UBA1414, RBG-13-55-18, and UBA9087. Members of *Firmicutes* and *Proteobacteria* were used as outgroups. The genome sequences used to create this tree are listed in Table S3 and the Hakuba co-assembly is denoted by a star. Each branch was evaluated with the Bayesian posterior probability.

Coassembly_2912 503_1304 509_1465 547_1148 534_1370 074032_FwdB_Methanothermobacter_wolfeii ACS39602_1_FhcB_Methylorubrum_extorquens_AM	1 N 1 N 1 - 1 N 1 N 1 N	MR – VTS MR – VTS MR – VTS MR – VTS MR – VTS MEYVKN MA – – – – –	VCPF VCPF VCPF VCPF VCPF	CGAL CGAL CGAL CGAL CGAL		IEVE IEVE IEVE IEVE CKVE	GDVII GDVII GDVII GDVII GDVII	KGVKF KGVKF KGVKF KGVKF KGVKF	RGCAL RGCAL RGCAL RGCAL RGCAL	S K S F S K S F S K S F S K S F S K S F G H S K	F L H A F L H A	E D L S H E D L S H	PLVE PLVE IPLVE IPLVE IPLVE PLIE AWVK	G LE V G LE V G LE V G LE V G LE V F VE V	E 58 E 58 E 44 E 58 E 58 E 58 S 59 D 11
Coassembly_2912 S03_1304 S09_1465 S47_1148 S34_1370 074032_FwdB_Methanothermobacter_wolfeii ACS39602_1_FhcB_Methylorubrum_extorquens_AM	59 L 59 L 45 L 59 L 59 L 60 Y 11 12 V	LEEAVEI LEEAVEI LEEAVEI LEEAVEI LEEAVEI (DEAIDI (DAAVE)	ATRI ATRI ATRI ATRI ATRI AARI AAADI	LARAE LARAE LARAE LARAE LARAE LARAE) Y P L I) Y P L I) Y P L I) Y P L I) Y P L I (R P L N (R P V L	YGLS YGLS YGLS YGLS YGLS YGLS IYGWS AGLS	CTTII CTTII CTTII CTTII CTTII CTECI - AEV	E AQR K E AQR K E AQR K E AQR K E AQR K E AQR K S A L R A	CAME I CAME I CAME I CAME I CAME I CAME I CAME I	ADLL ADLL ADLL ADLL ADLL ADLL AEEA	G AN I G AN I G AN I G AN I G AN I G AN I G AV I G A S L	D S T S S D N T A S D P V S C	I CHG I CHG I CHG I CHG I CHG V CHG V CHG P S V Y	PTGI PTGI PTGI PTGI PTGI PTGI PSVL AELG	A 117 A 117 A 103 A 117 A 117 A 117 A 118 A 69
Coassembly_2912 503_1304 509_1465 547_1148 534_1370 074032_FwdB_Methanothermobacter_wolfeii ACS39602_1_FhcB_Methylorubrum_extorquens_AM	118 M 118 M 104 M 118 M 118 M 119 L 119 L	AQMVGV AQMVGV AQMVGV AQMVGV AQMVGV AQMVGV LQDVDYI LSAGGA	ATCTI ATCTI ATCTI ATCTI ATCTI PICTF MSTTF	LGE KN LGE KN LGE KN LGE KN LGE KN FGE V KN RAET C	IRAD L IRAD L IRAD L IRAD L IRAD L IRAD V IRAD V	LVFW LVFW LVFW LVFW VVFW VVYW	G CN P / G CN P /	AESHF AESHF AESHF AESHF AESHF MHAHF AAAAF	PRHFS PRHFS PRHFS PRHFS PRHFS PRHFS PRHMS	5 R Y S A 5 R - N V 5 R A A G	LAKG LAKG LAKG LAKG FARG SERA	L L T P R L L T P R L L T P R L L T P R L L T P R F F R E R L L S L G	G R K D G R S D	RTVV RTVV RTVV RTVV RTVV RTVV	V 176 V 176 V 162 V 176 V 176 V 176 H 127
Coassembly_2912 S03_1304 S09_1465 S47_1148 S34_1370 O74032_FwdB_Methanothermobacter_wolfeii ACS39602_1_FhcB_Methylorubrum_extorquens_AM	177 \ 177 \ 163 \ 177 \ 177 \ 177 \ 177 \	/DVRPS/ /DVRPS/ /DVRPS/ /DVRPS/ /DVRPS/ /DPRKTI /AYAAD/	A S SH T A S SH T D S A K L AGG L T	TAD I FI TAD I FI TAD I FI TAD I FI TAD I FI AD I FI AD I HI	Q I N P Q I N P	NGD F NGD F NGD F NGD F NGD F DRDY	E C L WY E L L D / L G ł	V L R A I V L R A I V L R A I V L R A I V L R A I AMR A G H L R A F		KVDL KVDL KVDL KVDL KVDL KVDL	E E V S E E V S E E V S E E V S E E V S D E V A L A	GIAVE GIAVE GIAVE GIAVE GIAVE GVPRE GEAA-	E L R E E L R E E L R E E L R E E L R E Q I E E - F A D	LSER LSER LSER LSER LSER AVEV LAKR	M 235 M 235 M 221 M 235 M 235 L 235 L 235 L 165
Coassembly_2912 S03_1304 S09_1465 S47_1148 S34_1370 074032_FwdB_Methanothermobacter_wolfeii ACS39602_1_FhcB_Methylorubrum_extorquens_AM	236 K 236 K 222 K 236 K 236 K 236 K 11166 F	(GAR FG) (GAR FG) (GAR FG) (GAR FG) (GAR FG) (NAQ FG FAAQYG)	/ L L FC / L L FC / L L FC / L L FC / L L FC L F FC / I V Y D) 	MG L MG L MG L MG L MG I MG I G E L G A	TMTR TMTR TMTR TMTR TMTR THSR EMLQ	G R H L M G K H R M G	NVLAA NVLAA NVLAA NVLAA NVLAA NVLAA	ALTLT ALTLT ALTLT ALTLT ALTLT ALTLT AIMMA	FRD LN FRD LN FRD LN FRD LN FRD LN FRD LN I RD LN	QFSK QFSK QFSK QFSK QFSK DYPR ESTR	FAAV - FAAV - FAAV - FAAV - FAAV - FAAV - FAAV - FFAL	P P P P P P	MRGH MRGH MRGH MRGH MRGH FQGR	G 284 G 284 G 270 G 284 G 284 G 284 Y 284 A 214
Coassembly_2912 S03_1304 S09_1465 S47_1148 S34_1370 074032_FwdB_Methanothermobacter_wolfeii ACS39602_1_FhcB_Methylorubrum_extorquens_AM	285 N 285 N 271 N 285 N 285 N 285 N 11215 A	NV SG I D NV TG FN(AV (ALSAV ALSAV ALSAV ALSAV ALSAV QVCTV QLSAV	VQTGYF VQTGYF VQTGYF VQTGYF VQTGYF VQTGYF VESGYF	P FG VN P FG VN P FG VN P FG VN P FG VN P FG VN P FG VD	IFSRG IFSRG IFSRG IFSRG IFSRG FSGG	Y P Q Y I Y P Q Y I E P R Y I Q P E H I	NPGEF NPGEF NPGEF NPGEF NPGET DSWRF	TTVC TTVC TTVC TTVC TTVC GANC	DILAR DILAR DILAR DILAR DILAR DILAR DLLQN	KEVD KEVD KEVD KEVD KEVD READ GEAD	AALII AALII AALII AALII AALII AALII AALVI	ASDP ASDP ASDP ASDP ASDP ASDP	Y AN L Y AN L Y AN L Y AN L Y AN L G AH F 	P 343 P 343 P 329 P 343 P 343 P 343 P 343 P 343 P 343
Coassembly_2912 S03_1304 S09_1465 S47_1148 S34_1370 074032_FwdB_Methanothermobacter_wolfeii ACS39602_1_FhcB_Methylorubrum_extorquens_AM	344 F 344 F 330 F 344 F 344 F 344 C 11265 A	RAAQR RAAQR RAAQR RAAQR RAAQR QRALERI A P R P AW	LEEIP LEEIP LEEIP LEEIP LEEIP MAEIP LGSLP	P T I V ME P T I A I I P T I A I I) P K R S) P K R S E P H R T / G E G S	КТА- КТА- КТА- КТА- КТА- РТТ- QEАА	– Q I AI – Q I AI G E T AI	RVVIF RVVIF RVVIF RVVIF RVVIF DIIF EVVIT	PTAIS PTAIS PTAIS PTAIS PTAIS PTAIS PPAIN	5 G I S A 5 G I S A 5 G I S A 5 G I S A 5 G I S A 7 G ME A 7 G Q S V	EGTA EGTA EGTA EGTA EGTA EGTA GGAL	Y R MD D Y R ME G WN – D R	VPLR VPLR VPLR VPLR VPLR VPLR VPIR	LKRL LKRL LKRL LKRL MKKV AYAE	I 400 I 400 I 386 I 400 I 400 V 400 A 322
Coassembly_2912 S03_1304 S09_1465 S47_1148 S34_1370 074032_FwdB_Methanothermobacter_wolfeii ACS39602_1_FhcB_Methylorubrum_extorquens_AM	401 5 401 5 387 5 401 5 401 5 401 5 401 5 401 5	5 S P – – Y I 5 S P – – S S 5 D P A K T I	P P D H E P P D H E P P D H E P P D H E P P D H E S Q T G F P A E T E	VLDE VLDE VLDE VLDE VLDE SLRDS	R R V R R V	KKCL KKCL KKCL KKCL KKCL	GYQEI GYQEI GYQEI GYQEI GYQEI GYQEI	E R SMT E R SMT E R SMT E R SMT E R SMT V S C	F L S M A F L S M A F L S M A F L S M A F L S M A	A - - -					435 435 420 435 435 417 353

Figure S4. Multiple sequence alignment of *fwdB* from the Hakuba genome assemblies and *Methanothermobacter wolfeii* against the *fhcB* from *Methylorubrum extorquens*. The Fwd complex is the key enzyme involved in the first step of CO₂ reduction in methanogenesis while the Fhc complex converts formyl-H₄MPT (tetrahydromethanopterin) to formate (Pomper et al., 2002; Adam et al., 2019; Hemmann et al., 2019). The subunits of the Fwd and Fhc complex share homology. However, FwdB contains the tungstopterin active site, which is not present in FhcB (Hemmann et al., 2019). FhcB is missing the N-terminal domain which contains the [4Fe-4S] cluster (green highlight in *Methanothermobacter wolfeii*). The catalytic Cys118 is also replaced by a Ser62 in FhcB (highlighted green column), and the amino acid sequence of FhcB also contains loops that would prevent a tungstopterin (red highlights).

Figure S5. Maximum likelihood phylogenetic tree of Group 3b and 3d [NiFe]-hydrogenases. The Hakuba co-assembly (red text) and other genomes within clade UBA1414, UBA9087, and RBG-13-55-18 (blue text) encode for group 3b and/or 3d [NiFe]-hydrogenases. The IQtree maximum likelihood algorithm with the LG+G amino acid substitution model was used with 1000 bootstraps to evaluate node support. Sequences from the representatives of the respective [NiFe]-hydrogenase isoform groups and close representatives to the query sequences (NCBI database) were used.

A) Group 1 [NiFe]-hydrogenases

B) Group 3c [NiFe]-hydrogenases

Figure S7A - CdhA/AcsB

0.6

Figure S7D - AcsC/CdhE

Figure S7E - AcsD/CdhD

Figure S7F - AcsE

Figure S7. Unrooted phylogenetic tree of CODH/ACS subunits. Sequences for each subunit were obtained from UniProt database by searching the KEGG ID and gene name. Additional sequences (labeled with "blastp") were obtained using NCBI blastp against the appropriate subunit found in the Hakuba co-assembly and SAGs, and the top 20 hits were retrieved. Duplicate sequences (except for the Hakuba co-assembly and SAGs) were removed using Dedupe in BBTools (Bushnell et al., 2017). The Hakuba co-assembly and SAGs are denoted by a yellow star, and the number indicates gene ID (two gene IDs indicates a split gene that have been combined together to produce the phylogenetic tree). Archaeal subunits are colored green and bacterial subunits are colored orange. Black circles at nodes indicate support value, as calculated by FastTree (Price et al., 2010), and the size range from 0.2–1 for all subunits except for *cdhE/acsC* which ranges from 0–1. The number within "[]" indicates the number of genomes found in the collapsed clade, which was collapsed based on the same identification at the genus level.

Figure S8. Multiple sequence alignment of the V-type ATPase subunit K transmembrane portion in the Hakuba co-assembly and select microorganisms. The transmembrane portion of V-type ATPase subunit K was aligned for microorganisms known to harbor Na⁺-binding (pink color) and H⁺-binding regions (blue color). The ion binding preference has been experimentally determined for *Caloramator fervidus, Methanothermobacter thermoauto, Methanocaldococcus jannaschii*, and *Methanosarcina barkeri*. The following microorganisms are closely related sequences to the Hakuba co-assembly V-type ATPase subunit K by NCBI BlastP: *Synergistes jonesii* and *Coriobacteriaceae* bacterium EMTCatB1]. The Na⁺-binding conserved residues are identified with orange circles, where the conserved residues are (1) Q/E, (2) V/L/M/I, (3) E/Q, (4) S/T, and (5) A/G/S, according to Mulkidjanian et al. (2008).

Figure S9. Unrooted phylogenetic tree of assimilatory adenyl-sulfate (APS) reductases and phosphoadenylyl-sulfate (PAPS) reductases. Sequences of APS (orange) and PAPS (purple) reductases were retrieved from Yu *et al.* (2018) and the Hakuba co-assembly (denoted by yellow star). Some genomes contain an APS or PAPS reductase with unknown substrate (labeled "Unknown").

			10		20		30)	40		50
AAK76387_ethylbenzene_dehydrogenase_subunit_A_Azoarcus_sp_EB1	Q D R R I	DFLKR	SGAAV	LSLS	LPGF	LK-D	AQAG	ТКАРБҮА	SWED	IYRK	EWKWDC
CAB53372 selenate reductase A Thauera selenatis	NGRR	R F L Q F	SMAAI	LASAA	AFSK	IQ - P	IEDP	LKSYPYR	DWED	LYRK	EWTWDC
CAF21906 NarG Haloferax mediterranei	VSRR	TFLEG	IGVAS	SLLG I	GMGG	LК-Р	VDDP	IGNYPYR	DWED	LYRE	KWDWDC
WP_011223493_NarG_Haloarcula_marismortui	ISRR	DFVRG	LGAAS	SLLGA	TMDG	LE-A	VDDP	IGSYPYR	DW ED	LYRD	EWDWDC
WP_011009509_NarG_Pyrobaculum_aerophilum	- T R R I	RML	AGVAI	ISAA	ALQY	LQPQ	FVNT	R LQ Y P D R	SW EE	LYRR	RWQYDC
P9WJQ3_NarG_Mycobacterium_tuberculosis_strain_ATCC_25618	LLER	s – – – –			-GRF	FTPE	FSAD	LRTRGGR	EGDV	FYRD	RW SHDC
NP_391609_NarG_Bacillus_subtilis	LFRR·				- LNY	FSPH	нѕик	HSQREDR	DW EN	VYRN	RWQYDC
NP_252564_NarG_Pseudomonas_aeruginosa_PA01					- LQ F	FKKE	FADG	HGENESR	AW EG	AYRQ	RWQHDC
P09152_NarG_Escherichia_coli_strain_K12					- FRY	FKQ T	FADG	HGQNTNR	DW ED	GYRQ	RWQHDC
A0A0U5IQ41_NxrA_Thiocapsa_sp_KS1					- SRW	F R – E	LDEP	R	KW ED	FYRR	RWQYDC
A0A0P7ZK23_NxrA_Candidatus_Methanoperedens_sp_BLZ1					-M SW	IQ - D	LINP	– – – – K G R	LW E E	FYRN	RWQYDC
CAA71210_NarG_Thermus_thermophilus_HB8					– R D W	IK - E	VENP	A E R	KW EE	FYRN	RFQHDC
A0A136L8V0_NxrA_Armatimonadetes_bacterium_OLB18	VSRR	EFLIV	TG	- A A A	GFSL	LKAG	VKNP	LDYYPNR	GW EH	IYRD	Ο Υ Α Υ D C
A0A0B0EJC8_NxrA_Candidatus_Scalindua_brodae	LTRR	тғмкү	AGG-V	ΤΑΑΥ	SFKS	LKPE	VDNP	LDSYPDR	NW ED	VYRN	Ο Υ Κ Υ D C
A0A1E3XG69_NxrA_Candidatus_Scalindua_rubra	LTRR	TFIKI	AGG- :	ΙΤΑΑΥ	SFKS	LKPE	VVNP	LDYYPER	EW ED	VYRN	Ο Υ R Υ D C
<pre>D8PI41_NxrA_alpha_subunit_Nitrospira_defluvii</pre>	LSRR	QFLKV	SAG-1	VAVA	ALTA	LQPE	VNNP	LGEYPDR	SW ER	VYHD	ΟΥ RΥDC
D8PI59_NxrA_Nitrospira_defluvii	VSRR	Q F L K I	SAG-1	VAAV	ALTA	LQPE	VGNP	LGEYPDR	SW ER	VYHD	ΟΥ RΥDC
A0A0S4KRS1_NxrA_Candidatus_Nitrospira_inopinata	LSRR	QFLKV	SVG-1	VAAV	ALTA	LQPE	VGNP	LGEYPDR	SW ER	VYHD	Ο Υ R Y D C
A0A0S4L679_NxrA_Candidatus_Nitrospira_nitrosa	LSRR	QFLKV	S V G – I	VAAA	ALTA	LQPE	VGNP	LGDYPDR	SW ER	VYHD	Ο Υ R Υ D C
A0A0S4L817_NxrA_Candidatus_Nitrospira_nitrosa	ITRR	Q FM K A	SAG-1	IAAI	ALTA	LQPE	VGNP	LGEYPDR	SW ER	VYHD	ΟΥ RΥDC
A0A0S4LQF4_NxrA_Candidatus_Nitrospira_nitrificans	V S R R Ç	Q FM K A	T A G - I	IAAA	ALTA	LQPE	VGNP	LGEYPDR	SW ER	VYHD	QYRYDC
BAI70164_NarG_Hydrogenobacter_thermophilus_TK_6	LTRR	DLLKM	GGL-S	SLTAM	LFRVM	1 EPR	VENP	LAYYPNR	DW ER	FYRD	IFKSEC
WP_012513384_NarG_Hydrogenobaculum_sp_Y04AAS1	ISRRI	DFLKN	GSV-H	FLAA L	SKKL	FEPI	IVGNP	LASYPNR	GW EK	IYRD	IYKPDC
BAL58893_NarG_Candidatus_Acetothermum_autotrophicum	V S R R I	RFVKA	TAALI	GAAL	VFKF	V P - E	IKNP	LEFYPNR	DW EK	IYRD	QFRYDC
KCZ70344_NarG_Candidatus_Methanoperedens_nitroreducens	ITRRI	DFIKI	SSA-A	VAGL	SLNF	IP-Q	IDNP	LDYYPER	DW EK	IYRD	QFRYDC
Hakuba_Coassembly_1332_1333_NarG	ITRR	ЕFVКМ	G M A - S	SM AG L	FLQF	V P - E	VDNP	LDSYPER	GW EK	IYRD	QFRYDC
Hakuba_S42_238_NarG	ITRR	ЕFVКМ	G M A - 5	SM AG L	FLQF	V P - E	VDNP	LDSYPER	GW EK	IYRD	QFRYDC
AGA32798_NarG_Thioalkalivibrio_nitratireducens_DSM_14787	KSRR	H F LQ L	AGAAG	FGAV	AFRY	LAPR	VENP	LAHYPDR	NW EH	IYRD	IYRSDC
WP_018232354_NarG_Thioalkalivibrio_thiocyanodenitrificans	LSRR	RFLKL	AGVAG	FGAL	AFRY	ГЧЬК	VDNP	LAAYPDR	GW EQ	IYRD	IYRSDC
BAP55970_NarG_Thioploca_ingrica	ISRRI	RFLFQ	ΜΑΑΤΘ	ASAA	W Т Q L I	LTPA	IDNP	LSQYPNR	DW EK	VYRD	ГАНАРС
A0A2X0QZV2_NxrA_Candidatus_Nitrotoga_fabula	I <mark>G R R</mark>	SFLKL	SATAG	LAVM	A F :	LKPV	VDNP	LKSYPNR	DW EK	VYRDI	MFHVDC
A0A455XF61_NxrA_Candidatus_Nitrotoga_sp_AM1	I <mark>G R R</mark>	SFLKL	SATAG	LAVM	A F	LКРV	VDNP	LKSYPNR	DW EK	VYRDI	MFHVDC
A0A455XDW4_NxrA_Candidatus_Nitrotoga_sp_AM1	IGRR	SFLKL	SATAG	LAVM	AF	LKPV	VDNP	LKSYPNR	DW EK	VYRD	MFHVDC

Figure S10. Alignment of N-terminal regions of NarG and NxrA and the conserved twin-arginine motif. The conserved twin-arginine motif [S/T]RR is shown in the orange box. The Hakuba co-assembly and SAG S42 is denoted by a yellow star and the numbers 1332, 1333, and 238 indicate the protein sequence ID. The color code for each clade follows Figure S11.

Figure S11. Maximum-likelihood phylogenetic tree of nitrate reductase alpha subunit NarG and NxrA. The phylogenetic tree was modified from Kameya *et al.* (2017) with additional sequences for nitrite oxidoreductase alpha subunit (NxrA) and reviewed sequences of NarG from the UniProt database. The Hakuba co-assembly and SAG S42 is denoted by a star. Sequences for ethylbenzene dehydrogenase and selenate reductase were used as the outgroups.

A. Amino acid sequence of narG

		10	20	30	40	50	Ģ0	70	80 80	90	100	110	120
Hakuba_OPB41_coassembly_1332 Hakuba_OPB41_coassembly_1333	M <mark>QEITRR</mark> M	FVKMGMA SM	AGLFLRGLEI	SSLQFVPEV	NPLDSYPE		RYDSTFHFLC.	A P N D T H N C L L R	AYVKNGVVTR	GP SY GY GK A	R D V Y GNO A SHI	WDPRCCQKG	LALVRRFYGPR
\$03_351 \$03_352	M												
505_552 506_1167		FVKMGMASM	AGLFLRGLE	SSLQEVPEVE		RGWEK I Y R DQ F	RYDST FHFLC	APNDTHNCLLR	AYVKNGVVTR	GP SY GY GKA	RDVYGNQASH	WDPRCCOKG	
509_30_172 509_30_173		FVKMGMASM	AGLFLRGLEI	SSLOFVPEV	NPLDSYPE		RYDSTFHFLC.	A P N DT HNCLLR	AYVKNGVVTR	GP SY GY GKA	R D V Y GNO A SHI	WDPRCCOKG	LALVRRFYGPR
S25 554				SSIGEVPEVE					AVVENCUVER			WORDCCOKG	
535_1155 534_293				SSLOFVPEV		RGWEKIYRDOF	RYDST FHFLC	APNDTHNCLLR	AYVKNGVVTR	GP SY GY GKA	RDVYGNOASH	WDPRCCOKG	
534_294 542_238		FVKMGMASM		SSLOFVPEV	NPLDSYPE		RYDSTFHFLC.	A P N D T H N C L L R	AYVKNGVVTR	GP SY GY GKA	R D V Y GNO A SHI	WDPRCCOKG	LAFVRRFYGPR
\$44_1435	M												
11-1-1- 000 11 11 1200	130	140	150	1e0	170	180	190	200	210	220	230	240	250
Hakuba_OPB41_coassembly_1332 Hakuba_OPB41_coassembly_1333							NIATTYSGDK	GTELLRKQDYD	EAMIEAMKGAG	TQVLKLRGG	MPLLGATRIF	IY R FANSLA	
503_351 503_352	RVKNHEVE	KGFKE					NIATTYSGDK	GTELLRKQDYD	EAMIEAMKGA	TOVLKLRGG	MPLLGATRIFO	LY R FANSLA	
506_1167	RVKNHEV	K G F K EWY DA	GFPRDEAGRI	P P Q Y L N R G K E	P F V K V S F E	EACEIVAQTTV	NIATTY SGDK		EAM I EAMKGA	TOVLKLRGG	MPLLGATRIFO	LY R FANSLA	
S09_30_172 S09_30_173	RVKNHFV	KGFKE											
S25_554 S33_1155 S34_293 S34_293	RVKNHFV	KGFKEWYDA	GFPRDEAGRI	PPQYLNRGK	PFVKVSFE	EACEIVAQTTV	NIATTYSGDK	GTELLRKODYD		TOVLKLRGG	MPLLGATRIF	LYRFANSLA	
	RVKNHFV	RKGFKE									MPLICATRIE		
S42_238	RVKNHFV	K G F K EWY DA	GFPRDEAGRI	P P Q Y L N R G K E	P F V K V S F E	EACELAAOTTV	NIATTYSGOK	GT ELL <mark>RKODY</mark> D	EAMIEAMKGA	TOVLKLRGG	MPLLGATRIF	LYRFANSLA	LLDAKMROVDQ
544_1435							NTATTY SGDK				MPLLGATRIF	IT N FANSLA	

B. Nucleotide sequence of *narG*

-																	
	10	20	30	40	50	60	70	80	90	100	110	120	130	140	150	160	
Hakuba_coassembly_gene1333															GTGAAT/	TTGCCACC	ACTTACTCG
Hakuba_coassembly_gene1332	GTGAGAAAGGGAT	TCAAAGAGT	AG														
Hakuba_coassembly_contig00000000	005GTGAGAAAGGGAT	TCAAAGAGT	AGTATGATGCC	GGTTTTCCACO	GAGACGAAGCTGG	GAAGAATTCCG	CCACAATC	TCTAAACCGT	GGAAAAGAAC	CCTTTGTAAAAC	TTAGCTTTG	AAGAAGCCTG	TGAAATTGTO	GCCCAGACC	ACGGTGAAT	ATTGCCACC	ACTTACTCG
\$03_gene352	GTGAGAAAGGGAT	TCAAAGAGT	AG														
\$03_gene351															G T G A A T /	ATTGCCACC	ACTTACTCG
\$03_contig00000000017	GTGAGAAAGGGAT	TCAAAGAGT	AGTATGATGCC	GGTTTTCCACO	GAGACGAAGCTGG	GAAGAATTCCG	CCACAATC	TCTAAACCGT	GGAAAAGAAC	CCTTTGTAAAAC	TTAGCTTTG	AAGAAGCCTG	TGAAATTGTO	GCCCAGACC	ACGGTGAAT	ATTGCCACC	ACTTACTCG
S06_gene1167	GTGAGAAAGGGAT	TCAAAGAGT	GGTATGATGCC	GGTTTTCCGCC	GAGACGAAGCTGG	GAAGAATTCCG	CCACAATA	TCTAAACCGT	GGAAAAGAAC	CCTTTGTAAAAC	ITTAG CTTTG	AAGAAGCCTG	TGAAATTGTG	GCCCAGACC	ACGGTGAAT	ATTGCCACC	ACTTACTCG
506_contig00000000146	GTGAGAAAGGGAT	TCAAAGAGT	GGTATGATGCC	GGTTTTCCGCC	GAGACGAAGCTGG	GAAGAATTCCG	CCACAATA	TCTAAACCGT	GGAAAAGAAC	CCTTTGTAAAAC	TTAGCTTTG	AAGAAGCCTG	TGAAATTGTO	GCCCAGACC	ACGGTGAAT	ATTGCCACC	ACTTACTCG
\$09_30_gene173	GTGAGAAAGGGAT	TCAAAGAGT	AG														
\$09_30_gene172															G T G A A T /	ATTGCCACC	ACTTACTCG
\$09_30_contig00000000011	GTGAGAAAGGGAT	TCAAAGAGT	AGTATGATGCC	GGTTTTCCACO	GAGACGAAGCTGG	GAAGAATTCCG	CCACAATC	TCTAAACCGT	GGAAAAGAAC	CCTTTGTAAAAC	TTAGCTTTG	AAGAAGCCTG	TGAAATTGTO	GCCCAGACC	ACGGTGAAT	ATTGCCACC	ACTTACTCG
\$33_gene1155	GTGAGAAAGGGAT	TCAAAGAGT	GGTATGATGCCC	GGTTTTCCACO	GAGACGAAGCTGG	GAAGAATTCCG	CCACAATA	TCTAAACCGT	GGAAAAGAAC	CCTTTGTAAAAC	TTAGCTTTG	AAGAAGCCTG	TGAAATTGTO	GCCCAGACC	ACGGTGAAT	ATTGCCACC	ACTTACTCG
S33_contig00000000062	GTGAGAAAGGGAT	TCAAAGAGT	GGTATGATGCC	GGTTTTCCACO	GAGACGAAGCTGG	GAAGAATTCCG	CCACAATA	TCTAAACCGT	GGAAAAGAAC	CCTTTGTAAAAO	TTAGCTTTG	AAGAAGCCTG	TGAAATTGTO	GCCCAGACC	ACGGTGAAT	ATTGCCACC	ACTTACTCG
S42_gene238	GTGAGAAAGGGAT	TCAAAGAGT	GGTATGATGCCC	GGTTTTCCACO	GAGACGAAGCTGG	GAAGAATTCCG	CCACAATA	TCTAAACCGT	GGAAAAGAAC	CCTTTGTAAAAC	ITTAG CTTTG	AAGAAGCCTG	TGAAATTGCC	GCCCAGACC	ACGGTGAAT	ATTGCCACC	ACTTACTCG
S42_contig00000000016	GTGAGAAAGGGAT	TCAAAGAGT	GGTATGATGCC	GGTTTTCCACO	GAGACGAAGCTGG	GAAGAATTCCG	CCACAATA	TCTAAACCGT	GGAAAAGAAC	CCTTTGTAAAAC	TTAGCTTTG	AAGAAGCCTG	TGAAATTGCC	GCCCAGACC	ACGGTGAAT	ATTGCCACC	ACTTACTCG
S44_gene1435															GTGAAT/	ATTGCCACC	ACTTACTCG
S44_contig00000000155															G T G A A T /	ATTGCCACC	ACTTACTCG

Figure S12. NarG alignment from the Hakuba SAGs and co-assembly. NarG amino acid and nucleotide sequences from the Hakuba SAGs and co-assembly were aligned. (A) The first 256 amino acid bases of the N-terminal region are depicted. In addition to the co-assembled genome, the SAGs S03, S09, and S34 have a split *narG* gene due to a nonsense mutation. The SAGs S06, S33, and S42 have the full-length *narG* sequence. The orange corresponds to the missing residues of the split *narG* gene from the Hakuba co-assembly and S03, S09, and S34. (B) The nucleotide alignment, highlighting the nonsense mutation (blue box). Depicted sequences correspond to 24 bp upstream and downstream of the sequence that corresponds to the missing residues of the amino-acid sequence (highlighted in orange).

Figure S13A

narG

x1/2 Yes Exec Genome Region Map Exec Taxonomy Exec

Figure S13B

Taxonomy Exec

Figure S13C

Genome Region Map [1584329574_16694, 566] 2020/03/16 19:10 acsE gatC S03 \$03_00325 acsE S03_00322 ligA 503_00326 LYTR K07052 gatB HKBW3S03_0000000015 2 🕗 8 S (15009 - 1)[Reverse] K07133 S03_0031 гро acsE SO9_30 509_30_01379 HKBW3S09_30_0000000249 (1505 - 1) [Reverse] \$34_00585 *S34* acsE gatC S34_00584 LYTR S34_00588 ligA K07052 gatB HKBW3S34_00000000019 (1 - 15308)K07133 S34_0059 гро gatC K07052 S44 lysDH S44_00072 acsE \$44_00076 \$44_00074 yeaJ LYTR S44_00068 ligA gatB HKBW3S44_00000000002 (29163 - 10366) [Reverse] K07133 S44_0005 гро acsE \$47_01163 lysDH S47_01171 S47 \$47_01175 \$47_01173 yeaJ LYTR S47_01167 ligA HKBW3S47 00000000056 (11422 - 1) [Reverse] 547_01176 gatC S25 S25_00021 S25_00024 acsE S25_00028 ligA S25_00020 S25_00023 S25_00025 LYTR K07052 gatB HKBW3S25_00000000002 (1427 - 19749) K07133 S25_00036 S43_01195 S43 S43_01194 ligA LYTR HKBW3S43 00000000096 (1 - 4629) S06_00539 S06 LYTR acsE S06_00538 ycaJ S06_00542 S06_00544 ligA HKBW3S06 00000000034 (1 - 10358)Π 506_00537 506_00547 Redraw

x1/2 Yes Exec

Genome Region Map Exec

00000 Even

Figure S13D

Genome Region Map [1584329574_16694, 3107]

cooS

2020/03/16 19:09

Genome Region Map Exec

Taxonomy Exec

Figure S13E

gas vesicle protein gvpF

S03 HKBW3S03_00000000023 (12195 - 1) [Reverse]	\$03_00451 \$03_00447 \$03_00443 \$03_00452 \$03_00449 GVPN \$KI3 GVPF \$03_00440 ### 12 \$20 \$20 \$20 \$20 \$20 \$20 \$20 \$20 \$20 \$2	GVPF \$03_00434 \$03_00437 GVPG
S34 HKBW3S34_00000000073 (1 - 10102)	S34_01431 S34_01435 S34_01439 S34_01430 S34_01433 GVPN SKI3 GVPF VCP	S34_01443
S44 HKBW3S44_000000000012 (19568 - 6344) [Reverse]	S44_00309 S44_00306 S44_00310 SKI3 GVPF S44_00303	GVPF S44_00298 S44_00; S44_00301 GVPG arsA S44_00295 ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■
S47 HKBW3S47_000000000026 (1022 - 19186)	S47_00700 GVPN S47_00706 GVPN S47_00712 degs degu gvpa s47_00704 S47_00708 SKI3 gvpf vcp 	GVPF S47_00719 S47_00716 GVPG arsA
\$25 HKBW3S25_00000000081 (4696 - 1) [Reverse]	GVPN S25_00837 S25_00832 S25_00840 S25_00835 GVPF	
\$33 HKBW3\$33_00000000005 (1 - 19772)	S33_00170 GVPN S33_00176 S33_00181 degS DEGU GVPA S33_00174 S33_00178 GVPF S33_00184	GVPF \$33_00189 \$33_00 \$33_00186 GVPG arsA \$33_00192
S43 HKBW3S43_000000000005 (31196 - 11611) [Reverse]	S43_00212 GVPN S43_00206 S43_00201 degS DEGU GVPA S43_00208 S43_00204 GVPF S43_00198	GVPF S43_00193 S43_0€ S43_00196 GVPG arsA S43_00190
S06 HKBW3S06_00000000037 (9616 - 1) [Reverse]	S06_00574 SKI3 S06_00572	GVPF \$06_00567 \$06_00570 GVPG arsA \$06_00564 ■
Redraw		

Genome Region Map Exec

Yes

Exec

x1/2

Figure S13. Multi-genome gene neighborhood of split genes and its corresponding members of the same orthologous group. Each figure depicts the gene neighborhood of every member (domains of genes) of an orthologous group (OG). The OG is depicted in red. Part of genes indicated in the same color or color-pattern except for light skyblue are members of one orthologous group. Flanking 10-kb regions at both sides of the member of the OG in red are depicted. OGs were generated by DomClust, a clustering program that identifies OGs, not only at the ORF level, but also at the domain level. This means one ORF can be split into multiple domains. (A) *narG* (S03, S09, S34 were a split type). (B) *nox1/hcaD* (S03, S34, and S47 were a split type and labeled as *nox1* whereas S33, S42, and S44 were a non-split type and labeled as *hcaD*). (C) *acsE* (S03, S09, S34, S44, and S47 were a split type). (D) *cooS* (S42 was a split type. Among the members of the non-split type, only S33 had another domain depicted in yellow green which corresponded to another gene of a split type. The OG in yellow green was absent in S03, S34, and S47. (E) gas vesicle protein *gvpF* (S03, S33, and S43 were a split type). The OGs of each figure and genes that are members of the OGs are listed in **Table S12**. The information at the left side of each row of each figure is as follows: the SAG name, in bold and italicized, followed by the name of the contig of the genome, numbers in parentheses for the depicted range on the contig, the orientation depicted compared to the deposited orientation of the sequence of the contig, when reverse strand is depicted.

Figure S14. CRISPR/Cas gene cluster in the Hakuba co-assembly. CRISPR/Cas genes (green) were identified in contig 00000000051, as determined by CRISPRCasFinder (Couvin et al., 2018). The *cas* genes are composed of a *cas* type-IIIB gene cluster and one putative *cas* gene. A possible CRISPR sequence (CRISPRCasFinder evidence level = 1) was also detected and is a 99 nucleotide bp segment with two repeat sequences (CTTAGGTATCGGTCTCCTTTCTCA) and one spacer (TGGTTTGACCCATATAGCTATTAGGCATGGTTAGCCTCCGTTTCAATCCCT) that does not resemble any viral sequences in the CRISPRCasFinder database or the NCBI nr database. Gene neighborhood was designed using Gene Graphics (Harrison et al., 2017).

Figure S15. Maximum-likelihood phylogenetic tree of all RubisCO forms. A ML phylogenetic tree was created by utilizing sequences from Kacar et al. (2017) and including the Hakuba co-assembly RubisCO-like protein sequence (denoted with turquoise star). RAxML (Gamma model) on the CIPRES Science Gateway was used to obtain the bootstrap values.

References

- Adam, P. S., Borrel, G., and Gribaldo, S. (2019). An archaeal origin of the Wood–Ljungdahl H₄MPT branch and the emergence of bacterial methylotrophy. *Nat Microbiol* 4, 2155–2163. doi:10.1038/s41564-019-0534-2.
- Bateman, A., Martin, M. J., O'Donovan, C., Magrane, M., Alpi, E., Antunes, R., et al. (2017). UniProt: the universal protein knowledgebase. *Nucleic Acids Res* 45, D158–D169. doi:10.1093/nar/gkw1099.
- Bujdák, J., and Rode, B. M. (1999). The effect of clay structure on peptide bond formation catalysis. *J Mol Catal A-Chem* 144, 129–136. doi:10.1016/S1381-1169(98)00342-2.
- Bushnell, B., Rood, J., and Singer, E. (2017). BBMerge Accurate paired shotgun read merging via overlap. *PLoS ONE* 12, e0185056. doi:10.1371/journal.pone.0185056.
- Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J. A., and Holmes, S. P. (2016). DADA2: High-resolution sample inference from Illumina amplicon data. *Nat Methods* 13, 581–583. doi:10.1038/nmeth.3869.
- Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K., et al. (2009). BLAST+: architecture and applications. *BMC Bioinformatics* 10, 421. doi:10.1186/1471-2105-10-421.
- Capella-Gutierrez, S., Silla-Martinez, J. M., and Gabaldon, T. (2009). trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. *Bioinformatics* 25, 1972–1973. doi:10.1093/bioinformatics/btp348.
- Carroll, K. S., Gao, H., Chen, H., Stout, C. D., Leary, J. A., and Bertozzi, C. R. (2005). A Conserved Mechanism for Sulfonucleotide Reduction. *PLoS Biol* 3, e250. doi:10.1371/journal.pbio.0030250.
- Couvin, D., Bernheim, A., Toffano-Nioche, C., Touchon, M., Michalik, J., Néron, B., et al. (2018). CRISPRCasFinder, an update of CRISRFinder, includes a portable version, enhanced performance and integrates search for Cas proteins. *Nucleic Acids Res* 46, W246–W251. doi:10.1093/nar/gky425.
- Eren, A. M., Esen, Ö. C., Quince, C., Vineis, J. H., Morrison, H. G., Sogin, M. L., et al. (2015). Anvi'o: an advanced analysis and visualization platform for 'omics data. *PeerJ* 3, e1319. doi:10.7717/peerj.1319.
- Garber, A., Nealson, K. H., Okamoto, A., Chan, C. S., McAllister, S. M., and Merino, N. (2019). FeGenie: a comprehensive tool for the identification of iron genes and iron gene clusters in genomes and metagenome assemblies. *bioRxiv*. doi:doi.org/10.1101/777656.
- Goudeau, D., Nath, N., Ciobanu, D., Cheng, J.-F., and Malmstrom, R. (2014). Current Developments in Prokaryotic Single Cell Whole Genome Amplification.

- Harrison, K. J., de Crecy-Lagard, V., and Zallot, R. (2017). Gene Graphics: a genomic neighborhood data visualization web application. *Bioinformatics* 34, 1406–1408. doi:10.1093/bioinformatics/btx793.
- Hemmann, J. L., Wagner, T., Shima, S., and Vorholt, J. A. (2019). Methylofuran is a prosthetic group of the formyltransferase/hydrolase complex and shuttles one-carbon units between two active sites. *Proc Natl Acad Sci USA*, 201911595. doi:10.1073/pnas.1911595116.
- Kacar, B., Hanson-Smith, V., Adam, Z. R., and Boekelheide, N. (2017). Constraining the timing of the Great Oxidation Event within the Rubisco phylogenetic tree. *Geobiology* 15, 628–640. doi:10.1111/gbi.12243.
- Kameya, M., Kanbe, H., Igarashi, Y., Arai, H., and Ishii, M. (2017). Nitrate reductases in *Hydrogenobacter thermophilus* with evolutionarily ancient features: distinctive localization and electron transfer: Nitrate reductases of *Hydrogenobacter thermophilus*. *Mol Microbiol* 106, 129–141. doi:10.1111/mmi.13756.
- Katoh, K., Misawa, K., Kuma, K., and Miyata, T. (2002). MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. *Nucleic Acids Res* 30, 3059–3066. doi:10.1093/nar/gkf436.
- Kawai, M., Furuta, Y., Yahara, K., Tsuru, T., Oshima, K., Handa, N., et al. (2011). Evolution in an oncogenic bacterial species with extreme genome plasticity: Helicobacter pylori East Asian genomes. *BMC Microbiol* 11, 104. doi:10.1186/1471-2180-11-104.
- Kawai, M., Futagami, T., Toyoda, A., Takaki, Y., Nishi, S., Hori, S., et al. (2014). High frequency of phylogenetically diverse reductive dehalogenase-homologous genes in deep subseafloor sedimentary metagenomes. *Front Microbiol* 5. doi:10.3389/fmicb.2014.00080.
- Lasken, R. S., and Stockwell, T. B. (2007). Mechanism of chimera formation during the Multiple Displacement Amplification reaction. *BMC Biotechnol* 7, 19. doi:10.1186/1472-6750-7-19.
- Lux, M., Krüger, J., Rinke, C., Maus, I., Schlüter, A., Woyke, T., et al. (2016). acdc Automated Contamination Detection and Confidence estimation for single-cell genome data. *BMC Bioinformatics* 17, 543. doi:10.1186/s12859-016-1397-7.
- Menzel, P., Ng, K. L., and Krogh, A. (2016). Fast and sensitive taxonomic classification for metagenomics with Kaiju. *Nat Commun* 7, 11257. doi:10.1038/ncomms11257.
- Mistry, J., Finn, R. D., Eddy, S. R., Bateman, A., and Punta, M. (2013). Challenges in homology search: HMMER3 and convergent evolution of coiled-coil regions. *Nucleic Acids Res* 41, e121–e121. doi:10.1093/nar/gkt263.
- Mulkidjanian, A. Y., Galperin, M. Y., Makarova, K. S., Wolf, Y. I., and Koonin, E. V. (2008). Evolutionary primacy of sodium bioenergetics. *Biol Direct* 3, 13. doi:10.1186/1745-6150-3-13.

- Ohara, S., Kakegawa, T., and Nakazawa, H. (2007). Pressure Effects on the Abiotic Polymerization of Glycine. *Orig Life Evol Biosph* 37, 215–223. doi:10.1007/s11084-007-9067-4.
- Pomper, B. K., Saurel, O., Milon, A., and Vorholt, J. A. (2002). Generation of formate by the formyltransferase/hydrolase complex (Fhc) from *Methylobacterium extorquens* AM1. *FEBS Letters* 523, 133–137. doi:10.1016/S0014-5793(02)02962-9.
- Price, M. N., Dehal, P. S., and Arkin, A. P. (2010). FastTree 2 Approximately Maximum-Likelihood Trees for Large Alignments. *PLoS ONE* 5, e9490. doi:10.1371/journal.pone.0009490.
- Rost, B. (1999). Twilight zone of protein sequence alignments. *Protein Eng Des Sel* 12, 85–94. doi:10.1093/protein/12.2.85.
- Steinegger, M., and Söding, J. (2017). MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets. *Nature Biotechnology*. doi:10.1038/nbt.3988.
- Uchiyama, I. (2006). Hierarchical clustering algorithm for comprehensive orthologous-domain classification in multiple genomes. *Nucleic Acids Res* 34, 647–658. doi:10.1093/nar/gkj448.
- Uchiyama, I. (2017). Ortholog Identification and Comparative Analysis of Microbial Genomes Using MBGD and RECOG. *Methods Mol. Biol.* 1611, 147–168. doi:10.1007/978-1-4939-7015-5_12.
- Yu, H., Susanti, D., McGlynn, S. E., Skennerton, C. T., Chourey, K., Iyer, R., et al. (2018). Comparative Genomics and Proteomic Analysis of Assimilatory Sulfate Reduction Pathways in Anaerobic Methanotrophic Archaea. *Front Microbiol* 9, 2917. doi:10.3389/fmicb.2018.02917.