
S1 Appendix

To make this paper self-contained, below, we recall definitions of Bag of Words [24] and
Fisher Vector [25].

Bag of Words. Let {Xi}iN=1 be the representations of N training images obtained
from the last convolutional layer of CNN, where Xi = {xi,j ∈ Rcn}wnhn

j=1 , while wn, hn,
and cn are dimensions of the nth CNN layer. The representations are consolidated
X = X1 ∪X2 ∪ . . . ∪XN , and a codebook of size K is calculated using k-means
clustering on X. Let {µk ∈ Rcn , k = 1, . . . ,K} denote the centers of the obtained
clusters. Moreover, let us denote NN(xi,j) as the index of the cluster center nearest to
xi,j :

NN(xi,j) = k : d(xi,j , µk) ≤ d(xi,j , µl) for all l ∈ {1, . . . , wnhn}.

The Bag of Words counts the number of points from Xi, which are closer to particular
clusters:

BoW (Xi) = (card{xi,j ∈ Xi : NN(xi,j) = k})k=1,...,K .

L(Xi|λ) = log Πxi,j∈Xi
p(xi,j |λ)) =

∑
xi,j∈Xi

log p(xi,j |λ),

where:

p(xi,j |λ) =

K∑
k=1

πkpk(xi,j |λ).

Assuming that the covariance matrices are diagonal (for ease of calculation), the
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dth dimension of a vector) can be effectively computed as [25]:[ ]
,
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where γk(xi,j) is the soft assignment of xi,j to kth Gaussian:

γk(xi,j) = p(k|xi,j , λ) =
πkpk(xi,j |λ)∑K
l=1 πlpl(xi,j |λ)

,

The gradient vector is a concatenation of the partial derivatives with respect to all the
parameters. To normalize the dynamic range of dimensions, diagonal of the Fisher
information matrix Fλ is computed as:

Fλ = EXi [∇λL(Xi|λ)∇λL(Xi|λ)′],
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and then applied to partial derivatives, resulting in the final definition of the Fisher
vector: ( )

k=1..K

FV (Xi) = f , f ,

where fµd
k

and fσk
d are the corresponding terms on the diagonal of Fλ.

Fisher Vector. Similarly to Bag of Words, the Fisher Vector starts with
consolidating the representations into X. Then, X is used to generate the Gaussian
Mixture Model (GMM) λ = {πk, µk,Σk, k = 1, . . . ,K}, where πk, µk and Σk denote the
weight, mean vector and covariance matrix of kth Gaussian, and K is the number of
Gaussians. Intuitively, the Fisher Vector characterizes a particular representation Xi

with a gradient vector derived from GMM. More formally, let L(Xi|λ) = log p(Xi|λ) is
the likelihood that point xi,j was generated by the GMM (under the independence
assumption):


