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S1 Model and Analysis 26

Text S1.1 27

Analytic Model 28

29

Here, we compare different approximations for the effects of selection on the 30

genealogical distribution at a linked neutral site. As in the main text, s is the 31

(heterozygous) strength of selection acting on the beneficial B allele, R = rd is the rate 32

of recombination between the two sites, and we sample n = 2 individuals from a diploid 33

population of size N . 34

Star-like approximation In the main text, the star-like approximation assumes 35

that the stochastic trajectory of the B allele is well approximated by the expected 36

change in allele frequency, i.e. logistic growth, from an initial frequency of 1/(2N). At a 37

single time point, this average is taken over all possible changes in allele frequency, 38

including a decrease which causes loss of the B allele. In that way, at low frequency, the 39

expected growth is very slow. However, when the allele frequency is very small, its fate – 40

loss or fixation – is largely stochastic. By conditioning on fixation of the B allele, we 41

tend to observe cases where, by chance, the B allele increases in frequency faster than 42

expected. This early stochastic increase can be accounted for by setting the initial 43

frequency to 1/(2N2s) [1]. The expected time to fixation is 2 ln(2N2s)/s, and the 44

probability of escape becomes 45

Pe = 1− e−
R ln(2N2s)

s . (S1.1)

This amounts to re-scaling αd→ R ln(2N2s)
s in the main text. The same result for Pe 46

was also derived by [2, 3] using a diffusion-approximation approach. The effect of 47

rescaling αd is that the predicted breadth of the sweep increases to fit simulation results 48

more closely. However, this does not account for the fact that PBb is overestimated 49

while PB is underestimated by the star-like approximation (Fig. A1). 50

Dealing with variance in coalescence time The fault of the star-like 51

approximation falls in assuming all coalescence occurs at the very beginning of the 52

sweep. In reality, there is variance in the true time to coalescence for the sampled 53

lineages, and late recombination events permit coalescence even to the b background. 54

While this variance in coalescence time can be addressed using a diffusion approach [4], 55

this approximation is valid only for small values of R/s. For accurate predictions over 56

the full breadth of the volcano sweep (see Fig. A1), we use the approximation in [5], 57

re-derived for the Wright-Fisher (WF) model: 58

Pe = 1− s

R(1− 2s) + s

M∏
j=2

(
1− R

js

)

PB =
s

R(1− 2s) + s

M∏
j=2

(
1− 2R

(j + 1)s

)

Pb =
R(1− 2s)

R(1− 2s) + s

M∏
j=2

(
1− 2R

(j + 1)s

)
+

M∑
i=2

2R

i(i+ 1)s

M∏
j=i+1

(
1− 2R

(j + 1)s

)
PBb = 2 ((1− Pe)− PB)
Pbb = 1− PB − Pb − PBb

(S1.2)

June 8, 2020 2/14



Here, the establishment of the beneficial allele is modeled as a continuous-time 59

branching process, where the intrinsic birth and death rates are taken as 1/2 (rather 60

than 1 ) to account for drift in the WF (rather than Moran) model [6]. This leads to 61

our term of R(1− 2s) rather than R(1− s) in [5]. The subsequent growth of the 62

beneficial allele, conditioned on fixation, is modeled as a pure-birth branching process, 63

or Yule process, which is marked by recombination events to account for the effects of 64

selection on the genealogy at linked neutral sites. If the number of lineages sampled 65

after the sweep is small, their ancestry is well-approximated by the growth of the 66

marked Yule process from the single initial B lineage to M = 2Ns (Moran) or 67

M = 2N2s (WF) lineages. Aside from this factor-of-two difference in M , however, the 68

rates of events in the conditioned process are the same in the Moran and WF models. 69

In Fig. A1, we see that the star-like approximation for (1− Pe), eq. (S1.1), slightly 70

overestimates this but otherwise performs almost as accurately as eq. (S1.2). For 71

comparison, we follow [5] in approximating 72

(1− Pe) ≈ e−
R
s (ln(2N2s)+γ−2s) (S1.3)

where γ ≈ 0.58 is Euler’s gamma. Note that if we ignore γ and s terms, we recover the 73

star-like approximation by [1]. This may be interpreted as a better approximation for 74

the time to fixation of the beneficial allele. Indeed 2R
s (ln(2N2s) + γ − 2s) closely 75

resembles the approximations in [7] and [6] for the expected time to fixation. 76

On the other hand, we see in supp. Fig. A1 that PB is underestimated by the 77

star-like approximation, and as a consequence, PBb = 2((1− Pe)− PB) is overestimated. 78

In contrast, eq. (S1.2) estimates PB very well. We may similarly approximate PB , and 79

by rearrangement and substitution using 1− Pe in eq. (S1.3), we find 80

PB ≈ (1− Pe)2e
2R
s (1+s). (S1.4)

The (1− Pe)2 term corresponds to that of the star-like approximation using 81

αd = 2R
s (ln(2N2s) + γ − 2s) as the sweep strength parameter. Importantly, eq. (S1.4) 82

shows us that PB cannot be accurately approximated using the single sweep parameter 83

α. Rather, PB is e
2R
s (1+s) times higher than expected under the star-like approximation. 84

Let (1− Pe)2 account for coalescence which occurs at the origin of the sweep and 85

denote P ∗ = (1−Pe)
2

PB
= e−2R

1+s
s the proportion of the {B,B} → {B} events which are 86

approximately star-like. Very near the selected site, few if any lineages escape the sweep 87

and most coalescent events will occur very near the origin of the B allele, i.e., as R→ 0, 88

P ∗ → 1 and PB → (1− Pe)2. As R increases, one or both lineages are likely to escape 89

the sweep. Conditioned on sampling lineages with a {B,B} → {B} genealogy, 90

coalescence during the sweep occurs only among the subset of non-recombinant B type 91

lineages. P ∗ decreases to 0 as R grows, and therefore if coalescence occurs, it does so 92

earlier in the sweep than expected under the star-like approximation. However, note 93

that the relative error of the star-like approximation increases with 2R(1 + s)/s, but PB 94

decreases more quickly, approximately with 2R ln(2N2s)/s. That is, at distances where 95

the error becomes large, PB is already very small. 96
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Fig. A1 97

The effect of selection on linked neutral genealogies. The probability for a 98

lineage not to escape (1− Pe) and the genealogical distribution for a sample of n = 2 as 99

a function of the recombination rate R. The solid lines are the approximation of 100

eq. (S1.2). The dashed lines use the star-like approximation with Pe as in S1.1. The 101

dots represent the average from 1 000 independent simulation runs. A. N = 5000. 102

B. N = 1000. In both panels s = 0.1. 103

A

B 104
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Fig. A2 105

Single iterations of an adaptive introgression event. Each panel shows an 106

independent, randomly chosen simulation run. We calculated the whole-population 107

mean genetic diversity in 401 non-overlapping non-adjacent one kb windows separated 108

by one kb and centred on the selected locus. The initial heterozygosity and the genetic 109

diversity at fixation of the beneficial B allele are shown in grey and black, respectively. 110

Here, θ = 0.002 (N = 5000, µ = 10−7), r = 10−7, Td = 6 (D = 13θ), and s = 0.06 111

(2Ns = 600). 112

A B

C D

E F

G H

I J

113
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Text S1.2 114

Model 2: accounting for coalescence time within the recipient species. 115

116

In a second model we still assume complete lineage sorting, i.e all the lineages 117

escaping the introgression sweep coalesce in a single lineage in a recipient species before 118

this lineage coalesce with the single lineage that traced back into the donor species (see 119

Fig. 1), but we no-longer ignore the coalescence time within the recipient species. The 120

D/2 factor in the last term in eq. (9) no longer holds and thus needs to be replaced by 121

the probability σi(i) that a mutation occurred in the ancestral lineage of the i lines that 122

escaped the introgression sweep between the common ancestor and the coalescence 123

event with the lineage that traced back into the donor species. Inspired by eq. (12) we 124

can express the divergences between the recipient and the donor species and between 125

the recipient species and its MRCA with the outgroup species considering the SFS in 126

the subsample of i lineages that escaped the introgression sweep. In the case when fixed 127

differences are polarized we have, 128

D

2
= σi(i) +

i−1∑
j=1

j

i
Sj(i),

and 129

Do = Si(i) +

i−1∑
j=1

j

i
Sj(i).

From these expressions we can isolate σi(i) = D/2−Do + Si(i) and finally get the 130

probabilities in the altered SFS after the introgression sweep for the polymorphic states 131

(1 6 i 6 n− 1), 132

S′i(n|α, d,D) =

(
n∑

k=i+1

Pe(k|α, d)Si(k)

)
+Pe(n−i|α, d)D2 +Pe(i|α, d)

(
D
2 −Do + Si(i)

)
.

(S1.5)
Eq. (S1.5) is only valid if D/2−Do + Si(i) > 0 for all i ∈ {1, . . . , n}. A necessary and 133

sufficient condition is D
2 > Do − Sn(n). Using eq. (12) leads to D

2 > n−1
n θ̂L, where 134

θ̂L = 1
n−1

∑n−1
i=1 iSi(n) is an unbiased estimator of θ defined in [8, eq.(8)] and computed 135

from the whole genomic background. 136

Similarly, the Do factor in the last term of eq. (11) can easily be replaced by the 137

probability Sn(n) that a mutation occurs on the ancestral lineage of n lineages that 138

have escaped the introgression sweep before coalescence occurs with the outgroup: 139

S′n(n|α, d,D) =

((
Do − D

2

) n−1∑
k=1

Pe(k|α, d)

)
+DoPe(0|α, d) + Sn(n)Pe(n|α, d). (S1.6)

If fixed differences are not polarized, then eqs. (S1.5) and (S1.6) still hold when 140

substituting the divergence between the recipient species and its MRCA with the 141

ougroup species Do with the full divergence between the recipient and the outgroup 142

species D′o. Once again the probabilities in eqs. (S1.5) and (S1.6) are linearly dependent 143

of the mutation parameter θ = 4Nµ, and this dependency disappears in conditional 144

probabilities obtained from eqs. (10) and (13). 145

Text S1.3 146

The SFS after an introgression sweep 147

148
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Fig. A3 displays the effect of adaptive introgression on the SFS (sample size n = 8) 149

of the recipient population in the simple model described above (Model 1, red columns) 150

and the more complex model described in the supplement (Model 2, blue columns, see 151

Text S1.2) relative to the neutral spectrum (black). Model 2 differs from Model 1 in 152

that it does not ignore the coalescence time in the recipient species. The figure shows 153

that near the sweep center (distance αd = 0.01, top panel), hitchhiking reduces 154

polymorphism and increases the proportion of fixed differences. For sites located at 155

distances where single recombination events are likely (αd = 0.1 and 1.0), partial 156

hitchhiking of foreign variation increases polymorphism relative to the neutral 157

expectation. This increase in diversity is accompanied by a decrease in the proportion 158

of fixed differences relative to the third, outgroup species. Under the infinite sites 159

mutation model, sites that diverge from the donor population must also diverge from 160

the outgroup species. At these sites, introgression re-introduces the ancestral variant, 161

sharply reducing the proportion of fixed derived sites in the sampled lineages. This is a 162

key feature not seen in classic hard sweeps. 163

Fig. A3 also shows that the predicted SFS under the simple Model 1 (red) does not 164

differ much from the SFS predicted under the slightly more accurate Model 2 (blue). 165

However, there is still a key difference. Model 2 is restricted to D > 2n−1n θ̂L, whereas 166

Model 1 may take smaller values, including D = θ for a classic sweep from de novo 167

mutation. For these reasons, we suggest to, in general, use Model 1. Unless otherwise 168

noted, the VolcanoFinder results presented in this article are generated under Model 1 169

and fixed differences with the outgroup are polarized with the help of a second, 170

distantly-related outgroup. 171
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Text S1.4 172

Comparison of Models 1 and 2 173

174

In Fig. A3, we saw that Models 1 and 2 yield similar predictions for the SFS after 175

the selective sweep when D � θ. That is, when the divergence is sufficiently large so 176

that ancestral variation is no longer segregating in the populations, Tcoal,2 � Td, the 177

pairwise diversity D well-approximates the contribution of fixed derived mutations from 178

the recipient population. Here, we look at the difference between the two models in 179

approximating the expected heterozygosity after the sweep. 180

For a sample of n = 2 two lineages taken directly after the sweep, the expected 181

heterozygosity may be approximated as in eq. (3) of the main text. In Fig. A3, we show 182

the star-like approximation in grey, the more-accurate approximation of [5] in black, 183

and simulation results as black dots. For a sample of n > 2, we use the un-normalized 184

S′i(n) from either Model 1 (eq. 9) or 2 (eq. S1.5) to determine the effects of the sweep. 185

By substituting the S′i(n) into eq. 6, the expected heterozygosity is given by S′1(2). We 186

show the predictions of Model 1 (red, dashed) and Model 2 (blue, dashed) in Fig. A4. 187

We see that Model 2 exactly matches the predictions of the star-like approximation and 188

that Model 1 is even more biased to over-estimates the increase in genetic diversity. 189

Text S1.5 190

The performance of VolcanoFinder and SweepFinder 191

192

Here we take a closer look at the ability of both SweepFinder and VolcanoFinder 193

to detect an adaptive introgression sweep. 200 successful introgression sweeps centered 194

in a 500 kb locus were simulated under strong selection, 2Ns = 1000 (N = 5000, 195

s = 0.1), a scaled mutation parameter θ = 0.002 (mutation rate µ = 10−7), and 196

significant divergence of the donor population D = 0.026 = 13θ. The per-site 197

recombination rate r = 5× 10−7, thus the sweep parameter 198

α = r ln(2N)/s = 4.6× 10−5. The data consists of n = 10 lineages sampled from the 199

recipient species. It is polarized to an outgroup with pairwise divergence Do = 0.05 and 200

includes fixed differences. As shown in the power analysis of the main text, both sweep 201

scan methods have high power to detect introgression sweeps with these parameters. 202

Single iterations of the adaptive introgression process may produce the expected 203

volcano pattern, but when early recombination events occur, the signal is concatenated. 204

In order to compare data to theory, the 200 iterations were combined into a single 205

data-rich locus, preserving the unique identifier and correct positions of the mutations 206

within the simulated genomic region The result is an “average” data set representative 207

of the expected volcano sweep pattern which we scan for selection using SweepFinder 208

and VolcanoFinder. Note that here, the LR values are inflated because they are 209

calculated from the combination of 200 iterations of data. The LR values of a single 210

iteration are much smaller. 211

VolcanoFinder scans were run over a range of potential divergence values 212

D = 0.010, 0.015, 0.020, 0.026, 0.030, 0.035, 0.040, and 0.045 (i.e. 213

D/θ = 5, 7.5, 10, 13, 15, 17.5, 20, 22.5) including the true value used in simulations 214

Dsim = 0.026. While the true value D = Dsim results in a very high LR value of 215

507297, VolcanoFinder finds that an introgression sweep with D = 0.020 fits the 216

average data slightly better, with LR value 598280. As shown in the previous section, 217

model 1 consistently over-estimates the contribution of divergence before the sweep to 218

diversity after the sweep. In combination, the star-like approximation for the effect of 219

selection on linked neutral loci systematically over-estimates the height of the diversity 220

peaks. Together, this indicates that a lower D value yields a better-fitting model. 221
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Indeed, supp. Fig. A5 shows that at the distance αd = 1/2 where the volcano peak is 222

close to the maximum height, the model predictions fit the data better using D = 0.02. 223

However, for both D values, VolcanoFinder finds an optimum sweep parameter 224

α̂ ≈ 3.4× 10−5, close to the true value of 4.6× 10−5, ( α̂α ≈ 0.74). 225

SweepFinder is also able to detect the introgression sweep but is less sensitive to the 226

signal, producing a LR value of 2672, nearly 200 times smaller than that reported by 227

VolcanoFinder. While VolcanoFinder uses information from the full breadth of the 228

introgression sweep, the SweepFinder model cannot account for the influx of foreign 229

variation and is sensitive only to the features of the narrow diversity valley near the 230

introgression sweep center. 231

In Fig. A6, we compare the optimum model that SweepFinder fits to the average 232

data set to that of VolcanoFinder with D = 0.026, discussed above and shown in 233

Fig. A5 (right column). In the top panel, we see that SweepFinder detects only a very 234

small sweep valley that approximately matches the valley of the volcano sweep. In 235

contrast to VolcanoFinder, the optimum sweep strength found by this method is an 236

order of magnitude smaller than the true value used in simulations ( α̂α ≈ 6.4). 237

As expected, the weak sweep parameter chosen by SweepFinder as the optimum 238

allows it to approximately fit the SFS very near the sweep center (top two panels, 239

classic sweep model α̂d = 0.01 or 0.1). At greater distances, SweepFinder cannot 240

predict the effect of introgression on the SFS and matches the data poorly. Due to the 241

weak sweep strength, the corresponding regions in the simulated data are in-reality an 242

order of magnitude closer to the sweep center when distance is scaled by the true 243

strength of the selective sweep. This has conflicting effects on the power of 244

SweepFinder to detect adaptive introgression sweeps. 245

At distances αd > 10 from the sweep center, a selective sweep has little effect on 246

neutral genealogies, and this provides a limit to how much of the data is informative for 247

selective sweep scans. With a much weaker selection strength parameter, SweepFinder 248

assesses only a fraction of the information that is accessible to the VolcanoFinder 249

method, explaining in-part the much-lower LR value. 250

However, by finding a weak optimum strength parameter, SweepFinder avoids 251

looking at regions of the introgression sweep in which it performs poorly relative to the 252

background SFS used as a null hypothesis. In the main text, we saw that at distances 253

greater than or equal to αd = 1, the classic sweep model predicts a near-return to the 254

background SFS. At greater distances, sites are no longer informative due to the 255

similarity in the null and alternative hypotheses of the likelihood ratio statistic. 256
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Fig. A3 257

The site frequency spectrum after adaptive introgression. 258

The SFS for a sample of n = 8 as a function of the relative distance αd from the 259

sweep center. Model 1 (eq. 11) predictions are in red; Model 2 (eq. S1.6), blue. Here, 260

N = 5000, s = 0.1, θ = 0.005, D = 0.026 and Do = 0.05 261
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Fig. A4 263

Pairwise diversity after the selective sweep. Predictions from a sample of two 264

lineages are in gray. Model 1 predictions are in red. Model 2 predictions are in blue. 265

Our original model predictions are in black. Average of simulated data points 266

±3 standard error are shown in black. In the upper data set D = 0.026, and in the 267

lower data set D = 0.014. In both, the remaining parameters are θ = 0.002, N = 5000, 268

s = 0.1, and n = 50. 269
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Fig. A5 271

VolcanoFinder optimum model: choice of D Results from the VolcanoFinder 272

scan of the average data set described in the supp. Text S1.5. The left column shows 273

the optimum sweep model (inferred strength parameter α̂ = 3.4× 10−5) given the true 274

D = Dsim = 0.026 used in the simulation. The right column shows the best-fitting 275

model found by the method with inferred parameters D̂ = 0.02 and α̂ = 3.4× 10−5. 276

The top panels show the average heterozygosity along the sweep region with distance 277

scaled by the true sweep strength αd (gray) as well as the expected diversity predicted 278

under the given model (blue dashed). The remaining rows show the theoretical SFS of 279

the the optimum model (light gray) at increasing distances α̂d = 0.01, 0.1, 0.5, 1, 2, 3, 8 280

from the sweep center and compares this to the observed SFS in a 100-bp window 281

centered at that position averaged over 50 simulations (dark gray). The label on each 282

panel lists the chosen value of scaled distance α̂d from the optimum model as well as 283

the corresponding true value of αd determined by the simulation parameters. 284
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Fig. A6 286

SweepFinder detects the introgression sweep valley. The left column shows the 287

best-fitting model for SweepFinder. The VolcanoFinder results in the right column as 288

well as the description of the panels are the same as in Fig. A5. 289
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