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S3 Power Analysis: Large Chromosome 26

Text S3.1 27

Peak identification and assessing power 28

29

In this section, we detail the methods we use to determine the power of 30

VolcanoFinder to identify the adaptive introgression allele as an outlier likelihood ratio 31

(LR) value in a genome scan. Suppose we run a VolcanoFinder scan on one such 32

chromosome. If we plot the LR values along the chromosome, then we observe a series 33

of fluctuating scores and can identify a set of taller peaks that stand out from the 34

genomic background. If the method is perfect, then the highest peak will represent the 35

true location of the adaptive introgression allele. When the method is imperfect, in 36

order to find the sweep signal, we must observe a number of false-positive peaks with 37

higher likelihood ratio values. We therefore rank the success of the method by the 38

number of peaks in neutral regions of the genome (false positives) that score higher 39

than the peak for the adaptive introgression allele (true positive). What remains are 40

two very important points: How do we define a true positive signal, and how do we 41

distinguish independent signals in the genome scan? 42

The sweep-width approach 43

For each test site, VolcanoFinder reports not only the LR value, but also the 44

divergence value D and sweep strength α for the optimum sweep model. We use α both 45

to distinguish independent peak values in the data and to determine if a peak represents 46

positive detection of the adaptive allele. α is a compound parameter that measures the 47

strength of the sweep relative to the local per-site rate of recombination in the genome 48

(see section: Volcanoes of Diversity). Multiplying α by the distance d in base pairs from 49

the beneficial mutation, we obtain a scaled measure of the effect of a sweep. We have 50

already seen that at a distance of αd ≈ 6, genetic diversity is only slightly increased 51

above background levels (see Fig. A5) Furthermore, at distances αd = 12, selection has 52

little effect on neutral diversity, and VolcanoFinder uses this as a cutoff for the 53

inclusion of data in the statistical test. In the case of strong selection, 2Ns = 1000, this 54

yields a cutoff at 120 kb from the beneficial mutation, while for weak selection, 55

2Ns = 100, the cutoff is 12 kb from the beneficial mutation. 56

We first identify the independent peaks in our data. The first peak is defined as the 57

test site with the highest LR value. Whether through a selective process or a neutral 58

process, adjacent sites in the genome may give a strong but correlated signal, for 59

example, a series of test sites close to the center of the sweep. Using the optimum α 60

value, we define the breadth of this signal as the flanking region within distance 61

dmax = 12/α left and right of the test site. We mask all test sites in this region, and 62

define the second peak as the test site with the highest LR value in the remaining 63

unmasked portion of the genome, repeating this process to obtain a set of candidate 64

regions. Here, we limit the analysis to the top 50 candidate sites. 65

The way we define independent signals in the genome scan naturally extends to 66

distinguishing the true signal from false positives. A peak is a true positive detection of 67

the adaptive introgression allele if the beneficial allele is located within the breadth of 68

the sweep region as determined by VolcanoFinder and the limit of αd = 12 above. To 69

visualize the overall power, we rank each independent adaptive introgression simulation 70

as above. We then plot the proportion of simulation runs that have rank greater than or 71

equal to k = 0, 1, 2, ..., 50. 72

The peak-finding approach 73
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The sweep-width approach to outlier identification works well for methods like 74

VolcanoFinder and SweepFinder2. However, it can only be applied to outlier-based 75

genome scans for positive selection. In order to make comparisons to other methods 76

when assessing the power and robustness of VolcanoFinder, we use a more general 77

approach. Here, we identify the strength of the true-positive outlier signal as the highest 78

likelihood ratio value observed for a small region of the genome that flanks the 79

beneficial mutation. The outlier scores from the remainder of the genome are treated as 80

false-positives. To distinguish independent signals among the genomic background 81

scores, we identify the peaks in LR values occurring along the genome. Defining a 82

minimum distance between adjacent peaks in the genome, we merge neighboring peaks 83

to obtain a set of false-positive candidate regions. The subsequent evaluation of 84

VolcanoFinder’s performance proceeds as for the sweep-width approach. 85
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Text S3.2 86

Power analysis: 10 Mb chromosomes 87

88

In this section, we investigate the power of VolcanoFinder to detect the adaptive 89

introgression allele in the context of a single chromosome. Ideally, we should simulate a 90

large chromosome in order to obtain a representative distribution of scores in the neutral 91

genomic background. We implemented simulations of the adaptive introgression sweep 92

using SLiM3 [1] with tree-sequence recording to model selection, then recapitation in 93

msprime [2] to simulate neutral coalesence for the demographic history specified in our 94

model. However, using realistic parameters for humans, even these advanced methods 95

were computationally prohibitive, and we were limited to 10 Mb genomic regions, 96

corresponding to 20 centiMorgans of human chromosome for our chosen parameters. 97

Here, we consider a population of N = 10, 000 diploid individuals, mutation rate 98

µ = 1.25× 10−8 per site per generation, and recombination rate r = 5× 10−7 per site 99

per generation. The strength of selection acting on the beneficial mutation is either 100

2Ns = 1000 (strong) or 2Ns = 100 (weak). We model adaptive introgression occuring 101

from a highly-diverged donor population, Td = 4.0 or Td = 2.5 (units of 4N 102

generations). The donor population size is set to N = 1 diploid individual to ensure the 103

adaptive introgression event stems from a single haplotype. Conditioning on fixation of 104

the adaptive allele, we sampled a single outgroup lineage with divergence Tsp = 10.0 105

(4N generations) to polarize the data and n = 40 chromosomes from the recipient 106

population at the time of fixation of the beneficial mutation. 107

Two scenarios are included in this analysis. The first scenario models adaptive 108

introgression from a rare migration/hybridization event. In this case, migration from 109

the donor to the recipient population occurs for a single generation rate with migration 110

rate m = 1/N . This closely resembles the scenario in Fig. B3, Panel 3-1. However, there 111

is a key difference. Here, the genomic background experiences a small amount of neutral 112

introgression, while in the main text, the background is purely non-admixed. 113

We then extend this setting to a second scenario where high hybridization rates lead 114

to a larger amount of introgression in neutral regions of the genome, setting m = 30/N 115

for 2Ns = 1000 and setting m = 300/N for 2Ns = 100 to ensure in each case a 95% 116

chance of fixation of the adaptive mutation (see Fig. B1 and Text S2.1). That way, the 117

model more accurately reflects the type of hybridization events that result in fixation of 118

the adaptive allele. It is this type of event we expect to observe most often in real data. 119

Note, however, that we still condition on fixation of the adaptive allele in this scenario. 120

These cases correspond fully to Fig. 5, Panel 2-1 (Td = 2.5) and Panel 3-1 (Td = 4.0). 121

The effect of migration and divergence 122

For introgression from a rare hybridization event, VolcanoFinder has very high 123

power to detect the adaptive introgression sweep, both for weak and strong selection 124

(Fig. C1, panel A). Panel B shows the results for the high-migration scenario. In this 125

case, we observe high power with strong selection but relatively low power for weak 126

selection. In panel B, we also observe that increasing the divergence of the donor 127

population from Td = 2.5 (blue lines) to Td = 4.0 (green lines) yields only a marginal 128

increase in power to detect the adaptive introgression allele. 129

To understand this more clearly, we compared the true-positive test scores from the 130

sweep center to the distribution of peak scores taken from the peripheral 1000 kb 131

regions of the chromosomes (Fig. C2). Note that Fig. C1 shows the power to detect the 132

adaptive introgression allele in a 10 Mb chromosome, whereas here, the false-positive 133

outlier peaks are obtained from a total of 480 Mb of simulated sequence data. When 134

selection is strong, we observed high-valued outlier scores in the sweep center across all 135

simulated scenarios. When selection is weak, however, the signal of the selective sweep 136
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does not stand out from the peaks in the background distribution. When hybridization 137

is rare (low migration), we observed stronger outlier signals in the genomic background 138

for strong selection relative to weak selection. At the periphery of the chromosome, we 139

do not expect selection to effect the test scores. Rather, this is an effect of sampling 140

time, as fixation of the beneficial mutation occurs much earlier when selection is strong. 141

Fig. C2 also shows that, although increased migration rates lead to overall higher test 142

scores in the genomic background, the heights of the outlier peaks are reduced. In 143

contrast, higher migration rates lead to much lower test scores in the central sweep 144

region and a lower power to detect the adaptive introgression allele. Finally, we 145

observed that higher divergence of the donor population leads to overall higher test 146

scores both in the sweep center and in the strength of false positive peaks from the 147

genomic background. 148

The effect of test site density 149

In Fig. C1 panel B, we compared the power to detect the sweep using a fine grid of 150

test sites (250 bp between test sites, solid lines) and a coarse grid of test sites (1000 bp 151

spacing, dashed lines). For strong selection, the coarse grid is sufficient to identify the 152

true positive signal, and only with low divergence did we observe higher power with a 153

more dense grid of test sites. In contrast, for weak selection, a higher density of test 154

sites did result in a substantial increase in power. In order for VolcanoFinder to 155

identify the sweep, a test site needs to be present in the central region that sweeps to 156

fixation, and this region is much larger for strong selective sweeps. Furthermore, due to 157

the stochastic nature of recombination, the sweep region is not necessarily centered on 158

the position of the beneficial mutation. Indeed, we found that the test score at the 159

selected site is in-general not the highest-scoring site within the 20 kb region at the 160

sweep center (Fig. C3). 161

The effect of selection on nearby test scores 162

Because our simulated chromosomes represent 20 centiMorgans of sequence, we can 163

safely assume that the scores in the peripheral regions of the simulated chromosome 164

reflect the scores from a genomic background that experiences purely-neutral 165

introgression. However, it is unclear how far the signal of adaptive introgression extends 166

from the sweep center. We previously discussed that at distances αd = 12, there is only 167

a small effect of the sweep on the genealogy of sites linked to the beneficial mutation. 168

This amounts to 120 kb for 2Ns = 1000 and 12 kb for 2Ns = 100, and at these 169

distances, it is generally agreed that the effect of the sweep is small [3]. For a classic 170

sweep from a de novo mutation, this makes sense. Consider the distance where only one 171

lineage is caught in the sweep. In this case, the sweep does not affect the genealogical 172

history of the sample. The lineages are exchangeable and follow a neutral coalescent 173

process pastward. In the case of adaptive introgression, however, coalescence with the 174

single lineage caught in the sweep occurs only in the common ancestral population. For 175

this reason, it is possible that the sweep generates elevated signals even at relatively 176

large distances from the beneficial mutation. Here, we examine the effect of the sweep 177

on test scores in the flanking region of the genome. 178

To do this, we use the Total Operating Characteristic (TOC) [4] curve to compare 179

the scores obtained from 100 kb windows of increasing distance from the beneficial 180

mutation to the scores taken from the peripheral 500 kb of the chromosome, pooling the 181

scores across independent replicate simulations. Fig. C4 shows the TOC curve for the 182

low-migration high-divergence scenario of Fig. C1 panel A. Our concern is with the 183

strength of outlier scores, and we therefore focus on high threshold values (lower panels 184

of Fig. C4). When selection is strong, VolcanoFinder has high diagnostic power in the 185

central 100 kb region of the sweep. Diagnostic power drops considerably beyond this 186
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central region. However, we see that for high threshold values, scores are elevated 187

relative to the background even at distances of 500 kb, much larger than we would 188

expect based on the 120 kb sweep breadth discussed above. As expected, when selection 189

is weak, the diagnostic power is lower, even in the center-most region of the sweep. 190

However, we again observed elevated test scores much farther than the expected 12 kb 191

region of the sweep. 192

Fig. C5 shows the TOC curves for the high-migration high-divergence scenario (solid 193

green lines of Fig. C1 panel B). When selection is strong, VolcanoFinder has high 194

diagnostic ability at high threshold values only in the center-most region of the sweep, 195

and in this region, the diagnostic power is reduced relative to the low-migration 196

scenario. When selection is weak, even the scores of the central sweep region are not 197

diagnostic of the adaptive introgression event. This corroborates that the true positive 198

test scores are difficult to distinguish from the distribution of outlier peaks obtained 199

from a larger genomic background, as observed in Fig. C2. 200
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Fig. C1 201

Power to detect the adaptive introgression allele Here we plot the detection 202

probability for VolcanoFinder as a function of the number of false positive signals we 203

observe. Panel A shows introgression from a rare hybridization event. Panel B shows 204

introgression with higher migration rates. In panel B, the dashed lines are for 1000 bp 205

spacing between test sites while the solid lines correspond to 250 bp spacing between 206

sites. In both panels, divergence of the donor is Td = 4.0 in units of 4N generations. 207

Dark green shows results for strong selection 2Ns = 1000 and light green shows results 208

for weak selection 2Ns = 100. 209
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Fig. C2 211

Distribution of test scores This data corresponds to that of Fig. C1. Each data set 212

contains 240 iterations. For each iteration, we obtain the highest likelihood ratio value 213

within 40 kb of the beneficial mutation. We compare this to the distribution of test 214

scores in the genomic background, here defined defined as the peripheral 1 Mb region 215

taken from each chromosome (in total, 480 Mb). From the genomic background, we 216

obtain a set of peak scores by merging neighboring test scores and setting a minimum 217

distance of 20 kb between adjacent peaks. For each data set, the central region scores 218

are shown on the left while the peak scores from the background are shown on the right. 219

High divergence Td = 4.0 is shown in green while low divergence Td = 2.5 is shown in 220

blue. The darker colors show strong selection; the lighter, weak selection. 221

low migration high migration

low divergencehigh divergence

strong weak strong weak strong weak

222
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Fig. C3 223

Test scores in the sweep center This data corresponds to that of the high migration 224

scenarios in Fig. C1. We plot the difference between the test score of the adaptive allele 225

and the maximum score observed in the central 20 kb region of the sweep for each of the 226

240 iterations: a positive value indicates the score of the adaptive allele is the highest. 227

The parameters are follows. Panel A: 2Ns = 1000, Td = 4.0, Panel B: 2Ns = 100, 228

Td = 4.0, Panel C: 2Ns = 1000, Td = 2.5, and Panel D: 2Ns = 100, Td = 2.5. 229

strong selection weak selection

high
div

low
div

A B

DC

230
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Fig. C4 231

Test scores in the sweep region (low migration) Here we show the Total 232

Operating Characteristic (TOC) curves that compare scores from 100 kb regions of 233

increasing distance from the beneficial mutation to the scores taken from the peripheral 234

500 kb of the chromosome, combining scores across the 240 replicate simulations. This 235

data corresponds to Fig. C1, i.e. hybridization is rare m = 1/(2N) and divergence of 236

the donor is Td = 4.0. The left column shows strong selection; the right, weak selection. 237

The upper panels show the full range of threshold values, while the lower panels focus 238

on high threshold values. The black dashed line corresponds to no difference between 239

the two distributions (x = y), and the blue dashed lines show the maximum and 240

minimum growth curves. 241

242
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Fig. C5 243

Test scores in the sweep region (high migration) Here we show the Total 244

Operating Characteristic (TOC) curves that compare scores from 100 kb regions of 245

increasing distance from the beneficial mutation to the scores taken from the peripheral 246

500 kb of the chromosome, combining scores across the 240 replicate simulations. This 247

data corresponds to Fig. C1, i.e. hybridization is rare m = 1/(2N) and divergence of 248

the donor is Td = 4.0. The left column shows strong selection; the right, weak selection. 249

The upper panels show the full range of threshold values, while the lower panels focus 250

on high threshold values. The black dashed line corresponds to no difference between 251

the two distributions (x = y), and the blue dashed lines show the maximum and 252

minimum growth curves. 253

254
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Text S3.3 255

Robustness to Classic Sweeps 256

257

Although the underlying model differs substantially from that of SweepFinder2, 258

VolcanoFinder may have power to detect classic sweeps, particularly when low 259

divergence values, e.g. D = θ are included in the grid search. Here we investigate the 260

extent to which VolcanoFinder is able to detect a classic sweep from a de novo 261

beneficial mutation, and we compare the performance of VolcanoFinder to that of 262

SweepFinder2. 263

We simulate this scenario using SLiM3 [1] and msprime [2] (as in section Text S3.2), 264

placing the beneficial mutation in the center of a 10 Mb chromosome. However, in this 265

case, the beneficial mutation arises in an individual chosen uniformly at random from a 266

panmictic population. We then perform both VolcanoFinder and SweepFinder2 scans 267

on the data. Here, we employ the power analysis that uses the predicted sweep width to 268

distinguish independent outliers and identify the true-positive signal. 269

For a classic sweep from de novo mutation, as expected, SweepFinder2 has very 270

high power to detect a strong sweep with 2Ns = 1000 but has only moderate power for 271

weak selection with 2Ns = 100 (Fig. C6, Panel A). In Panel B, we observe moderate 272

power for VolcanoFinder to identify a classic sweep with strong selection but 273

little-to-no power when selection is weak. Interestingly, by comparing to Fig. C1, we 274

observe that the power of VolcanoFinder to detect an adaptive introgression sweep is 275

similar to the power of SweepFinder2 to detect a classic sweep. 276

Fig. C6 Panel C compares the distribution of true-positive test scores to the 277

distribution of test scores taken from the periphery of the simulated chromosomes. We 278

observe that the range of high-valued outlier scores in the background distribution from 279

VolcanoFinder is much lower than in the adaptive introgression scenario (Fig. C2), 280

much more closely resembling the outlier scores obtained here by SweepFinder2. 281

However, while the range of outlier scores is similar, the overall distribution of scores is 282

higher for VolcanoFinder scans. In this figure, the background scores are taken from 283

480 Mb of genome. As we observed for VolcanoFinder in Fig. C2, SweepFinder2 284

retains high power to detect the classic sweep signal in the context of a larger genome, 285

but for weak selection, the true-positive test scores do not stand out from the 286

background. 287

For adaptive introgression sweeps, we observed elevated test scores even for sites 288

relatively distant from the sweep center. In contrast, we observe that the signal of a 289

classic sweep is restricted to only a very small region in the sweep center (Fig. C7). For 290

VolcanoFinder, a diagnostic signal is observed only when selection is strong, and as we 291

would expect, SweepFinder2 has strong diagnostic power when selection is strong and 292

moderate diagnostic power at high thresholds when selection is weak. For both 293

methods, we observe that elevated test scores are restricted to the 25 kb region flanking 294

the beneficial mutation, a much more narrow region than we observed for 295

VolcanoFinder applied to data simulated under an adaptive introgression scenario 296

(Fig. C4 and Fig. C5). 297
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Fig. C6 298

Classic Sweep: detection probability and distribution of test scores Panels A 299

and B show the power to detect a classic sweep from a de novo beneficial mutation for 300

SweepFinder2 (blue) and VolcanoFinder (green), respectively. In each, the dark color 301

corresponds to strong selection with 2Ns = 1000 while the light color corresponds to 302

weak selection with 2Ns = 100. For each of these four cases, panel C compares the 303

distribution of true-positive test scores (left) to the background signal obtained by 304

pooling the data from the peripheral 1 Mb of the simulated chromosomes (total 480 Mb 305

of background sequence). We simulate a 10 Mb chromosome with the adaptive allele 306

placed in the center. Here, the adaptive allele arises as a new beneficial mutation in a 307

panmictic population, and we sample the population at the time of fixation of the 308

adaptive allele. Here, N = 10, 000, µ = 1.25× 10−8, and r = 5× 10−7. 309

A B

C

310
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Fig. C7 311

Classic Sweep: Test scores in the sweep region Here we show the Total 312

Operating Characteristic (TOC) curves that compare scores from 12 kb regions of 313

increasing distance from the beneficial mutation to the scores taken from the peripheral 314

500 kb of the chromosome, combining scores across the 240 replicate simulations. This 315

data corresponds to Fig. C6. The left column shows scores from the VolcanoFinder 316

scans; the right column, from SweepFinder2 scans. The top row shows the results for 317

strong selection, the bottom row results for weak selection. The black dashed line 318

corresponds to no difference between the two distributions (x = y), and the blue dashed 319

lines show the maximum and minimum growth curves. 320

321
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Text S3.4 322

Robustness to Background Selection 323

324

Background selection refers to the loss of genetic variation at neutral sites due to the 325

purging of nearby deleterious mutations that arise throughout the genome [5]. In the 326

coalescent framework, the effect of background selection translates to a local reduction 327

in the population size and thus shorter branch lengths in the genealogical history of a 328

sample relative to that of a purely neutral evolutionary model [6, 7]. In this way, over 329

relatively short distances in the genome, background selection mimics the effect of a 330

selective sweep [8]. While statistical tests of positive selection based on pairwise genetic 331

diversity are robust to the effects of background selection [9], methods that are based on 332

the site frequency spectrum are more susceptible, as background selection induces a 333

skew toward low-frequency alleles. 334

Here, we are primarily interested in the robustness of VolcanoFinder to false 335

signatures of adaptive introgression generated by background selection. We therefore 336

investigate how the action of ubiquitous background selection affects the distribution of 337

likelihood ratio values in a genome that does not experience a selective sweep. We do 338

this by simulating both a set of neutral simulations and a comparable set of simulations 339

in which we model background selection. We then compare the distributions of 340

likelihood ratio values found by VolcanoFinder under these two scenarios. 341

To evaluate the effect of background selection on inferring adaptive introgression, we 342

employed the forward-time simulator SLiM3 [1]. We simulated two sets of sequences: 343

one set with background selection and one without. For simulations with background 344

selection, we use realistic gene structures based on protein-coding gene annotations from 345

the RefSeq database. For each set of background selection or neutral scenarios, 500 346

replicates were generated for downstream analyses. We simulate a simplified 347

human-chimpanzee evolutionary history, in which all species evolve with a constant 348

population size of 104 diploid individuals ( [10]), and have uniform per-generation 349

mutation and recombination rates of 2.5× 10−8 and 10−8 per nucleotide, respectively 350

(parameters approximated from [11] and [12]). We adopted a generation time of 20 351

years, and the species divergence time of five million years (i.e., 2.5× 105 generations) 352

(parameters approximated from [13]). As is common practice with forward-time 353

simulators, a scaling parameter λ = 100 was used to accelerate the simulations. At the 354

end of each simulation replicate, 50 diploids in the target (human) species and one 355

diploid in the outgroup (chimpanzee) species are sampled and parsed, with the first 356

haploid of the sampled outgroup individual considered as the ancestral sequence. 357

To model background selection, we let a certain proportion of all the mutations in a 358

functional element to be recessively deleterious, with a dominance coefficient of 0.1 and 359

a per-generation selective coefficient s randomly drawn from a gamma distribution with 360

a mean of -0.005 and a shape parameter of 0.2 [14]. The proportions of such mutations 361

differ by the element type. We set exons to have 75% of all mutations being deleterious, 362

upstream and downstream UTRs with 50% mutations deleterious, and introns with 10% 363

mutations deleterious (following [15]). For 100 kb simulated sequences with background 364

selection, we modeled a “protein-coding gene” region with 5’- and 3’-UTRs, 11 exons, 365

and 10 introns at the center of each sequence. The lengths of the modeled 5’-UTRs, 366

3’-UTRs, exons, and introns are 200, 800, 100, and 1000 bp, respectively. 367

Fig. C8 shows the effect of background selection on the distribution of test scores in 368

the genomic background. Panels A and B show the TOC curve comparing the 369

background selection scores to those obtained under neutrality. Across the full range of 370

lower threshold values (Panel A), we observe no difference between the two distributions. 371

At very high threshold values (Panel B) we observe a diagnostic signal of background 372

selection, however, in Panel C, we observe that this is only due to a slight increase in 373
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likelihood ratio values for the most-extreme outlier peaks relative to test scores obtained 374

for the neutral simulations. The strength of these outlier signals pales in comparison to 375

the true-positive scores obtained under a selective sweep model (see Fig. C2), and we 376

therefore conclude that VolcanoFinder is robust to the effects of background selection. 377
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Fig. C8 378

The effect of background selection on test scores Panels A and B show the 379

Total Operating Characteristic (TOC) curve, which compares the scores obtained under 380

ubiquitous background to those obtained under purely neutral evolution. In Panel A, 381

we show the full range of threshold values, while in Panel B we focus on high threshold 382

values. Panel C shows the distribution of test scores under neutrality (grey) and 383

background selection (black). 384

neutral background
selection

A

B

C

385
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Text S3.5 386

Chimeric chromosomes 387

388

In our power analysis we present two approaches to identify independent outlier 389

signals in genomic scan data (see section Text S3.1). One is based on the sweep-width 390

of the optimum adaptive introgression model as obtained by VolcanoFinder; the other 391

peak-finding approach uses as the true-positive signal the highest likelihood-ratio value 392

obtained in the small genomic region flanking the beneficial mutation and compares this 393

to the false-positive peak signals that lay outside this central sweep region. 394

In the context of the simulated 10 Mb genomic regions, we have primarily used the 395

sweep-width approach to identify peak signals in the data (see Fig. C1). For this same 396

data set, Fig. C9 (solid lines) shows the power to detect the adaptive introgression allele 397

when outlier signals were identified using the peak-finding approach. We observed that 398

the two approaches to signal identification yield consistent results with respect to the 399

probability of detecting the adaptive introgression sweep. 400

We have also used two different simulation approaches to generate data for the 401

power analyses. Ideally, we would like to simulate a very large chromosome in which the 402

adaptive introgression event occurs. However, even using the current methods 403

combining msprime [2] and SLiM3 [1], we were limited to 10 Mb genomic regions. 404

Furthermore, due to the computational cost of these simulations, we were limited to 405

testing only a handful of adaptive introgression scenarios. For that reason, we used an 406

alternative simulation procedure for the more-extensive power analysis of the main text. 407

In the main text, we considered the power to detect the adaptive allele in the 408

context of a large genomic background. Here, independent 200 kb regions with a 409

selective sweep were simulated using a purely coalescent-based approach. In addition, 410

many replicate simulations under neutrality were pooled to create a large genomic 411

background. This approach is much less computationally taxing, and it allowed us to 412

perform a much more expansive power analysis. However, a major concern is whether 413

the genetic variation pooled across replicate neutral simulations accurately represents 414

that which we would observe in a contiguous large chromosome. 415

To test this, we compare the power of detecting the adaptive introgression sweep in 416

the contiguous 10 Mb chromosomes to that in equally-sized chimeric chromosomes 417

constructed from the same data, here using the peak-finding approach to identify 418

false-positive signals. We built these so-called chimeric chromosomes as follows. From 419

each iteration, we extract the 40 kb of sequence centered on the beneficial mutation, 420

and from this, we take the highest likelihood ratio value as the true-positive test score. 421

We then reconstitute a genomic background by randomly sampling 200 kb segments 422

from the background scores across all iterations (excluding the central 40 kb windows 423

containing the beneficial mutation). In Fig. C9, we observed little-to-no difference in 424

power to detect the adaptive introgression sweep when using chimeric chromosomes 425

(dashed lines) rather than the original contiguous 10 Mb chromosomal regions (solid 426

lines). This supports the use of many independent replicates as a proxy for a large 427

genomic background in the power analysis of the main text. 428
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Fig. C9 429

Comparing peak-identification and simulation methods Here we plot the power 430

to detect the adaptive introgression sweep using the peak-finding approach to identify 431

independent outlier signals in the genomic background. The data in this figure matches 432

that of Fig. C1, in which outlier signals were identified using the sweep-width approach. 433

The left panel shows low migration while the right panel shows high migration. In both 434

panels, Td = 4.0, dark green corresponds to strong selection with 2Ns = 1000, and light 435

green to weak selection with 2Ns = 100. Here, the solid lines show the probability of 436

detecting the adaptive allele in the context of a contiguous 10 Mb genomic region. The 437

dashed lines show the power to detect the sweep in 10 Mb chimeric chromosomes (see 438

section Text S3.5 for description). Here, the true-positive test score is defined as the 439

highest likelihood-ratio value obtained within 20 kb of the beneficial mutation. From 440

the remaining genetic variation in the simulated region, we identified false-positive 441

signals by identifying peak likelihood-ratio values and merging adjacent peaks separated 442

by less than 20 kb. 443

444
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