

Polymer-Bioactive Glass Composite Filaments for 3D Scaffold Manufacturing by Fused Deposition Modelling: Fabrication and Characterization

Thomas Distler¹, Niklas Fournier¹, Alina Grünewald¹, Christian Polley², Hermann Seitz², Rainer Detsch¹, Aldo R. Boccaccini^{1,2*}

¹Institute of Biomaterials, Department of Materials Science and Engineering, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany

²Chair of Microfluidics, Falculty of Mechanical Engineering and Marine Technology, University of Rostock, Rostock, Germany

* Correspondence: Prof. Dr. Aldo R. Boccaccini aldo.boccaccini@ww.uni-erlangen.de

Supplementary Information

SUPPLEMENTARY FIGURE 1 | Support structure to avoid filament adhesion and coiling on the puller wheels (right image) for 3Devo NEXT Filament maker. CAD *.stl file available for download in the supporting information.

SUPPLEMENTARY FIGURE 2 | Spooled filaments of PLA-BG with different bioglass content. From left to right: PLA, PLA-1%BG, PLA-2.5%BG, PLA-5%BG, PLA-10%BG.

SUPPLEMENTARY FIGURE 3 | Light microscopy images of PLA-BG scaffolds with 0%, 1%, 2.5%, 5% and 10% (w/v) Bioglass (left to right). Scale bar: 1 mm.

SUPPLEMENTARY FIGURE 4 | X-ray diffraction analysis (XRD) of PLA-BG squares after 14 days of incubation in SBF. Peak development at ~32° 20 indicating crystalinity for PLA-10% (wt)BG composition of highest BG content.

Running Title

SUPPLEMENTARY FIGURE 5 | 3D printed PLA-BG discs for in-vitro biocompatibility assessment. Light microscopy images illustrating patterned surface of 3D FDM printed PLA-BG discs; scale bars: 2000 μm (top row), 500 μm (mid row), 200 μm (bottom row).

SUPPLEMENTARY FIGURE 6 | 3D printed PLA-BG discs immersed in PBS at 37°C for different time points. pH development depicted with rapid pH increase for 5% and 10% (wt) BG containing PLA associated to BG dissolution.

Running Title

SUPPLEMENTARY FIGURE 7 | 3D printed PLA-BG scaffolds incubated in PBS for 28 days. From left to right: PLA, PLA-1%BG, PLA-2.5%BG, PLA-5%BG scaffolds. Scaffold swelling is indicated with increasing bioglass content.

SUPPLEMENTARY FIGURE 8 | Simultaneous manufacturing of sixteen PLA-BG scaffolds in one print using the 3D printer

Supplementary TABLE S1 | Printing parameter details for producing PLA-BG scaffolds.

Parameter	Value	
Print core	0.25	
Ahesion type	Skirt	
Layer height	0.2	
Layer height 0	0.1	
Prime tower enable	False	
Position	0	
Bottom layers	5	
Infill overlap	0	
Infill pattern	Lines	
Infill sparse density	100	
Initial layer line width factor	100	
Line width	0.4	
Mateiral flow	100	
Material print temperature	160	
Build plate temperature	55	
Retraction hop enabled	false	
Speed layer 0	25	
Speed print	30	
Speed topbottom	25	
Speed travel	100	
Speed travel layer 0	100	
Speed wall	25	
Speed wall 0	25	
Top layers	5	
Wall line count	1	
Wall thickness	0.7	
Generate support	false	

SUPPLEMENTARY Table S2 | PCR primers used and genes investigated in qRT-PCR analysis.

Gene	Gene name	PrimePCR Assay ID	Gen Bank No.
COL1A1	collagen type I (col I)	qHsaCED0043248	NG_007400.1
VEGFA	vascular endothelial growth factor A (vegf)	qHsaCED0043454	NG_008732.1
BGLAP	bone gamma-carboxyglutamate protein (bgp, osteocalcein)	qHsaCED0038437	NT_004487.20
RUNX2	runt-related transcription factor 2 (runx2)	qHsaClD0006726	NG_008020.1
ALPL	alkaline phosphatase (alp)	qHsaClD0010031	NC_000001.10
GAPDH	glyceraldehyde-3-phosphate dehydrogenase	qHsaCED0038674	NC_000012.11
YWHAZ	14-3-3-zeta	qHsaClD0013897	NC_000008.10
HPRT1	hypoxanthine phosphoribosyltransferase 1	qHsaClD0016375	NC_000023.10