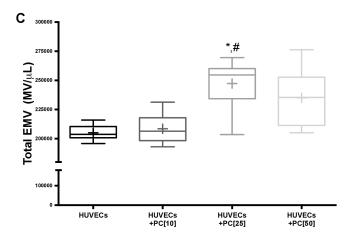

Role of endothelial microvesicles released by p-cresol on endothelial dysfunction.


Autores: Fatima Guerrero ^{1,2,†,*}; Andres Carmona ^{1,†}; Teresa Obrero ¹; Maria Jose Jiménez ¹; Sagrario Soriano ^{1,3,4}; Juan Antonio Moreno ^{1,5,*}; Alejandro Martín-Malo ^{1,2,3,4,‡}; Pedro Aljama ^{1,2,‡}

- 1 Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Cordoba, Spain.
- 2 Department of Medicine, University of Cordoba, Cordoba, Spain.
- 3 Nephrology Unit, Reina Sofia University Hospital, Cordoba, Spain.
- 4 Spanish Renal Research Network (REDinREN), Institute of Health Carlos III. Madrid, Spain.
- 5 Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain.
- † These authors contributed equally to this paper.
- ‡ These authors share senior authorship.

*Correspondence and reprint requests: Fátima Guerrero, PhD. Maimonides Biomedical Research Institute of Cordoba (IMIBIC). Email: fatima.guerrero@imibic.org; and Juan Antonio Moreno, PhD. Department of Cell Biology, Physiology and Immunology, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), University of Cordoba, Spain. Email: juan.moreno@uco.es

Figure Legend

Data Supplementary Figure 1. Dose- and time-dependent effects of p-cresol on EMV release by HUVECs. HUVECs were treated with different concentrations of p-cresol (PC) to determine the production of EMV per microliter at 12 h (A), 24 h (B) and 48 h (C). Results are expressed as mean \pm SD; * p< 0.05 vs HUVECs, # p< 0.05 vs HUVECs+PC[10].