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Figure EV1. Generation strategies of Srcap KO mice.
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A Srcap expression in murine different tissues was examined by real-time PCR. Primers were listed in Table EV1. Relative gene expression folds were normalized to
endogenous B-actin and shown as means + SD. Data represent five independent replicates.
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Schematic diagram of SRCAP-C-HA tag construction for reporter mice.

Expression of HA-tagged SRCAP protein was confirmed by immunoblotting. B-actin was used as a loading control.
Schematic diagram of Srcap KO construction by CRISPR/Cas9 technology.
Percentages of live embryos and dead embryos were counted as means + SD. 200 embryos were isolated and analyzed for each group.

Expression levels of indicated genes were examined in Srcap KO embryos by real-time PCR. Primers were listed in Table EV1. Relative gene expression folds were

normalized to endogenous B-actin and shown as means + SD. Data represent five independent replicates.

G Srcap-deficient pups were genotyped after heterozygotes crossing.

Source data are available online for this figure.
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Figure EV2. Generation strategies of Srcap flox mice.

A Schematic diagram of Srcap flox construction by CRISPR/Cas9 technology.

B Srcap-deficient pups were genotyped after crossing.

C SRCAP protein was examined in Srcap-deleted ISCs by immunoblotting.

D Body weight changes of Srcap™ and Srcap™™; Lgr5°FP-CeER™2 mice after TAM treatment were shown as means =+ SD. n = 10. **P < 0.01 by two-tailed Student’s

t-test.

Kaplan—Meier survival curves of Srcap™ and Srcap™”; Lgr56FP-CER™ mice after TAM treatment. n = 10. ***P < 0.001 by log-rank test.

F  Representative images of duodenum from 8-week-old Srcap™” and Srcap™”; Lgr56™-CER™2 mice after TAM treatment for indicated time (n = 5 per group). Scale bar,
100 um. Length of 100 villi and 100 crypts was measured and shown in right panel as means + SD. **P < 0.01 by two-tailed Student’s t-test.

G Biological variations and statistical tests were shown as in Fig 2A. Length of villi and crypts (means per mouse) was measured and shown as means + SD n = 6.
**p < 0.01 by two-tailed Student’s t-test.

H Biological variations and statistical tests were shown as in Fig 2B. ISC numbers per crypt (means per mouse) were shown as means + SD n = 6. **P < 0.01 by two-
tailed Student’s t-test.

I 1 x 10%ISCs were collected and infected with shSrcap lentivirus followed by organoid formation. Typical images of organoid formation were shown in left panel.
Scale bar, 200 pm. Organoid numbers per well were counted as means + SD in right panel. **P < 0.01 by two-tailed Student’s t-test. n = 6 for each group.

] Srcap was examined in Srcap-depleted cells by real-time PCR. Primers were listed in Table EV1. Relative gene expression folds were normalized to endogenous -
actin and shown as means + SD.

K Biological variations and statistical tests were shown as in Fig 2D. Numbers of intact crypts (means per mouse) were shown as means + SD n = 5. **P < 0.01 by
two-tailed Student’s t-test.

L Biological variations and statistical tests were shown as in Fig 2E. Numbers of traced crypt-villus units (means per mouse) were shown as means &+ SD n = 5.
**p < 0.01 by two-tailed Student’s t-test.

M Cell cycle and apoptosis of Srcap"/+ and Srcap™™ ISCs were examined by Hoechst/Ki67 and PI/Annexin V FACS and shown in left panel. n = 6 mice per group.
Percentages of GO stage ISCs and apoptotic ISCs were counted as means =+ SD (right panel). **P < 0.01 by two-tailed Student’s t-test.

N Biological variations and statistical tests showed means per mouse as in Fig 2G. Numbers of each kind of epithelial cells from crypts or villi (means per mouse) were
shown in right panel as means + SD n = 5. **P < 0.01 by two-tailed Student’s t-test.

m

-

Source data are available online for this figure.

EV3 The EMBO Journal  €103786 | 2020 © 2020 The Authors



Buging Ye et al

A
Identified protein Score Coverage | # Unique peptide MW (kDa)
Rpl6l 97.94 6.76 1 33.6
REST 88.65 24.40 23 17.7
Tubailc 78.92 27.39 7 49.9
Tubb5 75.42 36.94 3 49.6
Rps15a 61.93 26.15 2 14.8
Tubb4b 46.37 27.42 1 49.8
Rps3a 44.74 11.74 4 29.9
Parp1 43.03 7.40 5 113.0
Tubb3 41.77 24.22 1 50.4
Tubb2a 41.34 28.09 2 49.9
Myh11 40.39 7.79 13 223.2
B
Identified protein| Sequenced peptides Coverage
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Figure EV3. SRCAP associates with REST.
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A-C Identification of Rest as a SRCAP binding protein. Candidate interactors of SRCAP were identified by mass spectrometry LTQ Orbitrap XL.

D Rest expression in murine different tissues was examined by real-time PCR. Primers were listed in Table EV1. Relative gene expression folds were normalized to
endogenous B-actin and shown as means + SD. Data represent five independent replicates. **P < 0.01 by two-tailed Student’s t-test.

E Rest expression was visualized in indicated intestinal tissues by immunofluorescence staining. Green: Lgr5-GFP; red: Rest. Scale bar, 10 pm.

F Intestinal crypt and villi lysates were incubated with anti-SRCAP antibody and protein A/G beads in 4°C overnight followed by immunoblotting.
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Figure EV4. SRCAP deposits onto Prdm16 promoter for its transcription and activate downstream Ppard expression.

A Target genes of SRCAP and REST in mouse ISCs were analyzed by intersection analysis. Gene clusters of downregulation genes in Srcap KO ISCs, transcriptional
factors, genes harbor REST binding site in promoter, and ISC signature genes identified by intestinal epithelium single-cell RNA-seq (GSE92332) were used for analysis.
Prdm16 was the only one of SRCAP-targeted TF that harbors REST binding site in its promoter, which was also identified to be one of ISC signature genes by
intestinal epithelium single-cell RNA-seq (GSE92332).

B SRCAP deposited to Prdm16 promoter region near the TSS from ChIP-seq data. Prdm16 promoter regions from ChIP-seq data were analyzed by IGV software.

Nuclei were extracted from ISCs followed by DNase | digestion. Total DNA was extracted and quantitated by qPCR with Prdm16 promoter-specific primers. Primers
were listed in Table EV1. Relative fold changes were counted as means + SD. **P < 0.01 by two-tailed Student’s t-test.

D Prdm16 expression was analyzed by real-time qPCR in Srcap"/* and Srcap’/’ ISCs. Primers were listed in Table EV1. Relative gene expression folds were normalized to
endogenous B-actin and shown as means + SD. Data represent five independent replicates. **P < 0.01 by two-tailed Student’s t-test.

E ISCs were lysed for ChIP assays. Indicated proteins enriched to Prdm16 promoter were examined by real-time qPCR. Signals were normalized to input DNA. Relative
fold changes were calculated as means + SD. Data represent five independent replicates. ** p < 0.01 **P < 0.01 by two-tailed Student’s t-test.

F Indicated ISCs were lysed for ChIP assays. H2A.1 and H2A enriched to Prdm16 promoter were examined by real-time qPCR. Signals were normalized to input DNA.
Relative fold changes were calculated as means + SD. Data represent five independent replicates. **P < 0.01 by two-tailed Student’s t-test.

G Expression levels and patterns of PPAR components in murine intestinal epithelium were analyzed based on a single-cell RNA-seq dataset (GSE92332).

H Prdm16 was recruited near the TSS region of Ppard promoter in ISCs. ISCs were lysed for ChIP assay with anti-Prdm16 antibody. Prdm16 protein enriched to Ppard
promoter was examined by real-time qPCR. Signals were normalized to input DNA. Primers were listed in Table EV1. IgG and Prdm16 proteins enriched on Gapdh
promoter were used as negative controls. Relative fold changes were calculated as means + SD. Data represent five independent replicates. **P < 0.01 by two-tailed
Student’s t-test.

I Nuclei were extracted from ISCs followed by DNase | digestion. Total DNA was extracted and quantitated by gPCR with Ppard promoter-specific primers. Primers
were listed in Table EV1. Relative fold changes were counted as means + SD. **P < 0.01.

] ISCs were lysed for ChIP assay. Indicated proteins enriched to Ppard promoter were examined by real-time qPCR. Signals were normalized to input DNA. Enrichment
fold changes were counted as means + SD. Data represent five independent replicates. **P < 0.01 by two-tailed Student’s t-test.
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Figure EV5. Generation strategies of Rest KO, Prdm16 KO and Ppard KO mice. Generation strategies of Rest KO, Prdm16 KO and Ppard KO mice.

A

B
C
D

Schematic diagram of Rest KO mice and validation by immunoblotting.

Body weight changes of Rest™™ and Rest™"; 1gr5°"*CERT2 mice after TAM treatment were shown as means + SD n = 10. **P < 0.01 by two-tailed Student’s t-test.
Kaplan—Meier survival curves of Rest”" and Rest™"; Lgr5CFP-C™ER™ mice after TAM treatment. n = 10. ***P < 0.001 by log-rank test.

Biological variations and statistical tests were shown as in Fig 6A. Length of villi and crypts (means per mouse) was measured and shown as means &= SDn = 6.
**p < 0.01 by two-tailed Student’s t-test.

Biological variations and statistical tests were shown as in Fig 6C. OLFM4* ISC numbers per crypt (means per mouse) were shown as means + SD n = 6. **P < 0.01
by two-tailed Student’s t-test.

Biological variations and statistical tests were shown as in Fig 6E. Numbers of traced crypt-villus units (means per mouse) were shown as means + SD n = 5.

**Pp < 0.01 by two-tailed Student’s t-test.

Biological variations and statistical tests were shown as in Fig 6F. Numbers of intact crypts (means per mouse) were shown as means 4 SD n = 5. **P < 0.01 by
two-tailed Student’s t-test.

Schematic diagram of Prdm16 KO by CRISPR/Cas9 technology and validation by immunoblotting.

Schematic diagram of Ppard KO by CRISPR/Cas9 technology and validation by immunoblotting.

A work model represents the mechanism of SRCAP regulating ISC self-renewal. SRCAP recruits REST protein onto the Prdm16 promoter to induce its transcription,
which promotes PPAR-§ signaling activation that maintains ISC self-renewal.

Source data are available online for this figure.
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