

Fig. S1: Stat3 reporter is expressed in erythroid progenitor cells. A-A": Confocal lateral view of haematopoietic tissue of double transgenic embryos obtained crossing the Tg(7xStat3:EGFP) (A) with Tg(gata1a:DsRed) (A").

77 Tectum opticum (TeO)
97 Medulla oblongata (MO)
81 tegmentum (T)
7 subpallium (Sp)
45 preoptic region (Po)
48 hypothalamus (H)
59 retinal layer (RG)

Fig. S2: *Tg(7xStat3:EGFP) reporter expression in the brain of 72-hpf larvae*. A-B: Single planes of *Tg(7xStat3:EGFP)* brain at 72 hpf. Images have been obtained with VIBEZ-Z software. H= hypothalamus, Sp= subpallium, Po= preoptic region, RG= retinal layer, TeO= tectum opticum, MO=medulla oblongata, T= tegumentum.

Fig. S3: *Tg(7xStat3:EGFP)* reporter line respond to silencing and overexpression of *stat3*. A: Dorsal view live image of the head of *Tg(7xStat3:EGFP)* controls (left) or m*Stat3C* mRNA injected embryos (right) at 48hpf. Arrowheads highlight ectopic fluorescent signal. Scale bar: 100µm. A': EGFP fluorescence quantification in the TeO of m*Stat3C* injected and control larvae at 48 hpf. Statistical analysis was performed by unpaired t-test (n=20); **p<0.01 B: representative pictures of 24-hpf *Tg(7xStat3:EGFP)* injected with stat3-MO1 (Liu *et al.,* 2017; Miyagi *et al.,* 2004; Yamashita *et al.,* 2002) 5-mismatch morpholino B': Quantification of EGFP fluorescence in 24-hpf embryos injected with stat3-MO1 morpholino and 5-mismatch morpholino on the reporter line. Scale bar=250µm, statistical analysis was performed by unpaired t-test on 3 biological replicates. **p<0.01, ****p<0.0001; error bars=SEM. C: dorsal view of 48-hpf *Tg(7xStat3:EGFP)* injected with stat3-MO1

and 5-mismatch morpholino. C': Quantification of EGFP fluorescence in 48-hpf *Tg(7xStat3:EGFP)* embryos injected with stat3-MO1 morpholino and 5-mismatch morpholino. *p<0.05, **p<0.01; error bars=SEM

Fig. S4: *stat3*^{*ia23*} **mutant validation.** A: Schematic representation of *stat3*^{-/-} mutant allele in comparison with WT. B: qRT-PCR analysis of *stat3* mRNA expression normalized on *gapdh* from WT and *stat3*^{-/-} siblings at 6 dpf (p-value= 0,0073). C: qRT-PCR analysis of *socs3a* and *cebpb* Stat3 targets expression normalized on *gapdh* from WT and *stat3*^{-/-} siblings at 6 dpf, *zgapdh* was used as internal control (p-values= 0,001; 0,0205); Statistical analysis was performed by unpaired t-test on 3 independent biological samples. **p<0,01; error bars=SEM. D: qRT-PCR analysis of *stat3*^{+/+} and *stat3*^{-/-} siblings at 6 dpf (***p<0.001)

Fig. S5: Stat3 pathway is strongly activated in zebrafish *apc*-driven tumor. A: qRT-PCR analysis of *fzd5, fzd8a* and *lrp5* on EGFP-positive and EGFP-negative cells sorted from adult intestines. B-C'': *In vivo* EGFP expression is ectopic in 12 mpf $Tg(7xStat3:EGFP)/apc^{hu745}$ hyperplastic intestine (B-B') with respect to $Tg(7xStat3:EGFP)/apc^{hu745/+}$ siblings (B-B'). C-C': representative pictures of 3-dpf

 $Tg(7xTCF-Xla.Siam:nlsmCherry)^{ia5}$ reporter larvae treated with DMSO and 80 μ M AG-490 from 8-72 hpf (D); quantification of $Tg(7xTCF-Xla.Siam:nlsmCherry)^{ia5}$ reporter larvae fluorescence (D'). Statistical analysis was performed by unpaired t-test. ns=not significant.

Fig. S6: EGFP positive cells of Tg(7xStat3:EGFP) zebrafish line are not secretory cells. A: Tg(7xStat3:EGFP), Tg(nkx2.2a:mEGFP) representative prictures of and Tg(7xStat3:EGFP)/Tg(nkx2.2a:mEGFP) 6-dpf larvae intestine. B: number of EGFP-positive cells Tg(7xStat3:EGFP), measured in intestines of Tg(nkx2.2a:mEGFP) and Tg(7xStat3:EGFP)/Tg(nkx2.2a:mEGFP) 6-dpf. Arrows indicate Tg(nkx2.2a:mEGFP) positive cells; arrowheads indicate *Tq*(7*xStat3:EGFP*) positive cells. **p<0.01, ns=not significant; error bars=SEM.

Gene	Forward primer sequence
zstat3	TGCCACCAACATCCTAGTGT
zgapdh	GTGGAGTCTACTGGTGTCTTC
zcebpb	CCAAAAGTAACGGGCGACAC
zsocs3	GGAAGACAAGAGCCGAGACT
egfp	ACGTAAACGGCCACAAGTTC
zstat1a	GCAGCTCAAGAAACTCCTGG
zstat1b	CGAGTGGAAGAAGAGACAGC
zstat5a	TGACCCGAGAAGCTAACACC
zstat5b	TGAGGAAACAGCAAACCGTG
zil6	CGTAAAGAGTCTCCTTGGCG
zgp130	TGCTGGAGTGGGTGAATGAA
zjak2a	CTTCGAGAGTCAGGAGCCC
zjak2b	ACGTATTGTGATTTCGCGGA
zsox9b	CTCGGCAAACTCTGGAGACT
zagr2	GCACAGACATACGAGGAAGC
zpept1	GATTGCTTTGGGAACAGGAGG
zfabp2	GCTGCCCATGACAACCTG
znotch2	GACGAATGCATCTCCAGTGC
zpcna	CCTTGGCACTGGTCTTTGAA
zcyclinD1	CCAACTTCCTCTCGCAAGTC
zfzd5	CCTAACTGTGCACTGCCTTG
zfzd8a	TGCAATCGGGAGTATGACGT
zlrp5	TTCTCGGAGGGCCTGATTTT

GTGCAGGAGGCATTGCTTACA ATCTTCCCTTACCTGACGGC GCGATACACACCAAACCCTG AAGTCGTGCTGCTTCATGTG AAAGGTCTCTGCAGTTGGGT GCTGGCCCCTTCCTAGATTT GTATGTCCAGTCCTCCCT GCTGCTGAGTCAAGTGTTCA GGTTTGAGGAGAGGAGTGCT GGCTTGGTTACTGGTGTTCC CTGAAGCTTCTTCACCGCC ACAAAAGACAAGGCCTGCAT GCGCATTGGTGGAGATCTG GGAGACAAGTGCTTATCTGTG GATGGGTGTGATGAGAGTGG CGTGTCTCCCTCTATGACC GCAGCAGCCACAGCAACC GGCACACGAGATCATGACAG TGGTCTCTGTGGAGATGTGC ATTTGAAGCGCTCCATGTCG CTCGTTTCCCCACTTCATGC TTGTCTCCGAGTCAGTCCAG

Reverse primer sequence GCTTGTTTGCACTTTTGACTGA

Tab. 1: list of primer used for Real Time qPCR.