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S1 Incompleteness of mobile phone mobility data

The mobility data is completely lacking for five upazilas of Bangladesh in the Chittagong divi-
sion, and our model thus does not include these upazilas. These upazilas are Thanchi, Barkal,
Belai Chhari, Jurai Chhari, and Langadu. The transitions to and from the upazila Parshuram
(Chittagong division) are missing, but the total count of active mobile phones in Parshuram is
observed, allowing us to estimate the population size in Parshuram. We use the gravity model
to estimate the transitions to and from Parshuram.

S2 Descriptive statistics of the hospital sentinel case data

Descriptives for the hospital sentinel cases for the different seasons are given in Table S1. Note
that both influenza B and influenza A types were circulating in 2014, 2016, and 2017, while 2015
was mainly dominated by A(H1N1). Most of the type A cases in 2014 and 2016 were of subtype
A(H3).

Table S1: Case data descriptives.

Influenza (strain)
Year Tested Positive Mean age (sd) Male Female A A(H1N1) A(H3) B A+B

2014 3826 590 30.0 (23.6) 348 242 312 6 304 277 1
2015 3567 508 27.3 (22.4) 302 206 476 380 94 32 0
2016 4276 687 27.8 (23.4) 400 287 298 6 291 385 4
2017 4229 890 26.5 (22.4) 503 387 657 383 273 232 1

Descriptive statistics for the hospital sentinel influenza case data for 2014, 2015, 2016, and
2017.
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S3 Infectious disease model description

The influenza dynamics model is a stochastic compartmental SEIIaR metapopulation model,
similar to the model previously published in (Engebretsen et al., 2019). Here the compartments
are the individuals who are susceptible to the disease (S), the exposed individuals (E), that is,
those who have been infected but are not yet infectious, the symptomatic infectious individuals
(I), the asymptomatic infectious individuals (Ia), and the recovered/removed individuals (R).
See also Balcan et al. (2009) and Colizza et al. (2007). We let β denote the transmission proba-
bility per unit time, 1/λ be the average latent period, 1/γ be the average infectious period, and
pa denote the probability that an infection is asymptomatic. We assume that the transmission
probability of the asymptomatic infectious is reduced by rβ. The stochastic SEIIaR equations
are given by:

Si(t+ ∆t) = Si(t)−X i
1(t),

Ei(t+ ∆t) = Ei(t) +X i
1(t)−X i

2(t)−X i
3(t),

I i(t+ ∆t) = I i(t) +X i
2(t)−X i

4(t),

I ia(t+ ∆t) = I ia(t) +X i
3(t)−X i

5(t),

where Si(t), Ei(t), I i(t), I ia(t), and N t
i are the number of susceptible individuals, exposed individ-

uals, symptomatic infectious individuals, asymptomatic infectious individuals, and the total pop-
ulation at time t in location i, respectively. X i

1(t) ∼ Binom (Si(t), β∆tI i(t)/N t
i + rββ∆tI ia(t)/N

t
i ),

X i
2(t), X i

3(t) ∼ Multinom (Ei(t), (1− pa)λ∆t, paλ∆t), X i
4(t) ∼ Binom (I i(t), γ∆t), X i

5(t) ∼
Binom (I ia(t), γ∆t), Binom(n, p) is the binomial distribution with n trials and success probabil-
ity p, and Multinom(n, p1, p2) is the multinomial distribution with n trials and success proba-
bilities p1 and p2. We assume that the population size is constant during the epidemic, so that
R = N − S − E − I − Ia. As in Balcan et al. (2009), we fix the probability of an infectious
individual being asymptomatic to pa = 0.33, similar to the estimated asymptomatic propor-
tion in Presanis et al. (2011); Birrell et al. (2011). We let the transmission probability of the
asymptomatic infectious be reduced by 50%, so we fix rβ = 0.50, as in Balcan et al. (2009). The
basic reproductive number R0 is defined as the number of expected new cases generated by one
infectious individual, in a fully susceptible population. The basic reproductive number of the
model is given by R0 = β

γ
(0.5 · 0.33 + 0.67) (Colizza et al., 2007). As we cannot assume that the

population is fully susceptible, we will estimate the effective reproductive number, Re, which
takes the prior immunity into account.

S4 Prior distributions

S4.1 Prior distribution and parameter specifications

We assume prior distributions for the transmission parameter β and the reporting probability
r. It is reasonable to assume that only a small proportion of the cases are reported. Some
individuals do not go to their doctor with influenza. Moreover, since we only have information
for some hospitals, it should be a small fraction of the total number of influenza cases. We
assume a beta distribution for r, with shape parameters 1 and 7, corresponding to a mean 1/8
and variance 7/(82 · 9). This prior is quite wide and uninformative, but skewed towards lower
reporting probabilities. A plot of the prior distribution for the reporting rate is provided in
Figure S1. For the transmission parameter β, we assume a uniform prior on (0.4, 0.7), which is
quite uninformative. When we estimate the parameters for the other seasons than 2017, we use
the results for the 2017 season to define our priors.
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Figure S1: Prior distribution for the reporting probability r.

We fix the mean latent period and the mean infectious period. The mean latent period is
fixed to 1.9 days, as in Balcan et al. (2009) and Longini Jr et al. (2004). This is also in accordance
with the fact sheet from WHO on seasonal influenza (World Health Organization, 2016), where
the average incubation period is claimed to be two days. The mean infectious period is fixed
to three days. Similar infectious and/or latent periods for seasonal and pandemic influenza can
also be found in the literature in Corbella et al. (2018); Birrell et al. (2017); Balcan et al. (2009);
Colizza et al. (2007); Germann et al. (2006); Longini Jr et al. (2004); Bajardi et al. (2011).

The mean latent and infectious periods are fixed, as we do not have data to inform these–
Corbella et al. (2018) argue that the latent and infectious periods can only be inferred from
detailed information at the individual level, which we do not have. Even though there is good
knowledge of the latent and infectious period distributions in the literature, this is a strong
assumption. In addition to scarce data, the different model parameters are strongly correlated,
further complicating the parameter estimation. The data contain little or no information on the
latent period, and the infectious period is correlated with both the transmission parameter and
the reporting probability.

S5 Posterior distribution

A scatterplot of the joint posterior for the 2017 season is given in Figure S2. The posterior
correlation is −0.0525.

S6 ABC-SMC procedure for inference

The idea behind approximate Bayesian computation (ABC) is to use simulations from the model,
and accept parameters if the simulations are sufficiently close to the observed data, measured
in summary statistics. We use a sequential Monte Carlo version of ABC. We use four summary
statistics–the global observed incidence curve, the observed peak height (that is, the maximum
number of daily observed new infectious cases), the duration of the epidemic, and the final size
of the epidemic. We define the duration as the number of days between the day with 10% of the
total number of observed cases, and the day with 90% of the total number of observed cases.
The final size is the total number of observed symptomatic cases. The time-averaged mobility
is used in the fitting procedure, as this is computationally advantageous, and since we do not
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Figure S2: Scatterplot of posterior distribution for the reporting rate and the transmission rate
β for 2017.

know the initial date.
We use an algorithm similar to the one in Brooks-Pollock et al. (2014), provided in Algorithm

1. In the algorithm, m is the number of summary statistics, and they are denoted by S1, . . . , Sm.
The distance in the summary statistics are weighted, in order to make sure that they are on
the same scale. We denote the data by Dlt, which is the number of observed cases in location
l on day t, and the simulated observed incidence by D′lt. In the proposal distribution, we use a
variance which is twice the empirical variance of the previous round, as suggested in Beaumont
et al. (2009). We use a Euclidean distance metric between the number of reported cases and
the simulated number of observed infectious symptomatic cases, for the global incidence curves.
In the comparison, we align the global peak date of the simulated data with the global peak
date in the observed data. Hence, we compare the shapes of the curves. Let L be the number
of locations and T the duration of the epidemic in number of days. The distance in the shape

of curve statistic is thus given by
√∑T

t=1(
∑L

l=1D
′
lt −Dlt)2. For the other summaries, duration,

final size, and peak height, we use the absolute distance.

S7 Seeding locations

When investigating the spatial spread for various hypothetical seeding scenarios, we seed in
Dhaka (seeding in Sutrapur upazila), and in the divisions located in the different ”corners” of
the country, that is, North-West (Rangpur division, seeding in Rangpur Sadar), North-East
(Sylhet division, seeding in Sylhet Sadar), South-West (Khulna division, seeding in Khulna
Sadar), and South-East (Chittagong division, seeding in Double Mooring). For completeness,
we also include results when seeding in the remaining two divisions Barisal (seeding in Barisal
Sadar), and Rajshahi (seeding in Matihar), provided in the Section S13 in this supplement.

When we simulate the 2014-2016 influenza seasons, we seed in the 11 upazilas with the
earliest cases for the year in question, similar to the seeding scenario for 2017. For 2016, this
corresponds to six upazilas in Dhaka, four in Chittagong, and one in Sylhet. For 2015, this

4



Algorithm 1 ABC-SMC

Initialise:
Set a starting value ε0 for the tolerance, r = 1 and w1 = (1, . . . , 1).

while εr−1 > ε do
set i = 0.
while i < 1000 do

if r = 1 then
sample parameters θθθi from the prior π.

else
Sample θθθp from θθθr−1 with weights wr−1.
Propose θθθi from an independent gaussian distribution G centered at θθθp with variance
equal to twice the empirical variance from the previous round.
If π(θθθi) = 0, sample a new θθθp.

end if

Run the model with θθθi, providing the simulated number of reported cases D
′
.

if f(D′,D) = ||S1(D′)− S1(D)||+ . . .+ |Sm(D′)− Sm(D)| < εr, then
set θθθri = θθθi, and calculate weights wr

i for the parameters, as

wr
i =

 1, if r = 0,
π(θi)θi)θi)∑n

j=1 w
r−1
j G(θθθi|θθθr−1

j )
, otherwise,

Increment i = i+ 1.
end if

end while
normalise the weights as wr

i =
wr

i∑
j w

r
j
.

set εr+1 to the 80th percentile of f(D′,D) for the accepted parameters.
Increment r = r + 1.

end while

5



Figure S3: Daily mobility model, 2017. Mean prevalence per 100 000 residents in the different
upazilas when seeding according to the 2017 epidemic, a) 2, b) 5, c) 10, d) 20, e) 40, and f) 50
days after the initial seeding date. Note that the scale is different for the different days.

corresponds to six upazilas in Dhaka, two in Barisal, one in Rangpur, one in Rajshahi, and one
in Sylhet. For 2014, this corresponds to three upazilas in Barisal, three in Rajshahi, two in
Dhaka, two in Sylhet, and one in Chittagong.

S8 Early spread for different seeding scenarios

We investigate the early spread for the different seeding settings, by plotting the mean prevalence
in each upazila 2, 5, 10, 20, 40, and 50 days after the initial seeding date (day 0).

S8.1 2017 simulation

The early spatial spread for the 2017 simulation is given in Figure S3. The disease quickly
spreads through the country, and most of the early spread seems to be to the neighbouring
upazilas, but also to larger cities.

S8.2 Dhaka

The early spatial influenza spread when seeding in Dhaka is given in Figure S4. The disease
quickly spreads to the larger cities, but also to upazilas within Dhaka division.

6



Figure S4: Daily mobility model, Dhaka. Mean prevalence per 100 000 residents in the
different upazilas when seeding in Dhaka, on day a) 2, b) 5, c) 10, d) 20, e) 40, and f) 50. Note
that the scale is different for the different days.

7



Figure S5: Daily mobility model, Chittagong. Mean prevalence per 100 000 residents in
the different upazilas when seeding in Chittagong, a) 2, b) 5, c) 10, d) 20, e) 40, and f) 50 days
after the seeding event. Note that the scale is different for the different days.

S8.3 Chittagong

The early spatial influenza spread is given in Figure S5. The disease quickly spreads to some of
the larger cities (including Dhaka), but also to upazilas within Chittagong.

S8.4 Khulna

The early spatial influenza spread when seeding in Khulna is given in Figure S6. There is early
spread to some of the larger cities, including Dhaka, but most of the early spread is within the
Khulna division.

S8.5 Rangpur

The early spatial influenza spread when seeding in Rangpur is given in Figure S7. We see that
we have early spread to Dhaka city, but that most of the early spread is in the North West.

S8.6 Sylhet

The early spatial influenza spread when seeding in Sylhet is given in Figure S8. There is early
spread to Dhaka city, but most of the early spread is within the Sylhet division.

8



Figure S6: Daily mobility model, Khulna. Mean prevalence per 100 000 residents in the
different upazilas when seeding in Khulna, a) 2, b) 5, c) 10, d) 20, e) 40, and f) 50 days after
the seeding event. Note that the scale is different for the different days.
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Figure S7: Daily mobility model, Rangpur. Mean prevalence per 100 000 residents in the
different upazilas when seeding in Rangpur, a) 2, b) 5, c) 10, d) 20, e) 40, and f) 50 days after
the seeding event. Note that the scale is different for the different days.
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Figure S8: Daily mobility model, Sylhet. Mean prevalence per 100 000 residents in the
different upazilas when seeding in Sylhet, a) 2, b) 5, c) 10, d) 20, e) 40, and f) 50 days after the
seeding event. Note that the scale is different for the different days.
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S9 Correlation between upazila initial dates

We compute the correlations between the mean initial dates in each upazila for the model
using the daily mobility and the various mobility approximations. In addition, we compute the
correlation between the model with the time-averaged mobility and the model with the daily
mobility, when seeding on the 1st of April 2017. The correlations are provided in Table S2. The
time-averaged mobility has a much higher correlation with the daily mobility than the gravity
model and the radiation model.

Table S2: Correlation of initial dates.

Dhaka Chittagong Khulna Rangpur Sylhet

Gravity model:
Correlation 0.72 0.69 0.25 0.052 0.14
Radiation model:
Correlation 0.32 0.73 0.92 0.77 0.86
Time-averaged mobility:
Correlation 0.97 0.99 1.0 1.0 1.0
Time-averaged mobility versus seeding 1st April 2017:
Correlation 0.98 0.99 1.0 1.0 1.0

Correlation between the mean initial dates obtained with the daily mobility, and the mean
initial dates obtained with the other mobility approximations: the gravity model, the radiation
model, and the time-averaged mobility, for the various seeding scenarios. We also provide the
correlation between the time-averaged mobility and the daily mobility when seeding on the 1st
of April 2017.

In Panigutti et al. (2017), the authors investigated similarity of epidemic outbreak simulations
on two alternative mobility networks in France–one based on census data, and the other based
on mobile phone mobility data. They calculated a rank correlation between the arrival dates
(defined as the first day of an infectious case) in the different locations for different seeding
nodes. They found that the epidemic trajectories on the two networks were more similar the
higher the degree and strength of the seeding node. We therefore also calculate the degree and
strength of the seeding nodes for the different mobility proxies, provided in Table S3. There
does not seem to be any connection between neither the strength nor the degree of the node
and the correlations in our simulations. Note that all the seeding upazilas are central upazilas,
and that such a trend might not be possible to uncover when investigating only five upazilas. It
could also be that other network properties could explain the similarities better.

S10 Early spread with gravity and radiation models

We investigate the early spread with the gravity and radiation model approximations, for the
different seeding settings, by plotting the prevalence in each upazila 2, 5, 10, 20, 40, and 50 days
after the initial seeding date.

S10.1 2017 simulation

The early spatial spread when seeding according to the early cases of 2017 is given in Figure S9
for the gravity model, and in Figure S10 for the radiation model. We clearly see that the
epidemic spreads much faster in the gravity model setting than in the mobile phone mobility
setting, and more slowly in the radiation model setting.

12



Figure S9: Gravity model, 2017. Mean prevalence per 100 000 residents in the different
upazilas when seeding according to the 2017 epidemic, a) 2, b) 5, c) 10, d) 20, e) 40, and f) 50
days after the seeding event, using the gravity model to estimate human mobility. Note that the
scale is different for all days.
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Figure S10: Radiation model, 2017. Mean prevalence per 100 000 residents in the different
upazilas when seeding according to the 2017 epidemic, a) 2, b) 5, c) 10, d) 20, e) 40, and f) 50
days after the seeding event, using the radiation model to estimate human mobility. Note that
the scale is different for all days.

14



Table S3: Centrality of seeding nodes.

Centrality measure
Dhaka Chittagong Khulna Rangpur Sylhet

Mobile phone data
Daily mobility:
Degree 878 725 687 829 934
Strength 470333 257810 321937 616765 800629
Time-averaged mobility
Degree 1069 1070 1037 1074 1076
Strength 471805 257550 322276 615469 801174
Absolute degree difference 191 345 350 245 142
Relative degree difference 0.22 0.48 0.51 0.30 0.15
Absolute strength difference 1472 260 339 1296 545
Relative strength difference 0.0031 0.0010 0.0011 0.0021 0.00068
Models
Gravity model:
Degree 1076 1076 1076 1076 1076
Strength 1053504 208341 306671 544502 665390
Absolute degree difference 198 351 389 247 142
Relative degree difference 0.23 0.48 0.57 0.30 0.15
Absolute strength difference 583171 49469 15266 72263 135239
Relative strength difference 1.2 0.19 0.047 0.12 0.17
Radiation model:
Degree 883 651 792 916 967
Strength 322581 227582 254690 589097 922483
Absolute degree difference 5 74 105 87 33
Relative degree difference 0.0057 0.10 0.15 0.10 0.035
Absolute strength difference 147752 30228 67247 27668 121854
Relative strength difference 0.31 0.12 0.21 0.045 0.15

Centrality indices for the seeding nodes in the different mobility networks. The centrality
indices are for Sutrapur sadar (Dhaka), Double Mooring (Chittagong), Khulna sadar (Khulna),
Rangpur sadar (Rangpur), and Sylhet sadar (Sylhet). For the daily mobility, we provide the
mean over the 183 days.

S10.2 Dhaka

The early spread when seeding in Dhaka is given in Figure S11 for the gravity model, and in
Figure S12 for the radiation model. Also in this setting, the spread based on the gravity model is
much faster than the mobile phone mobility setting. The epidemic spreads early to the upazilas
within Dhaka division, but also to many other upazilas of the country. In the radiation model
setting, the spread is much slower, and most of the early spread is to the upazilas in Dhaka
division.

S10.3 Chittagong

The early spread when seeding in Chittagong is given in Figure S13 for the gravity model, and
in Figure S14 for the radiation model. Again, the epidemic spreads quickly under the gravity
model, both to upazilas of Chittagong, but also to many other upazilas of the country. In
the radiation model, the early spread is much more restricted to Chittagong division, and the
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Figure S11: Gravity model, Dhaka. Mean prevalence per 100 000 residents in the different
upazilas when seeding in Dhaka, a) 2, b) 5, c) 10, d) 20, e) 40, and f) 50 days after the seeding
event, using the gravity model to estimate human mobility. Note that the scale is different for
all days.
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Figure S12: Radiation model, Dhaka. Mean prevalence per 100 000 residents in the different
upazilas when seeding in Dhaka, a) 2, b) 5, c) 10, d) 20, e) 40, and f) 50 days after the seeding
event, using the radiation model to estimate human mobility. Note that the scale is different for
all days.
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Figure S13: Gravity model, Chittagong. Mean prevalence per 100 000 residents in the
different upazilas when seeding in Chittagong, a) 2, b) 5, c) 10, d) 20, e) 40, and f) 50 days after
the seeding event, using the gravity model to estimate human mobility. Note that the scale is
different for all days.

epidemic spreads more slowly than with mobile phone mobility and the gravity model. Dhaka
city is also hit early.

S10.4 Khulna

The early spread when seeding in Khulna is given in Figure S15 for the gravity model, and in
Figure S16 for the radiation model. Also when seeding in Khulna, the disease spreads quickly
under the gravity model, and all the divisions have been reached early. In the radiation model,
the spread is again slower than in the mobile phone mobility setting, and the early spread is
mainly restricted to Khulna division and upazilas close to the seeding location. The epidemic
also spreads quickly to Dhaka city.

S10.5 Rangpur

The early spread when seeding in Rangpur is given in Figure S17 for the gravity model, and in
Figure S18 for the radiation model. In the gravity model, the epidemic spreads more quickly
than in the mobile phone mobility setting. The early spread is to the upazilas of Rangpur, and
Rajshahi, but also to other upazilas around the country. Under the radiation model, the spread
is again slower, and the initial spread is radially from the seeding upazila, but also to Dhaka
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Figure S14: Radiation model, Chittagong. Mean prevalence per 100 000 residents in the
different upazilas when seeding in Chittagong, a) 2, b) 5, c) 10, d) 20, e) 40, and f) 50 days after
the seeding event, using the radiation model to estimate human mobility. Note that the scale is
different for all days.
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Figure S15: Gravity model, Khulna. Mean prevalence per 100 000 residents in the different
upazilas when seeding in Khulna, a) 2, b) 5, c) 10, d) 20, e) 40, and f) 50 days after the seeding
event, using the gravity model to estimate human mobility. Note that the scale is different for
all days.
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Figure S16: Radiation model, Khulna. Mean prevalence per 100 000 residents in the different
upazilas when seeding in Khulna, a) 2, b) 5, c) 10, d) 20, e) 40, and f) 50 days after the seeding
event, using the radiation model to estimate human mobility. Note that the scale is different for
all days.
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Figure S17: Gravity model, Rangpur. Mean prevalence per 100 000 residents in the different
upazilas when seeding in Rangpur, a) 2, b) 5, c) 10, d) 20, e) 40, and f) 50 days after the seeding
event, using the gravity model to estimate human mobility. Note that the scale is different for
all days.

city.

S10.6 Sylhet

The early spatial spread when seeding in Sylhet is given in Figure S19 for the gravity model,
and in Figure S20 for the radiation model. Again, the spread using the gravity model is much
faster than when using the mobile phone mobility data, and the early spread is both to upazilas
of Sylhet, and to other upazilas of the country. The spread is slower in the radiation model
setting, and the early spread is to upazilas of Sylhet and to Dhaka city.

S11 Early spread when seeding on April 1st 2017

We investigate how the early spread differs when the daily mobility matrices are used for the first
days, that is, when seeding on the 1st of April 2017 instead of the 30th of September 2016. We
plot the prevalence in each upazila 2, 5, 10, 20, 40, and 50 days after the initial seeding date for
the different seeding scenarios. The plots are given in Figures S21, S22, S23, S24, S25, and S26
when seeding according to the 2017 epidemic, in Dhaka, in Chittagong, in Khulna, in Rangpur,
and in Sylhet, respectively. The spreading pattern is very similar to the setting when seeding on
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Figure S18: Radiation model, Rangpur. Mean prevalence per 100 000 residents in the
different upazilas when seeding in Rangpur, a) 2, b) 5, c) 10, d) 20, e) 40, and f) 50 days after
the seeding event, using the radiation model to estimate human mobility. Note that the scale is
different for all days.
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Figure S19: Gravity model, Sylhet. Mean prevalence per 100 000 residents in the different
upazilas when seeding in Sylhet, a) 2, b) 5, c) 10, d) 20, e) 40, and f) 50 days after the seeding
event, using the gravity model to estimate human mobility. Note that the scale is different for
all days.
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Figure S20: Radiation model, Sylhet. Mean prevalence per 100 000 residents in the different
upazilas when seeding in Sylhet, a) 2, b) 5, c) 10, d) 20, e) 40, and f) 50 days after the seeding
event, using the radiation model to estimate human mobility. Note that the scale is different for
all days.
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Figure S21: Daily mobility model seeding 1st of April 2017, 2017. Mean prevalence per
100 000 residents in the different upazilas when seeding according to the 2017 epidemic on the
1st of April 2017, a) 2, b) 5, c) 10, d) 20, e) 40, and f) 50 days after the seeding event. Note
that the scale is different for all days.

the 30th of September, for all the seeding scenarios. Hence the time-averaged mobility is also a
good approximation in the initial period of the epidemic.

S12 Initial dates in upazilas

The initial dates in each upazila for the daily mobility setting when seeding on the 30th of
September 2016 according to the 2017 epidemic, in Dhaka, in Chittagong, in Khulna, in Rangpur,
and in Sylhet are given in Figures S27a-f, respectively. For all seeding scenarios, neighbouring
upazilas seem to have similar initial dates. In general, the upazilas in the seeding division
have the earliest initial dates. The differences in initial dates between the different upazilas are
larger when seeding in Khulna, Rangpur or Sylhet, than when seeding in Dhaka, Chittagong or
according to the 2017 epidemic.

We also provide the histogram over the initial dates in the different upazilas in the 100
simulations, provided in Figure S28, by seeding regions. Again we note that the spread is less
coherent when seeding in Khulna, Rangpur or Sylhet than when seeding according to the early
cases of 2017, in Dhaka or in Chittagong.

The corresponding histograms for the gravity model approximation, the radiation model
approximation, the time-averaged mobility and the daily mobility when seeding on the 1st of
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Figure S22: Daily mobility model seeding 1st of April 2017, Dhaka. Mean prevalence
per 100 000 residents in the different upazilas when seeding in Dhaka on the 1st of April 2017,
a) 2, b) 5, c) 10, d) 20, e) 40, and f) 50 days after the seeding event. Note that the scale is
different for all days.
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Figure S23: Daily mobility model seeding 1st of April 2017, Chittagong Mean prevalence
per 100 000 residents in the different upazilas when seeding in Chittagong on the 1st of April
2017, a) 2, b) 5, c) 10, d) 20, e) 40, and f) 50 days after the seeding event. Note that the scale
is different for all days.
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Figure S24: Daily mobility model seeding 1st of April 2017, Khulna. Mean prevalence
per 100 000 residents in the different upazilas when seeding in Khulna on the 1st of April 2017,
a) 2, b) 5, c) 10, d) 20, e) 40, and f) 50 days after the seeding event. Note that the scale is
different for all days.
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Figure S25: Daily mobility model seeding 1st of April 2017, Rangpur. Mean prevalence
per 100 000 residents in the different upazilas when seeding in Rangpur on the 1st of April 2017,
a) 2, b) 5, c) 10, d) 20, e) 40, and f) 50 days after the seeding event. Note that the scale is
different for all days.
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Figure S26: Daily mobility model seeding 1st of April 2017, Sylhet. Mean prevalence
per 100 000 residents in the different upazilas when seeding in Sylhet on the 1st of April 2017,
a) 2, b) 5, c) 10, d) 20, e) 40, and f) 50 days after the seeding event. Note that the scale is
different for all days.
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Figure S27: Mean initial dates per upazila for various seeding locations. a) 2017 simulation, b)
Dhaka, c) Chittagong, d) Khulna, e) Rangpur f) Sylhet. Note that the scales on the colour bars
depend on the seeding location.
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Figure S28: Daily mobility: Initial dates distribution over the different upazilas and 100
simulations for various seeding locations. a) 2017 simulation, b) Dhaka, c) Chittagong, d)
Khulna, e) Rangpur f) Sylhet. Note that the scales on the y-axes depend on the seeding location.
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Figure S29: Gravity model: Initial dates distribution over the different upazilas and 100
simulations for various seeding locations. a) 2017 simulation, b) Dhaka, c) Chittagong, d)
Khulna, e) Rangpur f) Sylhet. Note that the scales on the y-axes depend on the seeding location.

April are given in Figures S29-S32, respectively. The initial dates per upazila under the gravity
model are very similar for the different seeding scenarios, while for the radiation model the
distributions are much wider than for the daily mobility and the gravity model, and depend
more on the seeding locations.

S13 Seeding in Barisal and Rajshahi

For completeness, we also include simulations when seeding in the two remaining divisions,
Barisal and Rajshahi, seeding in the upazilas Barisal Sadar and Matihar, respectively. The
resulting initial dates in each upazila are given in Figure S33. The disease clearly sparks first in
the seeding divisions in both settings. When seeding in Barisal, the disease spreads to Khulna,
Chittagong, and Dhaka before spreading to the rest of the country. When seeding in Rajshahi,
the disease spreads to Rangpur, Khulna, Chittagong, and Dhaka before spreading to the rest
of the country, and the upazilas of Sylhet have the latest initial dates. The early spread when
seeding in Barisal is given in Figure S34, and the early spread when seeding in Rajshahi is given
in Figure S35. Similar to the spreading pattern for the other seeding locations, the early spread
is to upazilas within the seeding divisions, but also to larger cities and in particular to Dhaka
city. The distributions of initial dates for each division when seeding in Barisal and Rajshahi
are given in Figure S36. In both cases, the seeding division clearly has earlier initial dates
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Figure S30: Radiation model: Initial dates distribution over the different upazilas and 100
simulations for various seeding locations. a) 2017 simulation, b) Dhaka, c) Chittagong, d)
Khulna, e) Rangpur f) Sylhet. Note that the scales on the y-axes depend on the seeding location.
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Figure S31: Time-averaged mobility: Initial dates distribution over the different upazilas
and 100 simulations for various seeding locations. a) 2017 simulation, b) Dhaka, c) Chittagong,
d) Khulna, e) Rangpur f) Sylhet. Note that the scales on the y-axes depend on the seeding
location.
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Figure S32: Daily mobility seeding on 1st of April 2017: Initial dates distribution over
the different upazilas and 100 simulations for various seeding locations. a) 2017 simulation, b)
Dhaka, c) Chittagong, d) Khulna, e) Rangpur f) Sylhet. Note that the scales on the y-axes
depend on the seeding location.
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Figure S33: Mean initial dates per upazila when seeding in a) Barisal and b) Rajshahi. Note
that the scales on the colour bars depend on the seeding location. 30th of September 2016 is
defined as day 0.

than the other divisions, and the synchrony is similar to when seeding in Khulna, Rangpur,
and Sylhet. When seeding in Barisal, the order of the initial dates in each division is Barisal,
Khulna, Chittagong, Dhaka, Rajshahi, Sylhet, and Rangpur. When seeding in Rajshahi, the
corresponding order is Rajshahi, Rangpur, Khulna, Chittagong, Dhaka, Barisal, and Sylhet.
When seeding in Barisal, the mean difference in initial dates is slightly more than three weeks
between Barisal and Rangpur. When seeding in Rajshahi, the mean difference in initial dates is
also slightly more than three weeks between Rajshahi and Sylhet. The final sizes are the same as
for the other seeding settings (0.228 (0.000172) when seeding in Barisal, 0.228 (0.000189) when
seeding in Rajshahi). The global peak date and peak prevalence when seeding in Barisal are
272.1 (7.0) and 0.00716 (2.21 · 10−5). The global peak date and peak prevalence when seeding
in Rajshahi are 272.4 (6.0) and 0.00715 (2.31 · 10−5). The global peaks are thus slightly delayed
compared to seeding in Dhaka or Chittagong, but earlier than for the other seeding divisions. The
peak prevalences are also slightly lower than when seeding in Dhaka and Chittagong. Standard
deviations are given in parentheses.

S14 Gravity and radiation model

Plots of the estimated travel fluxes for the radiation model and the gravity model versus the
time-averaged mobile phone mobility are given in Figure S37, along with the line y = x for
comparison. The radiation model clearly overestimates the travel volume on some links, while
the gravity model does not appear to have this problem. The R2 values are 0.31 for the gravity
model and 0.65 for the radiation model. However, the gravity model estimates are closer to the
y = x line, and the estimates are thus closer with the gravity model than with the radiation
model.

In addition, we perform a fluctuation analysis for the travel approximations, as is also done
in Masucci et al. (2013) to compare the two models. We compute the Sørensen-Dice coefficient,
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Figure S34: Mean prevalence per 100 000 residents in the different upazilas when seeding in
Barisal, a) 2, b) 5, c) 10, d) 20, e) 40, and f) 50 days after the seeding event. Note that the scale
is different for the different days.
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Figure S35: Mean prevalence per 100 000 residents in the different upazilas when seeding in
Rajshahi, a) 2, b) 5, c) 10, d) 20, e) 40, and f) 50 days after the seeding event. Note that the
scale is different for the different days.
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Figure S36: Initial dates distributions over the 100 simulations for a) Barisal and b) Rajshahi.
30th of September 2016 is defined as day 0.
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Figure S37: Travel fluxes versus the estimated data fluxes for the gravity model (left) and the
radiation model (right). Note that the scales are not equal.

ESørensen, given as

ESørensen =
2
∑

i,j min(Tij, wij)∑
i,j Tij +

∑
i,j wij

,

which is a similarity index between 0 and 1, where 0 means that there is no correlation, and 1
means that there is a perfect match. The ESørensen is given in Figure S38, plotted in a distance
and destination population size plane, and an origin population size and destination population
size plane. We see that the gravity model performs the worst for large distances and small
destination populations. The radiation model performs badly for short distances. The radiation
model performs badly for travel between large and small origin and destination populations. The
gravity model performs badly for small origin and destination population sizes. In addition, a
plot showing which model performs the best in terms of ESørensen is also given in Figure S38. The
radiation model seems to overall perform better in terms of the Sørensen-Dice coefficient, except
from for short distances, and travel between large and small populations, where the gravity
model seems to perform better.

S15 Other influenza seasons

S15.1 Posterior distributions for 2014, 2015, and 2016

For the 2014-2016 influenza seasons, we use more informative priors based on the estimates for
2017, namely a normal distribution for β with mean 0.49 and standard deviation 0.02, and a
uniform prior on [0, 0.001] on the reporting probability. The posteriors along with the priors
are given in Figure S39. The posteriors clearly differ from the (informative) prior distributions
based on the parameter estimates for the 2017 season. The posterior distributions for the
transmission parameter are very informative about the parameter for each season, while the
posterior distributions for the reporting probability are overlapping for the different seasons,
indicating that we do not have much information about the reporting probability in our data.
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Figure S38: Sørensen-Dice coefficient in the distance and destination population plane (upper
panel), and origin and destination population plane (lower panel) measured on log 10-scale, for
the radiation model (left) and the gravity model (centre). To the left, an indicator of which
mobility model performs the best in terms of the Sørensen-Dice coefficient is given, where black
means that the radiation model outperforms the gravity model, and grey means that the gravity
model outperforms the radiation model.
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Figure S40: Initial dates distribution for each division, for different influenza seasons. a) 2016,
b) 2015, and c) 2014.

S15.2 Simulations for 2014, 2015, and 2016

The resulting initial dates for each division for the 2014, 2015, and 2016 season simulations
are given in Figure S40. For 2016, the epidemic seems to first spread in the Sylhet division.
Considering the mean initial dates for the different divisions, the order of arrival is Sylhet,
Chittagong, Dhaka, Barisal, Khulna, Rajshahi, and Rangpur. For 2015, the epidemic seems to
be more synchronised across the different divisions. Considering the mean initial date for each
division, the relative arrival times are Sylhet, Barisal, Chittagong, Dhaka, Khulna, Rangpur,
and Rajshahi, in that order. Also for 2014, the epidemic seems to first spread in Sylhet. The
order of arrival is Sylhet, Chittagong, Barisal, Dhaka, Rajshahi, Khulna, and Rangpur. Hence,
the results are in agreement with our general results, where we find that Chittagong and Dhaka
seem to be hit early in the epidemic, while the epidemics seem to have started in Sylhet. In
recent years, our simulations thus indicate that there seems to have been an epidemic wave from
East to West.

We plot the fitted incidence curves from our simulations, along with the case data for 2014,
2015, and 2016. The plot is given in Figure S41. The model fits the case data well for all the
seasons. Note that we have plotted them to align the peak of the case data and the simulations
as we have not estimated the initial conditions.

S16 Network descriptives and centrality measures

We compute various descriptive statistics of the time-averaged mobility network. The density of
the network is the number of existing links divided by the number of possible links. The density
of the time-averaged mobility network is 82%. The reciprocity of the network is the proportion
of reciprocal links. The reciprocity is high–95% of the edges are reciprocal. The transitivity
(proportion of triangles) is also high, 0.88. The diameter of the network is two, which means
that no upazilas are more than two links away from each other. Hence, the mobility network is
very dense and tightly connected.

We repeated the network analysis for the daily mobility matrices. The average density of the
networks is 42% (standard deviation 3.1%), which is lower than for the time-averaged mobility
matrix, as expected, but still a high density. The average reciprocity of the network is high, 79%
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Figure S41: Mean incidence curve from simulations and scaled case data with estimated reporting
probabilities for a) 2014, b) 2015, c) 2016, with 95% confidence interval.
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Figure S42: Centrality in each upazila for a) degree, b) strength (divided by 1000), and c) page
rank centrality.

(standard deviation 1.6%), but lower than for the time-averaged mobility matrix. The average
transitivity is 0.59 (standard deviation 0.023). The average diameter of the network is 2.01
(standard deviation 0.10). Hence, the daily mobility networks are dense and tightly connected.

We have computed the degree centrality, strength centrality, and page rank centrality for the
different upazilas for the time-averaged mobility network, provided in Figure S42. Dhaka city
seems central for all centrality indices, and the strength centrality is very similar to the page
rank centrality. The upazilas with the highest degree are Badda (Dhaka), Jatrabari (Dhaka),
Mirpur (Dhaka), Gazipur Sadar (Dhaka), Sylhet Sadar (Sylhet), which have the same degree.
Gulshan (Dhaka), Kafrul (Dhaka), and Motijheel (Dhaka) have one degree lower, and Comilla
Sadar Dakshin (Chittagong), Mohammadpur (Dhaka), Pallabi (Dhaka), Savar (Dhaka), Shah-
bagh (Dhaka), Uttara (Dhaka), Mymensingh Sadar (Dhaka), Sonargaon (Dhaka), Narayanganj
Sadar (Dhaka), Narsingdi Sadar (Dhaka), Rangpur Sadar (Rangpur) have degree two lower than
the maximum degree in the network. The ten upazilas with the highest strength are Gazipur
Sadar (Dhaka), Gulshan (Dhaka), Savar (Dhaka), Badda (Dhaka), Mirpur (Dhaka), Sylhet Sadar
(Sylhet), Narayanganj Sadar (Dhaka), Motijheel (Dhaka), Bogra Sadar (Rajshahi), and Moham-
madpur (Dhaka), in descending order. The ten upazilas with the largest page rank centralities are
Gazipursadar (Dhaka), Savar (Dhaka), Gulshan (Dhaka), Sylhet Sadar (Sylhet), Badda (Dhaka),
Mirpur (Dhaka), Narayanganj Sadar (Dhaka), Bogra Sadar (Rajshahi), Motijheel (Dhaka), and
Rangpur Sadar (Rangpur), in descending order.

Comparing with the network statistics for the radiation and gravity mobility networks, we
find that the density for the radiation model, 0.51, is lower than for the time-averaged mobility
network, while the density for the gravity network is almost 1 (0.9997). The diameter for the
radiation network is 3, while the diameter for the gravity network is 2.
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