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This supplementary information �le includes:

Phylogeny building process

Table S1 to S5

Figs. S1 to S9

Text S1

Phylogenies

For plants, we generated the phylogeny using Phylomatic v4.2 [1] based on the synthesis

phylogeny zanne2014 [2], which was constructed and time-calibrated from seven gene regions for

>32000 plant species using maximum-likelihood. We chose this phylogeny because it is one of the

most up-to-date phylogenies for plants.

For birds, because we had extinct birds in the historical data period [3], we used the 100

augmented phylogenies constructed by Baiser et al [4]. They augmented 100 randomly selected

global bird phylogenies generated by Jetz et al [5] by inserting extinct birds into the phylogenies in

a position from the stem branch preceding the most recent common ancestor of species from the

same family. The branch length of the inserted species extended to the present time to make the

augmented phylogenies ultrametric. We analyzed each dataset with all 100 augmented

phylogenies and then used the average values as �nal measurements. Previous studies [4,6]

suggested that 100 phylogenies were enough to get stable phylogenetic diversity values.

For �shes, we were unable to �nd a phylogeny built with gene sequences that was large enough to

contain most of the species in our datasets. The most recent large �sh phylogeny [7] had 11,638

species. However, only 6,115 out of 13,236 �shes in our datasets were included in this phylogeny.

Therefore, we instead extracted a phylogeny for our �shes from the Open Tree of Life [8], which is

a comprehensive phylogeny with ~2.3 million tips by synthesizing published phylogenies.

However, the phylogeny extracted from the Open Tree of Life did not have branch lengths (i.e., not

a chronogram), which is required for most phylogenetic diversity measures. To calculate branch

length, for each of the 3,404 internal nodes, we �rst derived its descendants and then searched for

their divergence time through the TimeTree of Life database [9]. The TimeTree database was
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compiled based on 3,163 studies and 97,085 species (as of October 10, 2017). For each pair of

species included in their database, we extracted their average divergence time from all previous

studies. In the end, we extracted divergence time for 767 internal nodes. With the phylogeny from

the Open Tree of Life and the divergence date of internal nodes from the TimeTree database, we

then solved the branch length using Phylocom [10] and its bladj function. The bladj algorithm

placed estimated node ages onto the phylogeny. Ages of nodes without dates were then estimated

by equally placing ages between nodes with dates to minimize variance in branch lengths.

These �nal phylogenies, however, still did not cover all species in our datasets. This was because

there were taxa not identi�ed to species level or species that were not included in the Open Tree of

Life database. In the end, we had 31131 out of 32382 (96.14%) plant species, 2399 out of 2903

(95.66%) bird species, and 12448 out of 13236 (94.05%) �sh species in their corresponding

phylogenies. Therefore, we calculated the proportion of species in the phylogeny for each dataset.

We removed datasets that had less than 80% of their species covered in the phylogeny from any

‘time period’ (dat_1 and dat_2), resulting in 162 out of 189 datasets for �nal analyses

(Supplementary Table S5). For these 162 datasets, we removed the small fraction of species that

were not in the phylogeny prior to analyses.
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Table S1. Summary of LMM output for e�ect sizes of � and � diversity for di�erent taxonomic
groups. Signi�cant changes (i.e., 95% con�dence interval does not include zero) are in bold.
Abbreviations: SR, species richness; PD, Faith’s phylogenetic diversity (without root); PSV:
phylogenetic species variation; Sorensen_tur, Turnover component of Sorensen dissimilarity;
pSorensen_tur, Turnover component of Phylogenetic Sorensen dissimilarity; PCDp, phylogenetic
component of phylogenetic community dissimilarity.

index Changes in diversity Estimate Std. Error 2.5 % 97.5 % Random Terms

� : Bird (54)

SR 6.18 % 0.060 0.061 -0.059 0.179 study; grain_size

PD 3.37 % 0.033 0.051 -0.066 0.132 study; grain_size

PSV -2.08 % -0.021 0.013 -0.047 0.005 study; grain_size

� : Fish (55)

SR 10.62 % 0.101 0.049 0.005 0.197 study

PD 8.21 % 0.079 0.037 0.007 0.151 study

PSV -0.11 % -0.001 0.000 -0.002 0.000 study

� : Plant (50)

SR 4.69 % 0.046 0.065 -0.081 0.173 study

PD 2.84 % 0.028 0.101 -0.170 0.226 study; data_type

PSV -0.77 % -0.008 0.003 -0.014 -0.002 study

� : Bird (54)

Sorensen_tur -4.58 % -0.047 0.092 -0.228 0.134 study; data_type; driver

pSorensen_tur -5.16 % -0.053 0.063 -0.177 0.071 study; data_type; driver

PCDp 1 % 0.010 0.014 -0.018 0.038 study

� : Fish (55)

Sorensen_tur -8.89 % -0.093 0.047 -0.185 -0.002 study

pSorensen_tur -2.43 % -0.025 0.037 -0.098 0.049 study

PCDp 0.6 % 0.006 0.001 0.004 0.008 study

� : Plant (50)

Sorensen_tur -6.37 % -0.066 0.031 -0.126 -0.005 study

pSorensen_tur -5.47 % -0.056 0.028 -0.112 -0.001 study

PCDp -0.44 % -0.004 0.009 -0.022 0.013 study
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Table S2. Summary of LMM output for e�ect sizes of � and � diversity diversity for di�erent
sampling methods. Signi�cant changes (i.e., 95% con�dence interval does not include zero) are
in bold. Abbreviations: SR, species richness; PD, Faith’s phylogenetic diversity (without root);
PSV: phylogenetic species variation; Sorensen_tur, Turnover component of Sorensen dissimilarity;
pSorensen_tur, Turnover component of Phylogenetic Sorensen dissimilarity; PCDp, phylogenetic
component of phylogenetic community dissimilarity.

index Changes in diversity Estimate Std. Error 2.5 % 97.5 % Random Terms

� : Land Use Data (66); land use gradient approach
SR -10.22 % -0.108 0.052 -0.209 -0.007 study
PD -12.29 % -0.131 0.041 -0.212 -0.050 study
PSV -3.31 % -0.034 0.011 -0.055 -0.013 study

� : Land Use Data (66); landscape approach
SR -1.04 % -0.011 0.025 -0.060 0.039 study; taxa; driver
PD -2.35 % -0.024 0.024 -0.070 0.023 study; taxa; driver
PSV -1.05 % -0.011 0.003 -0.017 -0.004 study; taxa; driver

� : Resample Data (18)
SR 17.09 % 0.158 0.093 -0.024 0.339 study
PD 15.18 % 0.141 0.074 -0.003 0.286 study
PSV 1.19 % 0.012 0.012 -0.012 0.036 study

� : Species List Data (78)
SR 6.93 % 0.067 0.016 0.036 0.098 study
PD 4.59 % 0.045 0.010 0.025 0.064 study
PSV -0.25 % -0.002 0.001 -0.005 0.000 study

� : Land Use Data (66); land use gradient approach
Sorensen_tur -6.24 % -0.064 0.095 -0.251 0.122 study; taxa; driver
pSorensen_tur -5.56 % -0.057 0.071 -0.197 0.083 study; taxa; driver
PCDp 0.55 % 0.005 0.006 -0.006 0.017 study; taxa; driver

� : Land Use Data (66); landscape approach
Sorensen_tur 7.88 % 0.076 0.035 0.008 0.144 study; taxa; driver
pSorensen_tur 5.88 % 0.057 0.034 -0.010 0.124 study; driver
PCDp 1.24 % 0.012 0.012 -0.012 0.037 study

� : Species List Data (78)
Sorensen_tur -4.17 % -0.043 0.026 -0.094 0.009 study
pSorensen_tur -0.09 % -0.001 0.010 -0.021 0.020 study
PCDp -0.08 % -0.001 0.006 -0.013 0.011 study

� : Resample Data (18)
Sorensen_tur -9.6 % -0.101 0.046 -0.191 -0.011 study
pSorensen_tur -7.71 % -0.080 0.032 -0.144 -0.017 study
PCDp -1.41 % -0.014 0.010 -0.034 0.006 study
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Table S3. Summary of LMM output for e�ect sizes of � and � diversity for di�erent continents.
Signi�cant changes (i.e., 95% con�dence interval does not include zero) are in bold. Abbreviations:
SR, species richness; PD, Faith’s phylogenetic diversity (without root); PSV: phylogenetic species
variation; Sorensen_tur, Turnover component of Sorensen dissimilarity; pSorensen_tur, Turnover
component of Phylogenetic Sorensen dissimilarity; PCDp, phylogenetic component of phylogenetic
community dissimilarity.

index Changes in diversity Estimate Std. Error 2.5 % 97.5 % Random Terms

� : Africa (22)
SR -14.16 % -0.153 0.100 -0.349 0.044 study
PD -11.48 % -0.122 0.082 -0.282 0.038 study
PSV 0.01 % 0.000 0.000 -0.001 0.001 study

� : Asia (27)
SR 4.38 % 0.043 0.006 0.031 0.055 study
PD 3.16 % 0.031 0.005 0.022 0.040 study
PSV -0.12 % -0.001 0.001 -0.002 0.000 study

� : Europe (29)
SR 6.45 % 0.062 0.010 0.044 0.081 study
PD 3.5 % 0.034 0.005 0.024 0.044 study
PSV -0.49 % -0.005 0.003 -0.010 0.000 study

� : North America (33)
SR 8.68 % 0.083 0.081 -0.075 0.241 study
PD 3.17 % 0.031 0.066 -0.098 0.160 study
PSV -1.45 % -0.015 0.010 -0.034 0.005 study

� : Oceania (39)
SR 6.5 % 0.063 0.021 0.023 0.103 study
PD 4.78 % 0.047 0.010 0.027 0.067 study
PSV -2.46 % -0.025 0.029 -0.082 0.032 study; grain_size; data_type; driver

� : South America (12)
SR 24.28 % 0.217 0.086 0.048 0.387 study
PD 15.78 % 0.147 0.062 0.025 0.269 study
PSV 0.14 % 0.001 0.002 -0.002 0.004 study

� : Africa (22)
Sorensen_tur -4.96 % -0.051 0.046 -0.142 0.040 study
pSorensen_tur -8.09 % -0.084 0.044 -0.170 0.002 study
PCDp -0.92 % -0.009 0.015 -0.039 0.021 study

� : Asia (27)
Sorensen_tur -9.46 % -0.099 0.053 -0.203 0.005 study
pSorensen_tur -5.2 % -0.053 0.039 -0.129 0.022 study
PCDp -0.4 % -0.004 0.009 -0.021 0.013 study

� : Europe (29)
Sorensen_tur -3.47 % -0.035 0.056 -0.146 0.075 study; grain_size
pSorensen_tur 1.62 % 0.016 0.004 0.009 0.023 study
PCDp -0.05 % 0.000 0.011 -0.022 0.021 study

� : North America (33)
Sorensen_tur -10.23 % -0.108 0.045 -0.197 -0.019 study
pSorensen_tur -6.43 % -0.066 0.026 -0.118 -0.015 study
PCDp 1.14 % 0.011 0.012 -0.012 0.035 study

� : Oceania (39)
Sorensen_tur -0.54 % -0.005 0.007 -0.018 0.008 study
pSorensen_tur 2.22 % 0.022 0.046 -0.069 0.113 study
PCDp 1.11 % 0.011 0.016 -0.021 0.043 study

� : South America (12)
Sorensen_tur -0.38 % -0.004 0.004 -0.012 0.004 study
pSorensen_tur 0.6 % 0.006 0.005 -0.003 0.015 study
PCDp -2.79 % -0.028 0.024 -0.075 0.018 study
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Table S4. Changes in pairwise taxonomic � diversity when measured with Sorensen dissimilarity
or its nestedness component. Both measurements gave qualitatively similar results, albeit the
smaller numbers from Sorensen dissimilarity.

Groups Sorensen Turnover

Bird (54) -2.73 % -4.58 %
Fish (55) -4.95 % -8.89 %
Plant (53) -4.88 % -6.37 %
Land Use Data (66) -4.74 % -6.24 %
Species List Data (78) -1.65 % -4.17 %

Resample Data (18) -6.37 % -9.6 %
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Table S5. Sources and characteristics of datasets collected in the study. Detailed reference
information see Text S1.

Ref location n_site1 sp_in_phy_dat1 sp_in_phy_dat2 taxa spatial_extent grain_size data_type driver decision

1 united_states 63 0.969 0.979 plant region small old_new ongoing disturbance

2 canada 133 0.960 0.955 plant region small old_new ongoing disturbance

3 united_states 3 0.962 0.938 bird continent moderate land_use urbanization

4 india 3 0.776 0.718 bird region small land_use urbanization excluded

5 archipelago_Antartic 4 1.000 1.000 bird continent high native_exotic invasion

5 archipelago_Azores 9 1.000 1.000 bird region high native_exotic invasion

5 archipelago_Canaries 11 1.000 1.000 bird region high native_exotic invasion

5 archipelago_CapeVerdes 13 1.000 1.000 bird region high native_exotic invasion

5 archipelago_Comoros 4 1.000 1.000 bird region high native_exotic invasion

5 archipelago_CookIslands 15 1.000 1.000 bird region moderate native_exotic invasion

5 archipelago_Galapagos 11 1.000 1.000 bird region high native_exotic invasion

5 archipelago_GreaterAntilles 4 1.000 1.000 bird region very_high native_exotic invasion

5 archipelago_Hawaii 6 1.000 1.000 bird region very_high native_exotic invasion

5 archipelago_LesserAntilles 12 1.000 1.000 bird region high native_exotic invasion

5 archipelago_Marianas 15 1.000 1.000 bird region moderate native_exotic invasion

5 archipelago_NewZealand 10 1.000 1.000 bird region moderate native_exotic invasion

5 archipelago_Pitcairns 4 1.000 1.000 bird region moderate native_exotic invasion

5 archipelago_SocietyIslands 11 1.000 1.000 bird region moderate native_exotic invasion

5 world_ocean 152 1.000 1.000 bird continent very_high native_exotic invasion

5 ocean_Atlantic 45 1.000 1.000 bird region moderate native_exotic invasion

5 ocean_Caribbean 21 1.000 1.000 bird continent high native_exotic invasion

5 ocean_Indian 11 1.000 1.000 bird continent high native_exotic invasion

5 ocean_Paci�c 75 1.000 1.000 bird continent moderate native_exotic invasion

6 iberian_peninsula 10 0.919 0.817 �sh region very_high native_exotic invasion

7 solomon_islands 16 0.820 0.941 plant region small land_use grazing

7 solomon_islands 16 0.820 0.917 plant region small land_use management

8 italy 9 0.240 0.250 plant region small land_use urbanization excluded

9 uganda 35 0.907 0.980 bird region small land_use agriculture

10 papua_new_guinea 6 0.934 0.940 bird region small land_use agriculture

11 south_africa 24 0.938 0.979 bird region small land_use agriculture

12 costa_rica 8 0.992 0.975 bird region small land_use management

13 malaysia 20 0.929 0.964 bird region small land_use agriculture

13 malaysia 20 0.929 0.970 bird region small land_use management

14 sao_tome_and_principe 40 0.941 0.929 bird region small land_use agriculture

14 sao_tome_and_principe 40 0.941 0.926 bird region small land_use management

14 sao_tome_and_principe 40 1.000 1.000 plant region small land_use agriculture

14 sao_tome_and_principe 40 1.000 1.000 plant region small land_use management

15 china 15 0.864 0.835 �sh region moderate native_exotic invasion

16 australia 95 0.964 1.000 bird region small land_use grazing

17 portugal 9 1.000 1.000 plant region small land_use management

18 philippines 8 0.951 0.938 bird region small land_use agriculture

19 sao_tome_and_principe 6 0.933 0.889 bird region small land_use management

20 south_africa 56 0.990 1.000 plant region small land_use agriculture
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20 south_africa 56 0.990 1.000 plant region small land_use grazing

20 south_africa 56 0.990 0.983 plant region small land_use management

20 south_africa 56 0.990 0.990 plant region small land_use urbanization

21 france 30 0.881 0.881 bird region moderate land_use urbanization

22 costa_rica 12 0.981 1.000 bird region small land_use agriculture

22 costa_rica 12 0.980 0.977 bird region small land_use agriculture

23 burkina_faso 122 0.983 0.993 plant region small land_use agriculture

24 germany 26 1.000 1.000 plant region small old_new management

24 germany 25 0.977 0.977 plant region small old_new management

25 united_states 14 0.825 0.773 �sh region very_high native_exotic invasion excluded

26 mexico 5 0.850 0.829 plant region small land_use management

27 indonesia 4 0.976 0.988 plant region small land_use management

28 costa_rica 24 0.963 1.000 bird region small land_use agriculture

28 panama 24 0.963 1.000 bird region small land_use agriculture

28 costa_rica 24 0.963 0.984 bird region small land_use grazing

28 panama 24 0.963 0.984 bird region small land_use grazing

28 costa_rica 24 0.963 0.988 bird region small land_use management

28 panama 24 0.963 0.988 bird region small land_use management

29 kenya 3 0.887 0.901 bird region small land_use management

30 costa_rica 3 0.982 0.976 bird region small land_use grazing

31 india 12 0.964 0.944 bird region small land_use management

32 ethiopia 15 0.016 0.023 plant region small land_use management excluded

32 ethiopia 15 0.973 1.000 plant region small land_use management

32 ethiopia 15 0.000 0.020 plant region small land_use management excluded

32 ethiopia 15 0.552 0.633 plant region small land_use management excluded

33 indonesia 4 0.711 0.855 plant region small land_use management excluded

33 indonesia 4 0.938 0.943 bird region small land_use management

34 ethiopia 11 1.000 0.989 plant region small land_use management

34 ethiopia 11 0.778 0.887 plant region small land_use management excluded

34 ethiopia 11 0.762 0.722 plant region small land_use management excluded

35 united_states 154 0.989 0.984 bird region small land_use agriculture

35 united_states 154 0.989 0.980 bird region small land_use grazing

35 united_states 154 0.989 0.966 bird region small land_use management

35 united_states 154 0.989 0.983 bird region small land_use urbanization

36 argentina 20 1.000 1.000 bird region small land_use management

37 australia 176 1.000 1.000 plant region small land_use grazing

38 united_kingdom 86 0.990 0.991 plant region small old_new ongoing disturbance

39 germany 57 0.990 0.990 plant region high land_use urbanization

39 germany 57 0.989 0.990 plant region high land_use urbanization

40 united_states 30 1.000 0.987 plant region small old_new management

41 china 103 0.911 0.906 �sh continent very_high native_exotic invasion

42 brazil 12 0.994 0.988 plant region high old_new post disturbance

43 north_atlantic 35 0.885 0.806 �sh region high old_new climate change

44 united_states 43 0.820 0.810 �sh region high native_exotic invasion

44 united_states 6 0.820 0.810 �sh region high native_exotic invasion

44 united_states 7 0.784 0.797 �sh region moderate native_exotic invasion excluded

44 united_states 15 0.731 0.740 �sh region moderate native_exotic invasion excluded
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44 united_states 9 0.692 0.714 �sh region moderate native_exotic invasion excluded

44 united_states 10 0.933 0.769 �sh region moderate native_exotic invasion excluded

45 canada 115 0.972 0.986 plant region small old_new ongoing disturbance

45 canada 43 0.985 0.988 plant region small old_new ongoing disturbance

45 canada 26 0.988 0.982 plant region small old_new ongoing disturbance

46 romania 4 0.981 1.000 plant region small land_use grazing

47 malaysia 6 0.904 0.903 bird region small land_use management

48 ghana 8 0.916 0.977 bird region small land_use management

49 kenya 48 0.928 0.924 bird region small land_use management

50 australia 53 0.789 0.760 �sh region very_high native_exotic invasion excluded

50 australia 12 0.861 0.834 �sh continent very_high native_exotic invasion

51 spain 128 0.989 0.989 plant region moderate native_exotic invasion

52 france 24 0.979 0.974 plant region small land_use urbanization

53 united_states 72 0.909 0.797 �sh region high native_exotic invasion excluded

54 argentina 29 1.000 0.995 plant region small old_new grazing

54 argentina 23 0.990 0.978 plant region small old_new grazing

55 united_states 48 0.942 0.923 �sh continent very_high native_exotic invasion

56 eu 10 0.995 0.996 plant continent high native_exotic invasion

56 united_kingdom 10 0.982 0.987 plant region high native_exotic invasion

57 united_states 87 0.982 0.988 plant region small old_new ongoing disturbance

58 united_states 60 0.982 0.961 plant region small old_new ongoing disturbance

59 canada 48 0.895 0.917 plant region small old_new climate change

60 comoros 20 0.875 0.913 bird region small land_use management

61 costa_rica 42 0.830 0.918 plant region small land_use grazing

62 comoros 15 0.941 0.917 bird region small land_use management

63 greece 4 0.985 1.000 plant region small land_use agriculture

64 north_america 769 0.840 0.843 bird continent moderate old_new ongoing disturbance

65 united_states 58 0.982 0.984 plant region high land_use urbanization

66 indonesia 63 0.805 0.856 plant region small land_use agriculture

66 indonesia 63 0.805 0.815 plant region small land_use management

66 indonesia 63 0.987 0.983 plant region small land_use management

67 south_africa 10 1.000 1.000 plant region small land_use grazing

68 spain 46 0.154 0.129 plant region small land_use grazing excluded

68 france 46 0.154 0.129 plant region small land_use grazing excluded

69 philippines 3 0.833 0.833 plant region small land_use agriculture

69 philippines 3 1.000 1.000 plant region small land_use agriculture

70 egypt 6 1.000 0.889 plant region small land_use management

70 egypt 6 1.000 0.978 plant region small land_use urbanization

71 argentina 48 0.989 0.994 plant region small land_use grazing

71 chile 48 0.989 0.994 plant region small land_use grazing

71 argentina 136 0.987 0.987 plant region small land_use grazing

72 united_kingdom 238 0.925 0.893 plant region moderate old_new ongoing disturbance

73 canada 8 0.791 0.756 �sh region very_high native_exotic invasion excluded

73 canada 13 0.777 0.771 �sh continent very_high native_exotic invasion excluded

74 afghanistan 3 0.941 0.889 �sh region high native_exotic invasion

74 argentina 56 0.934 0.917 �sh region high native_exotic invasion

74 australia 458 0.907 0.895 �sh continent high native_exotic invasion
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74 belgium 3 0.875 0.824 �sh region high native_exotic invasion

74 brazil 92 0.963 0.961 �sh region high native_exotic invasion

74 bulgaria 4 0.915 0.897 �sh region high native_exotic invasion

74 canada 80 0.900 0.887 �sh continent high native_exotic invasion

74 chile 21 0.985 0.911 �sh region high native_exotic invasion

74 china 72 0.933 0.932 �sh continent high native_exotic invasion

74 colombia 9 0.962 0.959 �sh region high native_exotic invasion

74 congo 3 0.985 0.983 �sh region high native_exotic invasion

74 denmark 4 0.861 0.833 �sh region high native_exotic invasion

74 �nland 6 0.857 0.816 �sh region high native_exotic invasion

74 france 50 0.898 0.859 �sh region high native_exotic invasion

74 french_polynesia 17 1.000 1.000 �sh region high native_exotic invasion

74 germany 4 0.887 0.831 �sh region high native_exotic invasion

74 greece 18 0.966 0.925 �sh region high native_exotic invasion

74 india 44 0.951 0.939 �sh continent high native_exotic invasion

74 indonesia 72 0.924 0.922 �sh region high native_exotic invasion

74 iran 42 0.897 0.882 �sh region high native_exotic invasion

74 ireland 4 0.857 0.840 �sh region high native_exotic invasion

74 italy 43 0.938 0.870 �sh region high native_exotic invasion

74 japan 138 0.931 0.877 �sh region high native_exotic invasion

74 kenya 8 0.972 0.942 �sh region high native_exotic invasion

74 madagascar 11 0.938 0.897 �sh region high native_exotic invasion

74 malaysia 61 0.954 0.953 �sh region high native_exotic invasion

74 martinique 5 0.929 0.895 �sh region high native_exotic invasion

74 mexico 83 0.944 0.936 �sh region high native_exotic invasion

74 morocco 12 0.923 0.875 �sh region high native_exotic invasion

74 new_caledonia 11 0.969 0.875 �sh region high native_exotic invasion

74 new_zealand 195 1.000 0.862 �sh region high native_exotic invasion

74 norway 8 0.905 0.893 �sh region high native_exotic invasion

74 panama 18 0.950 0.951 �sh region high native_exotic invasion

74 papua_new_guinea 26 0.853 0.847 �sh region high native_exotic invasion

74 philippines 6 0.892 0.867 �sh region high native_exotic invasion

74 poland 4 0.889 0.824 �sh region high native_exotic invasion

74 portugal 9 0.848 0.761 �sh region high native_exotic invasion excluded

74 russia 104 0.926 0.918 �sh continent high native_exotic invasion

74 south_africa 53 0.953 0.937 �sh region high native_exotic invasion

74 south_korea 195 0.922 0.914 �sh region high native_exotic invasion

74 spain 22 0.789 0.762 �sh region high native_exotic invasion excluded

74 sri_lanka 91 0.956 0.931 �sh region high native_exotic invasion

74 sweden 22 0.886 0.837 �sh region high native_exotic invasion

74 tanzania 13 0.979 0.978 �sh region high native_exotic invasion

74 thailand 19 0.948 0.940 �sh region high native_exotic invasion

74 tunisia 13 0.923 0.773 �sh region high native_exotic invasion excluded

74 turkey 46 0.933 0.923 �sh region high native_exotic invasion

74 united_kingdom 43 0.892 0.796 �sh region high native_exotic invasion excluded

74 united_states 193 0.959 0.944 �sh continent high native_exotic invasion

74 venezuela 17 0.943 0.941 �sh region high native_exotic invasion
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74 vietnam 25 0.927 0.922 �sh region high native_exotic invasion

75 ecuador 49 0.961 0.958 bird region small land_use agriculture

76 south_africa 13 0.866 0.820 bird region small land_use urbanization

77 north_america 60 0.974 0.977 plant continent very_high native_exotic invasion

77 eu 30 0.990 0.990 plant continent very_high native_exotic invasion
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Figure S1. Sampling methods, grain sizes, and continents of datasets for the three taxonomic
groups we collected. a: 54 out of 55 �sh datasets were native-non-native ones; the majority of
resurvey studies were about plants. b: none of the �sh datasets had small grain size locales; the
majority of bird and plant datasets were at small scale.

14



●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Sorensen

Nestedness Turnover

0

25

50

75

100

P
er

ce
nt

Historical Current

Figure S2. Partition of Sorensen dissimilarity into nestedness and turnover. Sorensen is a measure
of pairwise dissimilarity of species (taxonomic) composition of assemblages.

15



●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

● ●
●●●●

●

●

●

●
●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●
●●

●
●

●●
●

●

●
●

●
●

●

●●

●

●

●

●

●
●

●
●

●
●

●

●
●●

●
●●●
●

●
●●

●

●

●

●●

●●
●●●

● ●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●●

●

●

●●

●

●●

●

●
●

●

●

●

●

●

●

●
●
●●

●

●●

●

●
●●

●
●

●

●●

●●

●● ● ●●● ●

●

●●
●●

●
●●●● ●

●
●●

●
● ●●

●
●

●

●

●

●●●● ●● ●●

●

● ●
●

●

●

●●
●

● ●●
●

●●●
●●

●

●
● ●

●● ●

●
●

●●
●

●
●

●

●

●

●

●

●●

●

●
●● ●●●●●

●

●●
●

●

PD PSV

−1.0 −0.5 0.0 0.5 1.0 −1.0 −0.5 0.0 0.5 1.0

−1.0

−0.5

0.0

0.5

1.0

Effect size log(X2/X1) of species richness

E
ffe

ct
 s

iz
e 

lo
g(

X
2/

X
1)

 o
f p

hy
lo

ge
ne

tic
 α

 d
iv

er
si

ty

data_type
●

●

●

Land Use Data

Resample Data

Species List Data

  a

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●

● ●●
●

●

●

●

●

●
●

●

● ●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●● ●

●

●

●

●

● ●

●
●

●

●

●●

●

●

●

●

●

●●
●

●

●
●

●

●

●
●●

●

●

●

●●

●

●

●

● ●

●

●

●
●
●

●

●

●
●● ●●●

●
●

●●●
●

●
●

●

●

●

●

●

●

● ●
●

●

●

●

●

●
●

●

●

●

● ●

●
●

●

●

●

●

●
●

●

●●

●

●

●●●

●

●

●

●
● ●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●●●

●

●

● ●

●

●
●

●

●

●
●

●

● ●●

●

●
●

●

●

●●●
●● ●

●

●

● ●●
●

●
●

●

●

●

●●

●

●
●

●
●

●

●

●

●

● ●
●

●

●●
●

●
●

● ●●●

●

●
●

●

●

●
● ●●●

●

●●● ●●

●

●
●

● ●

●
●●

●

●

●●● ●●●●● ●●● ●

Phylogenetic Sorensen PCDp

−0.5 0.0 0.5 1.0 −0.5 0.0 0.5 1.0

−0.5

0.0

0.5

1.0

1.5

Effect size log(X2/X1) of Sorensen

E
ffe

ct
 s

iz
e 

lo
g(

X
2/

X
1)

 o
f p

hy
lo

ge
ne

tic
 β

 d
iv

er
si

ty

  b

Figure S3. Changes in taxonomic diversity vs. changes in phylogenetic diversity across all datasets.
A: changes in � diversity. B: changes in � diversity. Positive e�ect size suggests increases in
site dissimilarity while negative e�ect size suggests decreases in site dissimilarity. Therefore,
the grey area indicates both species homogenization and phylogenetic homogenization. Note
that e�ect sizes of PSV and PCDp are independent from the e�ect sizes of species richness and
Sorensen dissimilarity, respectively. This is not the case for pd_unroot (Faith’s PD without root)
and psor_turnover (turnover part of PhyloSor). Consequently, to examine patterns of “pure”
phylogenetic diversity, metrices that are independent with species diversity should be used.
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Figure S6. The average number (a) and average proportion of site occupation (b) of species that
were lost and gained within datasets of di�erent taxonomic groups. Each colored dot represents the
average value of a dataset while each black dot represents mean values across all datasets. Values
from the same dataset were connected with lines. Plant and �sh on average have more gained
species than lost ones, resulting in higher alpha diversity; gained species also occupied more sites
than lost species, resulting in lower beta diversity. Note that the values in this �gure were observed
ones while statistics in Fig. 2 were based on weighted linear mixed models, therefore, their patterns
were not exactly the same.
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Figure S7. The average number (a) and average proportion of site occupation (b) of species that
were lost and gained within datasets of di�erent data types. Each colored dot represents the average
value of a dataset while each black dot represents mean values across all datasets. Values from the
same dataset were connected with lines. Datasets from Resample Data and Species List Data
on average have more gained species than lost ones, resulting in higher alpha diversity; gained
species also occupied more sites than lost species, resulting in lower beta diversity. Note that the
values in this �gure were observed ones while statistics in Fig. 3 were based on weighted linear
mixed models, therefore, their patterns were not exactly the same.

20



●

●
●

●
● ●

Bird (54) Fish (55) Plant (53)

MPDsl − MPDs MPDsg − MPDs MPDsl − MPDs MPDsg − MPDs MPDsl − MPDs MPDsg − MPDs

0.0

0.2

0.4

A
ve

ra
ge

 p
ai

rw
is

e 
ph

yl
og

en
et

ic
 d

is
ta

nc
e

Data types Land Use Data (66) Resample Data (18) Species List Data (78)

Figure S8. Site level changes in mean pairwise phylogenetic distances between gained/lost species
and species that maintained of di�erent taxonomic groups. Each colored dot represents the average
value of a dataset while each black dot represents mean values across all datasets. MPDs: mean
pairwise phylogenetic distance among shared species in both ‘time periods’; MPDsl: mean pairwise
phylogenetic distance between shared species and lost species.; MPDsg: mean pairwise phylogenetic
distance between shared species and gained species. To account for di�erences of MPDs among
datasets, we compared MPDsl - MPDs and MPDsg - MPDs for each dataset. For Species List
Data, we set MPDsg - MPDs to NA (not available) for datasets did not have any lost species; and we
only connected datasets that have lost and gained species with lines.
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Figure S9. Site level changes in mean pairwise phylogenetic distances between gained/lost species
and species that maintained of di�erent data types. Each colored dot represents the average
value of a dataset while each black dot represents mean values across all datasets. MPDs: mean
pairwise phylogenetic distance among shared species in both ‘time periods’; MPDsl: mean pairwise
phylogenetic distance between shared species and lost species.; MPDsg: mean pairwise phylogenetic
distance between shared species and gained species. To account for di�erences of MPDs among
datasets, we compared MPDsl - MPDs and MPDsg - MPDs for each dataset. For Species List
Data, we set MPDsg - MPDs to NA (not available) for datasets without any lost species; and we only
connected datasets that have lost and gained species with lines.
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