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We found the editors’ and reviewers’ comments very helpful, and we thank them for their
suggestions which have greatly improved our manuscript. Below, we address each comment
individually and summarize the resulting changes to the manuscript. Major changes to the
revised manuscript are indicated in red. References (e.g., [1]) can be found at the end of this
response.

Editors

Both reviewers recommended publication. The second reviewer had some concerns
about whether all the necessary data are presented in the paper.

Answer: We thank the editors for their response, and have included all necessary data.

S/he suggests some work that might be outside the scope of the paper, and we think
that does not need to be included in your final revision. But please respond to the
other suggestions in a minor revision.

Answer: We agree that some suggested experiments may be outside the scope of this
manuscript, and would be better suited for a separate study. We hope such work could be
performed for a future paper.
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Reviewer 1

Some of the criticisms I raised before are still relevant to this revision: prospective
validation is done on just one single-point mutant and the results are modest com-
pared to data presented in recent years for protein design methods. Nevertheless, the
authors made a very serious effort to clarify the message and provide more detail on
the calculations and the experiments while also toning down some of the language
that seemed be carried away in the original submission.

I think that the major contribution of this paper is in the very extensive theoretical
treatment. Further experimental validation including, possibly, a side-by-side com-
parison of this method with others may provide the answer to the questions I raised
on the method’s scope.

In summary, I would like to congratulate the authors on this work and also on their
sincere efforts to address my previous comments which may have been phrased too
harshly (my apologies for that).

Answer: We thank the reviewer for their comments, and are pleased that their original
comments and our responses have improved the manuscript. We agree that a comparison
between this method and others would be valuable future work. We hope such work could
be performed for a future paper.

Reviewer 2

I very much like this paper and would like to see it published soon. I think there are
a handful of relatively small things that should be addressed that do not necessarily
require another round of review.

I think the objections made by the first reviewer to the original submission were well
deserved and that the changes that were made to the text in response have improved
the manuscript considerably. Removing the repetitive emphasis on provability made
the paper much more enjoyable to read.

Answer: We thank the reviewer for their kind comments, and are glad that our responses
have improved the manuscript.

I also think the point about using Spearman’s rho instead of Pearson’s r is still
important and was not well addressed in the revision: the authors are not reporting r
presumably because the T68K outlier makes r look quite bad. I can only guess that
the authors suspect a reader would distill the paper to a single r value and look past
Osprey as a tool for their project. I wanted to compute an r value myself looking to
the data in Supp Table 3, but while the upper and lower bounds on log(K) for each
mutation + wt is given, that does not readily translate into the delta-b value that is
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presented in Figure 5. Another column for delta-b would be nice. Also missing from
Supp Table 3 is the WT dG values (where available) that a reader would need to
compute r accurately.

Answer: We agree that the necessary data was not initially provided and was an oversight
on our part. We have updated Table 2 in the supporting information to include this necessary
data which includes experimentally reported Ka values and experimentally reported percent
change in binding. We have also calculated a Pearson’s r (0.64) directly comparing the change
in binding upon mutation from wild-type between the experimentally reported values and
those predicted by OSPREY. In the revised S2 Table, we report change in relative binding
for the previously reported mutants. For the majority of the previously reported mutants,
this is all that is provided in those publications, so this is the available data. For the subset
of publications that do report a Kd, we report that in the table, and we calculate a change
in relative binding from those values, and we include that in the table as well.

A paper where the authors look into how well K* with Osprey’s energy function
performs compared to other techniques for binding energy calculations (e.g. FoldX)
is definitely needed, but perhaps is beyond the scope of this work.

Answer: We agree that such a study would be an interesting and worthwhile endeavor,
and thank the reviewer for the suggestion. We hope such work could be performed for a
future paper.

On this topic, I would also add that I find the sentence explaining why K* does not
do a good job predicting absolute values of binding energies

”since our current designs likely underestimate entropic contributions to
binding upon mutation due to various limitations in biological modeling”

to be very unsatisfying! I was under the impression that K* would do a much better
job than other techniques for estimating mutation ddGs because it considers side-
chain entropic contributions explicitly. If entropy is poorly estimated by EWAK*,
wouldn’t it be estimated even more poorly by other molecular modeling applica-
tions? Finally, what aspect of entropy do you suspect is under-considered? (”various”
doesn’t help me). One question that perhaps could be addressed in a subsequent
ddG comparison paper is: how well does K* (including FRIES and EWAK) perform
using a different energy function? (Can the energy function that Osprey is using be
swapped out with another energy function such as the one used in FoldX?)

Answer: The reviewer raises an excellent point. K ∗ does account for more entropy than
other, GMEC-based methods [1, 3, 7, 9, 11, 14, 17] by considering side-chain conformational
entropy. We do expect that K ∗ would do a better job predicting ddGs than methods that do
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not consider side-chain configurational entropy, and have in fact found side-chain entropy to
be necessary to find top empirical design results [2,8,15,16]. The value of accurately modeling
side chain configurational entropy for protein-protein interfaces is also supported by previous
work by Sarel Fleishman and David Baker [4]. However, side-chain configurational entropy
is only a subset of biophysically relevant entropy. Our statement was intended to compare
the entropy considered in our method to the entropy of biological systems, not to entropy
considered in other computational methods.

We suspect that solvent entropy, backbone entropy, and entropy from methyl rotations
are under-considered by our method. While our energy function does contain an implicit
solvent term, we suspect that it is less accurate than explicit solvent calculations [18]. The
osprey suite does contain methods to consider backbone flexibility [5, 6, 10, 13], but these
primarily model small, continuous backbone movements. Finally, this study did not model
continuous methyl rotations, although this will be possible (and likely recommended) in
future releases.

In principle any pairwise-decomposable energy function can be used with osprey. In
addition to the default Amber98 forcefield, previous designs [16] have used the CHARMM19
forcefield. We agree that it would be valuable in the future to systematically test the effects
of different energy functions. A step in this direction is given in our paper on EPIC [11],
where two alternative forcefields are tested. Non-pairwise energy functions were tested for
computational design in [11,12].

To improve our explanation we have modified the quoted passage to read:

... contributions to binding due to solvent entropy, backbone entropy, and ro-
tating methyl groups. Nevertheless, by explicitly modeling side-chain configura-
tional entropy, our method considers more conformational entropy than GMEC-
based methods – ...

I appreciate the clarity that was added to the algorithm description, especially with
regard to fact that the partition functions of the three species are approximated
separately, and with the energy bound based on the WT sequence that FRIES uses
to prune sequences.

Answer: We are glad that our response to the reviewer’s comment has improved the
manuscript.

The revision was missing almost all of the figures – only figure 8 of the non-
supplemental-figures is included. I had to go back to the original manuscript to
find the others.

Answer: We apologize for this difficulty, and would be happy to provide the reviewer
with any and all figures, or a version of the updated manuscript that does include all figures.
While we did submit all figures with the revision and verified that all figures were visible in
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the document that the authors were asked to approve, we suspect that only changed figures
were included for you by the online editorial manager system. If this happens again, please
ask the editors to contact us. Through the editors we can supply any figures that are not
visible to you.

Have all data underlying the figures and results presented in the manuscript
been provided? No: The data needed to reconstruct figure 5 is not fully present in
supplemental table 3. It is possible for the reader to hunt down all of the previously
reported experimentally measured ddGs from the previous literature, but it would be
nice for the authors to simply include these numbers. It is less clear how one goes
from the upper and lower bounds on the log(K) to the delta-b values that the authors
use.

Answer: We agree that the appropriate data was not adequately presented in the sup-
plemental. However, we request that the reviewer please look at supplemental Table 2 not
supplemental Table 3. Table 3 corresponds to the prospective designs and Table 2 corre-
sponds to the retrospective designs that are presented in Figure 5. In Table 2 we present the
percent change in binding, while log10(% change in binding)-2 is what is plotted in Figure 5.
To make this more clear we have added to the language in the supplemental Table 2 along
with the values. We have also added any reported Ka values from existing literature as well
as the reported percent change in binding and a Pearson’s r.

In sum, we agree that we did not previously enclose all data presented in figures, but we
have enclosed all of the data this time.
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