
Supplementary Appendix 

Supplementary methods:  

Variants calling in WES samples: 

Bioinformatics analysis of exome sequencing data was performed using our WES pipeline as 

previously described1. Briefly, our pipeline uses Trimmomatic (v.0.35) and BWA (v. 0.5.9) to 

trim and align sequenced reads to the reference genome (hg19); GATK and Picard 

(http://broadinstitute.github.io/picard//) to perform local realignment around small insertions and 

deletions (indels) and to mark read duplicates, respectively.  

Next, GATK was applied to assess capture efficiency and coverage for all samples. Mean 

coverage for all consensus coding sequence (CCDS) in each sample can be found in 

Supplementary Table 7. Normal and tumor samples were analyzed in parallel. Potential somatic 

substitutions, single nucleotide variants (SNVs) and indels, were called using Mutect (see 

https://confluence.broadinstitute.org/display/CGATools/MuTect for method) and IndelLocator 

(see https://confluence.broadinstitute.org/display/CGATools/Indelocator for methods) on the 

basis of BWA alignments and were then annotated with ANNOVAR2. 

 

Interpretation of plausible cancer susceptibility variants: 

Those variants which most likely damage the protein (nonsense, canonical splice-site, coding 

indels and missense) were considered for further analysis. To remove common variants and false 

positive calls, candidate mutations were subjected to several filtering steps and eliminated if they 

fulfilled any one of the following criteria: (i) genomic position of variant covered by <3-reads, 

(ii) <4 reads supported the alternative variant, (iii) variant had allelic ratio <10% for SNVs or 

<15% for indels, (iv) variant quality < 20; (v) variant had allele frequency > 0.01 in 

gNOMAD/ExAC databases (release 0.3 2016-01-13) and EVS > 0.01, or seen as homozygote in 

ExAC database (release 0.3 2016-01-13) (vi) a CADD score < 203. To further interpret missense 

variants we categorized them using two algorithms in parallel (a) we established a scoring 

system based of pathogenicity likelihood according to 5 bioinformatic algorithms (SIFT, 

PolyPhen, MutationTaster, Revel, MCAP) prioritizing variants considered likely pathogenic by 3 

or more algorithms and (b) we used the Cancer Genome Interpreter (CGI) that classifies variants 

according to their potential as drivers (https://www.cancergenomeinterpreter.org)4–8. Those 

variants known to be reported in cancer or predicted tier 1 according to CGI were also prioritized 

independently of the scoring system. If the variant is predicted pathogenic by the scoring system 

but CGI considered it driver tier 2, passenger, non-protein affecting or neutral for oncogenesis 

we investigated its plausible relation with cancer by a search in public databases and literature 

review, including frequency of the variant in cancer exomes, expression of the gene in thyroid 

tissue and previously reported data on the variant in particular. Variants localized near the 

canonical splice sites were further interrogated by splicing predictor algorithms (The Splice Site 

Prediction by Neural Network from the BDGP and Human Splice Finder)9,10. Finally, The 

Integrative Genomics Viewer was used for the manual examination and visualization of all 

potential candidate variant11.  

In a first step we focussed on 152 known cancer susceptibility genes from Huang et al 201812. 

We prioritized those genes mutated in 2 or more samples. For tumor suppressor we selected only 

those which at least one had a germline and a somatic hit considered likely pathogenic by our 

algorithm (Supplemental Table 1).  



We then extended our analysis to all coding genes. In this case the analysis was performed 

individually in each normal and tumor pairs of samples (Supplemental Tables 2-7). 

 

Interpretation of plausible somatic driver variants: 

For this analysis we focused on the 468 cancer panel gene list elaborated by the MSK-

IMPACTTM to compare driver genes involved in adult PDTC with those in our pediatric cases13. 

First all germline variants were filtered out. Then the most likely damaging variants were filtered 

and classified as described above.   

 

ExomeAI-  

Using ExomeAI software and the aforementioned WES data, we searched for genomic CNV 

events in Chromosome 14 where DICER1 locus is in these tumors14. Briefly, ExomeAI 

reconstructs genomic allelic imbalance (AI) events by analyzing the exome-wide B allele 

frequency (BAF) profile. 
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eFigure 1: Tumor sample from individual case 4. ExomeAI shows allelic imbalances affecting a large 

segments of chromosome 14q where DICER1 is localized ( marked by a vertical doted line) . In this case, 

the mutant allele at c.G5437A;p.E1813Q showed a variant allele frequency of 95.7%. 

  



Supplemental Table 8. Literature review of pediatric poorly differentiated thyroid carcinoma 

NA = Not assessable; Mo = Months; AWD= alive with disease; AWOD = alive without disease 

aHistopathology images provided in case report are most consistent with papillary rather than poorly differentiated 

thyroid carcinoma 

bDisease status uncertain 

Publication Turin 

criteria  

Patient 

age 

Se

x 

Stage 
Patient Status 

Length of 

follow up (mo) 

1. Sironi et al (1992)  NA 16 F T4bN1MX AWD 78 

2. Kotiloglu et al (1995) NA 14 F T3N0M0 AWOD 60 

3. Hassoun et al (1997) NA 15 F T3N1M0 AWOD  22 

4. Hassoun et al (1997) NA 16 F NA DOD 31 

5. Pilotti et al (1997) NA 17 F T4N1M0 Aliveb 114 

6. Rodriguez et al (1998) NA 14 F T1N0M0 AWOD 68 

7. Rodriguez et al (1998) NA 11 M T2N0M0 AWOD 42 

8. Takeuchi et al (1999) NA 20 M NA AWOD 130 

9. Takeuchi et al (1999) NA 9 F NA AWOD 122 

10.  Lam et al (2000) NA 15 F NA Aliveb 336 

11. Lo et al (2000) NA 15 F NA AWOD 312 

12. Lo et al (2000) Yes 15 M At least T3 DOD 3 

13. Zettinig et al (2000) NA 14 F TxNXM1 AWOD 288 

14. Rijhwani and Satish (2003) NA 10 F T3N1MX NA NA 

15. Yusuf et al (2003) NA 15 F T3 AWOD 24 

16. Kumagai et al (2006) NA 12 F T3NXMX NA NA 

17. Prommegger et al (2006) NA 7 F T3N1MX AWOD 48 

18. Donnellan et al (2009) NAa 4 F T3N1M1 Aliveb 12 

19. Wu et al (2011) Yes 9 M T2N0M0 AWOD 5 

20. Hod et al (2013) Yes 16 NA NA NA NA 

21. Liu et al (2015) NA 16 M TXN1M1 DOD 20 

22. Mitsutake et al (2015) NA NA NA NA NA NA 

23. Norlen et al (2015) NA NA NA NA NA NA 

24. Win et al (2017) Yes 20 F NA AWOD >60 

25. Mao et al (2017) NA >12 NA NA Aliveb 60 


