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1 Continuous model formulation

Let us denote by Si(a, t) the age density of seronegative (susceptible, S) individuals of

sex i ∈ {|,~} at time t. Similarly we denote by Li(a, t) and Bi(a, t) the age densities

of latently infected (latent, L) with low antibody concentrations and latently infected

with high antibody concentrations (boosted, B) of sex i at time t. The age densities of

infectious individuals with primary acute infection (I1), and re-infection or reactivation

from the L and B classes (I2 and I3) are I i1(a, t), I
i
2(a, t) and I i3(a, t), respectively.

The age density of individuals of sex i at time t is given by

P i(a, t) = Si(a, t) + Li(a, t) +Bi(a, t) + I i1(a, t) + I i2(a, t) + I i3(a, t). (1)

The total size of the population of sex i at time t is obtained by integrating P i(a, t)

defined by Eq. (1) over all ages

N i(t) =

M∫
0

P i(a, t)da, (2)

where M is the maximum attainable age of the population of sex i.

The age-structured CMV model can then be formulated as follows

∂Si(a, t)

∂t
+
∂Si(a, t)

∂a
= −λi(a, t)Si(a, t)− µi(a)Si(a, t), (3)

∂I i1(a, t)

∂t
+
∂I i1(a, t)

∂a
= λi(a, t)Si(a, t)−

[
γi1(a) + µi(a)

]
I i1(a, t), (4)

∂Li(a, t)

∂t
+
∂Li(a, t)

∂a
= γi1(a)I i1(a, t)−

[
ρi(a) + zλi(a, t)

]
Li(a, t)− µi(a)Li(a, t) +

+ (1− pLB)γi2(a)I i2(a, t), (5)

∂I i2(a, t)

∂t
+
∂I i2(a, t)

∂a
=

[
ρi(a) + zλi(a, t)

]
Li(a, t)−

[
γi2(a) + µi(a)

]
I i2(a, t), (6)

∂Bi(a, t)

∂t
+
∂Bi(a, t)

∂a
= pLBγ

i
2(a)I i2(a, t)−

[
ρi(a) + zλi(a, t)

]
Bi(a, t)− µi(a)Bi(a, t) +

+ γi3(a)I i3(a, t), (7)

∂I i3(a, t)

∂t
+
∂I i3(a, t)

∂a
=

[
ρi(a) + zλi(a, t)

]
Bi(a, t)−

[
γi3(a) + µi(a)

]
I i3(a, t). (8)

The initial and the boundary conditions are
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Si(0, t) =

M∫
0

φi(a){S~(a, t) + (1− q)[I~1 (a, t) + L~(a, t) + I~2 (a, t) +B~(a, t) +

+ I~3 (a, t)]}da, (9)

I i1(0, t) = q

M∫
0

φi(a)[I~1 (a, t) + L~(a, t) + I~2 (a, t) +B~(a, t) + I~3 (a, t)]da, (10)

Li(0, t) = 0, (11)

I i2(0, t) = 0, (12)

Bi(0, t) = 0, (13)

I i3(0, t) = 0, (14)

Si(a, 0) = Si0(a), (15)

I i1(a, 0) = I i10(a), (16)

Li(a, 0) = Li0(a), (17)

I i2(a, 0) = I i20(a), (18)

Bi(a, 0) = Bi
0(a), (19)

I i3(a, 0) = I i30(a). (20)

In the model defined by Eqs. (3)-(20) µi(a) denotes the age-specific death rate of

individuals of sex i; φi(a) is the age-specific fertility rate of women; q ∈ [0, 1] is the

probability of vertical transmission; λi(a, t) is the force of infection for individuals of sex i

and age a at time t; ρi(a) is age-specific reactivation rate for individuals of sex i; z ∈ [0, 1]

is the reduction in susceptibility to re-infection in latently infected individuals compared

to seronegative individuals; pLB ∈ [0, 1] is the probability of progression from low to high

antibody concentrations; γi1(a), γi2(a), and γi3(a) are the rates of progression from acute

infectious state to latent uninfectious state.

The dynamics of the population can be determined independently from the CMV

dynamics. The equation for the age density of individuals of sex i at time t is obtained

by adding Eqs. (3)-(8)

∂P i(a, t)

∂t
+
∂P i(a, t)

∂a
= −µi(a)P i(a, t). (21)

Adding up the boundary, Eqs. (9)-(14), and initial, Eqs. (15)-(20), conditions we

obtain
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P i(0, t) =

M∫
0

φi(a)P ~(a, t)da, (22)

P i(a, 0) = P i
0(a), (23)

where P i
0(a) = Si0(a) + Li0(a) +Bi

0(a) + I i10(a) + I i20(a) + I i30(a).

In the demographic steady state the reproduction rate of the population is 1, which

can be expressed as follows

M∫
0

φi(a)li(a)da = 1, (24)

where li(a) is the probability of individuals of sex i surviving till age a

li(a) = exp

− a∫
0

µi(a′)da′

 . (25)

2 Model with discrete age groups

In this section we derive from the initial boundary-value problem defined by Eqs. (3)-(20)

a system of 6×2×n (# of variables × # of sexes × # of age groups) ordinary differential

equations for the number of individuals of different types at time t in n age groups. The age

groups are defined by age intervals [ak−1, ak] with a0 = 0 < a1 < a2 . . . < an−1 < an = M ,

k = 1, . . . , n.

Let us denote by Sik(t), L
i
k(t), B

i
k(t), I

i
1,k, I

i
2,k and I i3,k the number of S, L, B, I1, I2,

and I3 individuals of sex i ∈ {|,~} in the k-th age group [ak−1, ak] as follows
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Sik(t) =

ak∫
ak−1

Si(a, t)da, (26)

Lik(t) =

ak∫
ak−1

Li(a, t)da, (27)

Bi
k(t) =

ak∫
ak−1

Bi(a, t)da, (28)

I i1,k(t) =

ak∫
ak−1

I i1(a, t)da, (29)

I i2,k(t) =

ak∫
ak−1

I i2(a, t)da, (30)

I i3,k(t) =

ak∫
ak−1

I i3(a, t)da. (31)

We assume that the rates of fertility, death, reactivation, progression from acute to

latent state and the force of infection are constant in each age group, i. e.

φi(a) = φik, (32)

µi(a) = µik, (33)

ρi(a) = ρik, (34)

γi1(a) = γi1,k, (35)

γi2(a) = γi2,k, (36)

γi3(a) = γi3,k, (37)

λi(a, t) = λik(t) (38)

for a in the age group [ak−1, ak], k = 1, . . . , n.

We integrate the equation for Si(a, t), Eq. (3), from a0 = 0 to a1

a1∫
a0=0

∂Si(a, t)

∂t
da+

a1∫
a0=0

∂Si(a, t)

∂a
da = −

a1∫
a0=0

λi(a, t)Si(a, t)da−
a1∫

a0=0

µi(a)Si(a, t)da. (39)

Using Eqs. (26), (33) and (38) the above equation can be rewritten in the following

form
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dSi1(t)

dt
+ Si(a1, t)− Si(0, t) = −λi1(t)Si1(t)− µi1Si1(t). (40)

Using Eqs. (26)-(32) the boundary condition given by Eq. (9) becomes

Si(0, t) =
n∑
k=1

φik{S
~
k(t) + (1− q)[L~k(t) +B~

k(t) + I~1,k(t) + I~2,k(t) + I~3,k(t)]}. (41)

We further define the progression rate from age group k to age group (k+1) as follows

mk =
Si(ak, t)

Sik(t)
. (42)

Finally, the equation for the number of susceptible individuals of sex i in the first age

group [0, a1] becomes

dSi1(t)

dt
=

n∑
k=1

φik{S
~
k(t) + (1− q)[L~k(t) +B~

k(t) + I~1,k(t) + I~2,k(t) + I~3,k(t)]} −

− m1S
i
1(t)− λi1(t)Si1(t)− µi1Si1(t). (43)

Integrating Eq. (3) from ak−1 to ak, where k = 2, . . . , n, we obtain

ak∫
ak−1

∂Si(a, t)

∂t
da+

ak∫
ak−1

∂Si(a, t)

∂a
da = −

ak∫
ak−1

λi(a, t)Si(a, t)da−
ak∫

ak−1

µi(a)Si(a, t)da. (44)

The above equation simplifies to

dSik(t)

dt
+ Si(ak, t)− Si(ak−1, t) = −λik(t)Sik(t)− µikSik(t). (45)

Using Eq. (42) we finally arrive to the following equation

dSik(t)

dt
= mk−1S

i
k−1(t)−mkS

i
k(t)− λik(t)Sik(t)− µikSik(t), (46)

where k = 2, . . . , n.

The equations for other variables can be obtained similarly. The final system of the

ordinary differential equations describing the model with discrete age groups reads as

follows
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dSi1(t)

dt
=

n∑
k=1

φik{S
~
k(t) + (1− q)[I~1,k(t) + L~k(t) + I~2,k(t) +B~

k(t) + I~3,k(t)]} −

−
[
m1 + λi1(t) + µi1

]
Si1(t), (47)

dSik(t)

dt
= mk−1S

i
k−1(t)−

[
mk + λik(t) + µik

]
Sik(t), (48)

dI i1,1(t)

dt
= q

n∑
k=1

φik[I
~
1,k(t) + L~k(t) + I~2,k(t) +B~

k(t) + I~3,k(t)] + λi1(t)S
i
1(t)−

−
[
m1 + γi1,1 + µi1

]
I i1,1(t), (49)

dI i1,k(t)

dt
= λik(t)S

i
k(t) +mk−1I

i
1,k−1(t)−

[
mk + γi1,k + µik

]
I i1,k(t), (50)

dLi1(t)

dt
= γi1,1I

i
1,1(t)−

[
m1 + ρi1 + zλi1(t) + µi1

]
Li1(t) + (1− pLB)γi2,1I

i
2,1(t), (51)

dLik(t)

dt
= γi1,kI

i
1,k(t) +mk−1L

i
k−1(t)−

[
mk + ρik + zλik(t) + µik

]
Lik(t) +

+ (1− pLB)γi2,kI
i
2,k(t), (52)

dI i2,1(t)

dt
=

[
ρi1 + zλi1(t)

]
Li1(t)−

[
m1 + γi2,1 + µi1

]
I i2,1(t), (53)

dI i2,k(t)

dt
=

[
ρik + zλik(t)

]
Lik(t) +mk−1I

i
2,k−1(t)−

[
mk + γi2,k + µik

]
I i2,k(t), (54)

dBi
1(t)

dt
= pLBγ

i
2,1I

i
2,1(t)−

[
m1 + ρi1 + zλi1(t) + µi1

]
Bi

1(t) + γi3,1I
i
3,1(t), (55)

dBi
k(t)

dt
= pLBγ

i
2,kI

i
2,k(t) +mk−1B

i
k−1(t)−

[
mk + ρik + zλik(t) + µik

]
Bi
k(t) +

+ γi3,kI
i
3,k(t), (56)

dI i3,1(t)

dt
=

[
ρi1 + zλi1(t)

]
Bi

1(t)−
[
m1 + γi3,1 + µi1

]
I i3,1(t), (57)

dI i3,k(t)

dt
=

[
ρik + zλik(t)

]
Bi
k(t) +mk−1I

i
3,k−1(t)−

[
mk + γi3,k + µik

]
I i3,k(t), (58)

where k = 2, . . . , n.

3 Force of infection

The force of infection for individuals of sex i and age a at time t is expressed as follows

λi(a, t) =
∑

j∈{|,~}

M∫
0

cij(a, a′)

[
β1
Ij1(a′, t)

P j(a′, t)
+ β2

Ij2(a′, t)

P j(a′, t)
+ β2

Ij3(a′, t)

P j(a′, t)

]
da′, (59)

where β1 and β2 are proportionality parameters determining the infectivities of primary

infection and re-infection/reactivation, cij(a, a′) is the contact rate between individuals of
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sex i and age a and individuals of sex j and age a′.

More precisely, cij(a, a′) represents the number of contacts per unit of time that one

individual of sex i and age a receives from individuals of sex j and age a′. The contact

rate cij(a, a′) can thus be written down as the product of the number of contacts per unit

of time between one individual of sex i and age a and one individual of sex j and age a′

and the age density of individuals of sex j at time t

cij(a, a′) = c̃ij(a, a′)P j(a′, t). (60)

Note that by definition c̃ij(a, a′) is symmetric while cij(a, a′) is not. Using the above

equation the expression for the force of infection simplifies to

λi(a, t) =
∑

j∈{|,~}

M∫
0

c̃ij(a, a′)
[
β1I

j
1(a′, t) + β2I

j
2(a′, t) + β2I

j
3(a′, t)

]
da′. (61)

Eq. (61) is used in the continuous formulation of the model defined by Eqs. (3)-(8).

In the model with discrete age groups defined by Eqs. (47)-(58), the force of infection

has to be discretized. This is done assuming that the contact rate is constant for the

interactions between age groups

c̃ij(a, a′) = c̃ijkl (62)

for a ∈ [ak−1, ak] and a′ ∈ [al−1, al], k, l = 1, . . . , n.

The force of infection for individuals of sex i in the k-th age group [ak−1, ak] becomes

λik(t) =
∑

j∈{|,~}

n∑
l=1

c̃ijkl
[
β1I

j
1,l(t) + β2I

j
2,l(t) + β2I

j
3,l(t)

]
(al − al−1). (63)

Eq. (63) is used in the model with discrete age groups, Eqs. (47)-(58).

4 Simplified model with discrete age groups

We now aim to obtain a simplified version of the model with discrete age groups, Eqs.

(47)-(58) that can be fit to the cross-sectional serological data providing information on

the infection status of the Dutch population in 2006/2007, and a retrospective cohort

study carried out in 2008 providing information on the birth prevalence of cCMV (i.e.

the fraction of infants infected during pregnancy) [33,34]. Firstly, we assume that the male

to female ratio is 1 to 1. Secondly, the population is assumed to be in the demographic

equilibrium, i.e. population sizes of different age groups are constant. Finally, we model
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Type I mortality, namely the probability of surviving is 1 till the maximum age M and

zero above that.

We start by obtaining equations for the number of individuals of sex i in the k-th age

group [ak−1, ak]

N i
k(t) =

ak∫
ak−1

P i(a, t)da = Sik(t) + Lik(t) +Bi
k(t) + I i1,k(t) + I i2,k(t) + I i3,k(t), k = 1, . . . , n.

(64)

We obtain for N i
1(t) and N i

k(t)

dN i
1(t)

dt
=

n∑
k=1

φikN
~
k (t)− (m1 + µi1)N

i
1(t), (65)

dN i
k(t)

dt
= mk−1N

i
k−1(t)− (mk + µik)N

i
k(t), (66)

where k = 2, . . . , n.

We now find the expression for the progression rate mk from age group k to age group

(k + 1), k = 1, . . . , n for the demographically stable population: P i(a, t) ≡ P i(a). For

this special case Eq. (21) simplifies to

dP i(a)

da
= −µi(a)P i(a). (67)

Solving the above equation on the interval [ak−1, ak] results in

P i(a) = P i(ak−1) exp
[
−µik(a− ak−1)

]
. (68)

Using this expression we further integrate P i(a) over the interval [ak−1, ak] to get

N i
k =

ak∫
ak−1

P i(a)da (69)

=

ak∫
ak−1

P i(ak−1) exp
[
−µik(a− ak−1)

]
da (70)

=
P i(ak−1)

µik

{
1− exp[−µik(ak − ak−1)]

}
. (71)

The progression rate mk from age group k to age group (k + 1) then becomes

mk ≡
P i(ak)

N i
k

=
P i(ak−1) exp [−µik(ak − ak−1)]µik

P i(ak−1) {1− exp[−µik(ak − ak−1)]}
. (72)
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The final expression for mk is

mk =
µik

exp[µik(ak − ak−1)]− 1
, k = 1, . . . , n. (73)

Note that Type I mortality implies that all µik = 0, therefore we must find the limit

of mk when µik → 0:

lim
µik→0

mk =
1

ak − ak−1
, k = 1, . . . , n. (74)

Finally, we substitute µik = 0 into Eqs. (65)-(66) and set dN i
k(t)/dt = 0, k = 1, . . . , n.

We obtain the following system of equations

n∑
k=1

φikN
~
k = m1N

i
1, (75)

m1N
i
1 = m2N

i
2, (76)

m2N
i
2 = m3N

i
3, (77)

. . .

mk−1N
i
k−1 = mkN

i
k, (78)

where k = 3, . . . , n.

Solving Eqs. (76)-(78) we obtain the equation for N i
k in terms of N i

1:

N i
k =

m1

mk

N i
1, k = 1, . . . , n. (79)

Since the ratio of men to women is 1 to 1, we can write Eq. (75) as follows

n∑
k=1

φikN
i
k = m1N

i
1. (80)

Combining the last two expressions we obtain

n∑
k=1

φik
m1

mk

N i
1 = m1N

i
1, (81)

which can be written as

n∑
k=1

φik
mk

= 1 or
n∑
k=1

φik(ak − ak−1) = 1. (82)

The above equation is the discrete version of Eq. (24). Denoting the total population size

for sex i as N i and using Eq. (79) we get
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N i =
n∑
k=1

N i
k = N i

1m1

n∑
k=1

1

mk

= N i
1

M

a1
. (83)

If the population size of sex i, N i, the maximum attainable age, M , and the age

group intervals [ak−1, ak] are given, the population sizes in different age groups are then

determined as

N i
k =

N i

mk

n∑
k=1

1

mk

= N i (ak − ak−1)
M

, k = 1, . . . , n. (84)

This means that the age distribution is uniform on the interval [a0 = 0, an = M ].

Since by construction the population sizes of different age groups do not change we

can express Sik(t) as Sik(t) = N i
k − I i1,k(t) − Lik(t) − I i2,k(t) − Bi

k(t) − I i3,k(t) and drop the

equations for Sik(t). The equations for the model with discrete age groups are

dI i1,1(t)

dt
= q

n∑
k=1

φik[I
~
1,k(t) + L~k(t) + I~2,k(t) +B~

k(t) + I~3,k(t)]−
[
m1 + γi1,1

]
I i1,1(t) +

+ λi1(t)[N
i
1 − I i1,1(t)− Li1(t)− I i2,1(t)−Bi

1(t)− I i3,1(t)], (85)

dI i1,k(t)

dt
= λik(t)[N

i
k − I i1,k(t)− Lik(t)− I i2,k(t)−Bi

k(t)− I i3,k(t)] +

+ mk−1I
i
1,k−1(t)−

[
mk + γi1,k

]
I i1,k(t), (86)

dLi1(t)

dt
= γi1,1I

i
1,1(t)−

[
m1 + ρi1 + zλi1(t)

]
Li1(t) + (1− pLB)γi2,1I

i
2,1(t), (87)

dLik(t)

dt
= γi1,kI

i
1,k(t) +mk−1L

i
k−1(t)−

[
mk + ρik + zλik(t)

]
Lik(t) +

+ (1− pLB)γi2,kI
i
2,k(t), (88)

dI i2,1(t)

dt
=

[
ρi1 + zλi1(t)

]
Li1(t)−

[
m1 + γi2,1

]
I i2,1(t), (89)

dI i2,k(t)

dt
=

[
ρik + zλik(t)

]
Lik(t) +mk−1I

i
2,k−1(t)−

[
mk + γi2,k

]
I i2,k(t), (90)

dBi
1(t)

dt
= pLBγ

i
2,1I

i
2,1(t)−

[
m1 + ρi1 + zλi1(t)

]
Bi

1(t) + γi3,1I
i
3,1(t), (91)

dBi
k(t)

dt
= pLBγ

i
2,kI

i
2,k(t) +mk−1B

i
k−1(t)−

[
mk + ρik + zλik(t)

]
Bi
k(t) +

+ γi3,kI
i
3,k(t), (92)

dI i3,1(t)

dt
=

[
ρi1 + zλi1(t)

]
Bi

1(t)−
[
m1 + γi3,1

]
I i3,1(t), (93)

dI i3,k(t)

dt
=

[
ρik + zλik(t)

]
Bi
k(t) +mk−1I

i
3,k−1(t)−

[
mk + γi3,k

]
I i3,k(t), (94)

where k = 2, . . . , n.
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In the above equations

N i
k = N i (ak − ak−1)

M
and mk =

1

ak − ak−1
, k = 1, . . . , n, (95)

and

λik(t) =
∑

j∈{|,~}

n∑
l=1

c̃ijkl
[
β1I

j
1,l(t) + β2I

j
2,l(t) + β3I

j
3,l(t)

]
(al − al−1), k = 1, . . . , n. (96)

The steady state solutions of the model are obtained by setting the left hand sides

of Eqs. (85)-(94) to zero. To calculate the disease free steady state we substitute in the

resulting set of equations q = 0, λik(t) = 0 and Lik(t) = Bi
k(t) = I i1,k(t) = I i2,k(t) = I i3,k(t) =

0, where i ∈ {~,|} and k = 1, . . . , n. The disease free equilibrium is

S̄i1 =
1

m1

n∑
k=1

φikN
~
k , (97)

S̄ik =
mk−1

mk

S̄ik−1, k = 2, . . . , n, (98)

Ī i1,k = Ī i2,k = Ī i3,k = L̄ik = B̄i
k = 0, k = 1, . . . , n, (99)

where the bar denotes the steady-state solution.

5 Calculation of the effective reproduction number

In this section we describe how to calculate the basic reproduction number, R0, in the

absence of vaccination and the effective reproduction number, Re, in the population with

vaccination or hygienic intervention. We used the method known in the literature as the

next-generation matrix approach. The detailed description of the method can be found

in [48,49].

The steps in the calculation of R0 for the CMV model without vaccination are

1. Calculate the Jacobian matrix, J, of Eqs. (85)-(94).

2. Evaluate the Jacobian, J, at the infection free equilibrium Eqs. (97)-(99).

3. Write down the Jacobian, J, as a sum of two matrices, the matrix of transmissions

T and the matrix of transitions Σ: J = T + Σ. The matrix of transmissions, T,

contains elements of J proportional to q, β1 and β2. The matrix of transitions, Σ,

contains the remaining elements of J.

12



4. R0 then equals the dominant eigenvalue of the next generation matrix defined as

follows K = −TΣ−1.

The calculation of Re follows the same steps, with the only difference that the starting

point is the system of differential equations for the CMV model with vaccination. In the

following sections we give the model equations for different vaccination scenarios and the

respective disease free equilibrium.

� � ��2 �3�1

�

� �

(1 − )����

�� + � �� + �����

�

sero-
negative

primary
infection

reactivation/
re-infection

reactivation/
re-infection

latently infected
(low antibody

concentrations)

latently infected
(high antibody
concentrations)

vertical
transmission
(congenital +

postnatal)

birth
without

infection

�

��

vaccinated
seronegative

Figure S1: Schematic of the model with universal vaccination with a vaccine

preventing infection. The vaccine is assumed to protect against primary infection in

seronegative individuals. Proportion p of susceptible (S) individuals in age group k′ is

effectively vaccinated (V), where p is given by the product of vaccination coverage and

vaccine efficacy. Vaccinated individuals lose protection at rate δ (average duration of

protection, 1/δ), returning to the susceptible class.

6 Model with universal vaccination

We considered a suite of universal vaccination strategies with varying proportions of ef-

fectively vaccinated persons, ages at vaccination, sexes to be vaccinated, and durations of

protection. We distinguished between scenarios in which the vaccine is assumed to pro-

tect only against primary infection in seronegative individuals (“prevention of infection”)

or against primary infection in seronegative individuals and re-infection/reactivation in

seropositive individuals (“prevention of (re-)infection and reactivation”). The target pop-

ulation for vaccination was either infants in the first year of life, adolescent boys and girls

13



at the age of 10 years, adolescent girls at the age of 10 years, or women of reproductive

age (15-50 years).

6.1 Prevention of infection

In the model with universal vaccination with a vaccine preventing infection, the proportion

p of susceptible (seronegative, S) individuals in age group k′ is effectively vaccinated (V).

Henceforth, we will refer to p as the effectively vaccinated proportion, which is the product

of vaccination coverage and vaccine efficacy. Vaccinated individuals lose protection at rate

δ (average duration of protection, 1/δ), returning to the susceptible class. The special case

of δ = 0 describes the model with life-long protection. Schematic of this model is given in

Figure S1. For different scenarios, the vaccinated age groups are k′ = 2 (6-months-old),

k′ = 4 (10-years-old), k′ = 7 (25-years-old).

6.1.1 6-months-old boys and girls and life-long protection

In the scenario with vaccination of infants in the first year of life, the fraction p of suscep-

tible boys and girls (S) is vaccinated (V) at 6 months of age (k′ = 2). In the simplest case

when the vaccine-induced protection does not wane, these individuals stay protected for

the rest of their lives. Let us denote V i
k (t) denote the number of vaccinated individuals of

sex i in the age group k at time t. The model equations for this scenario read as follows

dSi1(t)

dt
=

n∑
k=1

φik{S
~
k(t) + V ~

k (t) + (1− q)[I~1,k(t) + L~k(t) + I~2,k(t) +B~
k(t) + I~3,k(t)]} −

−
[
(1− p)m1 + pm1 + λi1(t) + µi1

]
Si1(t),

dV i
1 (t)

dt
= 0,

dSi2(t)

dt
= (1− p)m1S

i
1(t)−

[
m2 + λi2(t) + µi2

]
Si2(t),

dV i
2 (t)

dt
= pm1S

i
1(t)−

[
m2 + µi2

]
V i
2 (t),

dSik(t)

dt
= mk−1S

i
k−1(t)−

[
mk + λik(t) + µik

]
Sik(t), k = 3, . . . , n

dV i
k (t)

dt
= mk−1V

i
k−1(t)−

[
mk + µik

]
V i
k (t), k = 3, . . . , n

14



dI i1,1(t)

dt
= q

n∑
k=1

φik[I
~
1,k(t) + L~k(t) + I~2,k(t) +B~

k(t) + I~3,k(t)] + λi1(t)S
i
1(t)−

−
[
m1 + γi1,1 + µi1

]
I i1,1(t),

dI i1,k(t)

dt
= λik(t)S

i
k(t) +mk−1I

i
1,k−1(t)−

[
mk + γi1,k + µik

]
I i1,k(t),

dLi1(t)

dt
= γi1,1I

i
1,1(t)−

[
m1 + ρi1 + zλi1(t) + µi1

]
Li1(t) + (1− pLB)γi2,1I

i
2,1(t),

dLik(t)

dt
= γi1,kI

i
1,k(t) +mk−1L

i
k−1(t)−

[
mk + ρik + zλik(t) + µik

]
Lik(t) +

+ (1− pLB)γi2,kI
i
2,k(t),

dI i2,1(t)

dt
=

[
ρi1 + zλi1(t)

]
Li1(t)−

[
m1 + γi2,1 + µi1

]
I i2,1(t),

dI i2,k(t)

dt
=

[
ρik + zλik(t)

]
Lik(t) +mk−1I

i
2,k−1(t)−

[
mk + γi2,k + µik

]
I i2,k(t),

dBi
1(t)

dt
= pLBγ

i
2,1I

i
2,1(t)−

[
m1 + ρi1 + zλi1(t) + µi1

]
Bi

1(t) + γi3,1I
i
3,1(t),

dBi
k(t)

dt
= pLBγ

i
2,kI

i
2,k(t) +mk−1B

i
k−1(t)−

[
mk + ρik + zλik(t) + µik

]
Bi
k(t) +

+ γi3,kI
i
3,k(t),

dI i3,1(t)

dt
=

[
ρi1 + zλi1(t)

]
Bi

1(t)−
[
m1 + γi3,1 + µi1

]
I i3,1(t),

dI i3,k(t)

dt
=

[
ρik + zλik(t)

]
Bi
k(t) +mk−1I

i
3,k−1(t)−

[
mk + γi3,k + µik

]
I i3,k(t), (100)

where k = 2, . . . , n in the equations for I i1,k(t), L
i
k(t), I

i
2,k(t), B

i
k(t) and I i3,k(t).

The number of individuals of sex i in the k-th age group [ak−1, ak] can be written down

as follows:

N i
k(t) = Sik(t) + I i1,k(t) + Lik(t) + I i2,k(t) +Bi

k(t) + I i3,k(t) + V i
k (t), k = 1, . . . , n. (101)

To calculate the effective reproduction number, Re, we expressed Sik(t) as Sik(t) =

N i
k− I i1,k(t)−Lik(t)− I i2,k(t)−Bi

k(t)− I i3,k(t)−V i
k (t) and dropped the equations for Sik(t).

The equations for the calculation of Re are
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dV i
2 (t)

dt
= pm1[N

i
1 − I i1,1(t)− Li1(t)− I i2,1(t)−Bi

1(t)− I i3,1(t)]−m2V
i
2 (t),

dV i
k (t)

dt
= mk−1V

i
k−1(t)−mkV

i
k (t), k = 3, . . . , n

dI i1,1(t)

dt
= q

n∑
k=1

φik[I
~
1,k(t) + L~k(t) + I~2,k(t) +B~

k(t) + I~3,k(t)]−
[
m1 + γi1,1

]
I i1,1(t) +

+ λi1(t)[N
i
1 − I i1,1(t)− Li1(t)− I i2,1(t)−Bi

1(t)− I i3,1(t)],
dI i1,k(t)

dt
= λik(t)[N

i
k − I i1,k(t)− Lik(t)− I i2,k(t)−Bi

k(t)− I i3,k(t)− V i
k (t)] +

+ mk−1I
i
1,k−1(t)−

[
mk + γi1,k

]
I i1,k(t),

dLi1(t)

dt
= γi1,1I

i
1,1(t)−

[
m1 + ρi1 + zλi1(t)

]
Li1(t) + (1− pLB)γi2,1I

i
2,1(t),

dLik(t)

dt
= γi1,kI

i
1,k(t) +mk−1L

i
k−1(t)−

[
mk + ρik + zλik(t)

]
Lik(t) +

+ (1− pLB)γi2,kI
i
2,k(t),

dI i2,1(t)

dt
=

[
ρi1 + zλi1(t)

]
Li1(t)−

[
m1 + γi2,1

]
I i2,1(t),

dI i2,k(t)

dt
=

[
ρik + zλik(t)

]
Lik(t) +mk−1I

i
2,k−1(t)−

[
mk + γi2,k

]
I i2,k(t),

dBi
1(t)

dt
= pLBγ

i
2,1I

i
2,1(t)−

[
m1 + ρi1 + zλi1(t)

]
Bi

1(t) + γi3,1I
i
3,1(t),

dBi
k(t)

dt
= pLBγ

i
2,kI

i
2,k(t) +mk−1B

i
k−1(t)−

[
mk + ρik + zλik(t)

]
Bi
k(t) +

+ γi3,kI
i
3,k(t),

dI i3,1(t)

dt
=

[
ρi1 + zλi1(t)

]
Bi

1(t)−
[
m1 + γi3,1

]
I i3,1(t),

dI i3,k(t)

dt
=

[
ρik + zλik(t)

]
Bi
k(t) +mk−1I

i
3,k−1(t)−

[
mk + γi3,k

]
I i3,k(t), (102)

where k = 2, . . . , n in the equations for I i1,k(t), L
i
k(t), I

i
2,k(t), B

i
k(t) and I i3,k(t) (all but

V i
k (t)).

Here

N i
k = N i (ak − ak−1)

M
and mk =

1

ak − ak−1
, k = 1, . . . , n, (103)

and

λik(t) =
∑

j∈{|,~}

n∑
l=1

c̃ijkl
[
β1I

j
1,l(t) + β2I

j
2,l(t) + β2I

j
3,l(t)

]
(al − al−1), k = 1, . . . , n. (104)

The disease free equilibrium is
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S̄i1 =
1

m1

n∑
k=1

φikN
~
k , S̄ik =

(1− p)m1

mk

S̄i1, k = 2, . . . , n,

V̄ i
1 = 0, V̄ i

k =
pm1

mk

S̄i1, k = 2, . . . , n,

Ī i1,k = Ī i2,k = Ī i3,k = L̄ik = B̄i
k = 0, k = 1, . . . , n. (105)

6.1.2 6-months-old boys and girls and waning protection

If the protection wanes with rate δ, the equations for susceptible and vaccinated persons

are changed:

dSi2(t)

dt
= (1− p)m1S

i
1(t)−

[
m2 + λi2(t) + µi2

]
Si2(t) + δV i

2 (t),

dV i
2 (t)

dt
= pm1S

i
1(t)− [δ +m2 + µi2]V

i
2 (t),

dSik(t)

dt
= mk−1S

i
k−1(t)−

[
mk + λik(t) + µik

]
Sik(t) + δV i

k (t), k = 3, . . . , n

dV i
k (t)

dt
= mk−1V

i
k−1(t)− [δ +mk + µik]V

i
k (t), k = 3, . . . , n. (106)

The equations for calculation of the effective reproduction number are

dV i
2 (t)

dt
= pm1[N

i
1 − I i1,1(t)− Li1(t)− I i2,1(t)−Bi

1(t)− I i3,1(t)]− [δ +m2]V
i
2 (t),

dV i
k (t)

dt
= mk−1V

i
k−1(t)− [δ +mk]V

i
k (t), k = 3, . . . , n. (107)

The disease free equilibrium is

S̄i1 =
1

m1

n∑
k=1

φikN
~
k ,

S̄i2 =
m1[δ + (1− p)m2]

m2(δ +m2)
S̄i1,

S̄ik =
S̄i1
mk

(
m1[δ + (1− p)m2]

(δ +m2)
+ δp

l=k−1∑
l=2

j=l∏
j=1

mj

δ +mj+1

)
, k = 3, . . . , n,

V̄ i
1 = 0, V̄ i

2 =
pm1

δ +m2

S̄i1,

V̄ i
k = pS̄i1

j=k−1∏
j=1

mj

δ +mj+1

, k = 3, . . . , n,

Ī i1,k = Ī i2,k = Ī i3,k = L̄ik = B̄i
k = 0, k = 1, . . . , n. (108)
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6.1.3 Individuals in age class k′ and waning protection

The equations for the model with vaccination of seronegative individuals in age class k′

and waning protection (Figure S1) are

dSi1(t)

dt
=

n∑
k=1

φik{S
~
k(t) + V ~

k (t) + (1− q)[I~1,k(t) + L~k(t) + I~2,k(t) +B~
k(t) + I~3,k(t)]} −

−
[
m1 + λi1(t) + µi1

]
Si1(t),

dSik(t)

dt
= mk−1S

i
k−1(t)−

[
mk + λik(t) + µik

]
Sik(t), k = 2, . . . , (k′ − 1)

dV i
k (t)

dt
= 0, k = 1, . . . , (k′ − 1)

dSik′(t)

dt
= (1− p)mk′−1S

i
k′−1(t)−

[
mk′ + λik′(t) + µik′

]
Sik′(t) + δV i

k′(t),

dV i
k′(t)

dt
= pmk′−1S

i
k′−1(t)−

[
δ +mk′ + µik′

]
V i
k′(t),

dSir(t)

dt
= mr−1S

i
r−1(t)−

[
mr + λir(t) + µir

]
Sir(t) + δV i

r (t), r = (k′ + 1), (k′ + 2), . . . , n

dV i
r (t)

dt
= mr−1V

i
r−1(t)−

[
δ +mr + µir

]
V i
r (t), r = (k′ + 1), (k′ + 2), . . . , n

dI i1,1(t)

dt
= q

n∑
k=1

φik[I
~
1,k(t) + L~k(t) + I~2,k(t) +B~

k(t) + I~3,k(t)] + λi1(t)S
i
1(t)−

−
[
m1 + γi1,1 + µi1

]
I i1,1(t),

dI i1,k(t)

dt
= λik(t)S

i
k(t) +mk−1I

i
1,k−1(t)−

[
mk + γi1,k + µik

]
I i1,k(t),

dLi1(t)

dt
= γi1,1I

i
1,1(t)−

[
m1 + ρi1 + zλi1(t) + µi1

]
Li1(t) + (1− pLB)γi2,1I

i
2,1(t),

dLik(t)

dt
= γi1,kI

i
1,k(t) +mk−1L

i
k−1(t)−

[
mk + ρik + zλik(t) + µik

]
Lik(t) +

+ (1− pLB)γi2,kI
i
2,k(t),

dI i2,1(t)

dt
=

[
ρi1 + zλi1(t)

]
Li1(t)−

[
m1 + γi2,1 + µi1

]
I i2,1(t),

dI i2,k(t)

dt
=

[
ρik + zλik(t)

]
Lik(t) +mk−1I

i
2,k−1(t)−

[
mk + γi2,k + µik

]
I i2,k(t),

dBi
1(t)

dt
= pLBγ

i
2,1I

i
2,1(t)−

[
m1 + ρi1 + zλi1(t) + µi1

]
Bi

1(t) + γi3,1I
i
3,1(t),

dBi
k(t)

dt
= pLBγ

i
2,kI

i
2,k(t) +mk−1B

i
k−1(t)−

[
mk + ρik + zλik(t) + µik

]
Bi
k(t) +

+ γi3,kI
i
3,k(t),
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dI i3,1(t)

dt
=

[
ρi1 + zλi1(t)

]
Bi

1(t)−
[
m1 + γi3,1 + µi1

]
I i3,1(t),

dI i3,k(t)

dt
=

[
ρik + zλik(t)

]
Bi
k(t) +mk−1I

i
3,k−1(t)−

[
mk + γi3,k + µik

]
I i3,k(t), (109)

where k = 2, . . . , n in the equations for I i1,k(t), L
i
k(t), I

i
2,k(t), B

i
k(t) and I i3,k(t).

The model equations for the calculation of Re (without the equations for susceptibles):

dV i
k′(t)

dt
= pmk′−1

[
N i
k′−1 − I i1,k′−1(t)− Lik′−1(t)− I i2,k′−1(t)−Bi

k′−1(t)− I i3,k′−1(t)
]
−

− [δ +mk′ ]V
i
k′(t),

dV i
r (t)

dt
= mr−1V

i
r−1(t)− [δ +mr]V

i
r (t), r = (k′ + 1), (k′ + 2), . . . , n

dI i1,1(t)

dt
= q

n∑
k=1

φik[I
~
1,k(t) + L~k(t) + I~2,k(t) +B~

k(t) + I~3,k(t)]−
[
m1 + γi1,1

]
I i1,1(t) +

+ λi1(t)[N
i
1 − I i1,1(t)− Li1(t)− I i2,1(t)−Bi

1(t)− I i3,1(t)],
dI i1,k(t)

dt
= λik(t)[N

i
k − I i1,k(t)− Lik(t)− I i2,k(t)−Bi

k(t)− I i3,k(t)] +mk−1I
i
1,k−1(t)−

−
[
mk + γi1,k

]
I i1,k(t), k = 2, 3, . . . , (k′ − 1)

dI i1,r(t)

dt
= λir(t)[N

i
r − I i1,r(t)− Lir(t)− I i2,r(t)−Bi

r(t)− I i3,r(t)− V i
r (t)] +mr−1I

i
1,r−1(t)−

−
[
mr + γi1,r

]
I i1,r(t), r = k′, (k′ + 1), . . . , n

dLi1(t)

dt
= γi1,1I

i
1,1(t)−

[
m1 + ρi1 + zλi1(t)

]
Li1(t) + (1− pLB)γi2,1I

i
2,1(t),

dLik(t)

dt
= γi1,kI

i
1,k(t) +mk−1L

i
k−1(t)−

[
mk + ρik + zλik(t)

]
Lik(t) +

+ (1− pLB)γi2,kI
i
2,k(t),

dI i2,1(t)

dt
=

[
ρi1 + zλi1(t)

]
Li1(t)−

[
m1 + γi2,1

]
I i2,1(t),

dI i2,k(t)

dt
=

[
ρik + zλik(t)

]
Lik(t) +mk−1I

i
2,k−1(t)−

[
mk + γi2,k

]
I i2,k(t),

dBi
1(t)

dt
= pLBγ

i
2,1I

i
2,1(t)−

[
m1 + ρi1 + zλi1(t)

]
Bi

1(t) + γi3,1I
i
3,1(t),

dBi
k(t)

dt
= pLBγ

i
2,kI

i
2,k(t) +mk−1B

i
k−1(t)−

[
mk + ρik + zλik(t)

]
Bi
k(t) +

+ γi3,kI
i
3,k(t),

dI i3,1(t)

dt
=

[
ρi1 + zλi1(t)

]
Bi

1(t)−
[
m1 + γi3,1

]
I i3,1(t),

dI i3,k(t)

dt
=

[
ρik + zλik(t)

]
Bi
k(t) +mk−1I

i
3,k−1(t)−

[
mk + γi3,k

]
I i3,k(t), (110)

where k = 2, . . . , n in the equations for Lik(t), I
i
2,k(t), B

i
k(t) and I i3,k(t).
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The disease free equilibrium for the calculation of Re is

S̄i1 =
1

m1

n∑
k=1

φikN
~
k ,

S̄ik =
m1

mk

S̄i1, k = 2, . . . , (k′ − 1)

V̄ i
k = 0, k = 1, 2, . . . , (k′ − 1)

S̄ik′ =
m1[δ + (1− p)mk′ ]

mk′(δ +mk′)
S̄i1,

V̄ i
k′ =

pm1

δ +mk′
S̄i1,

V̄ i
r =

mr−1

δ +mr

V̄ i
r−1, r = (k′ + 1), (k′ + 2), . . . , n

S̄ir =
mr−1

mr

(
S̄ir−1 +

δ

δ +mr

V̄ i
r−1

)
, r = (k′ + 1), (k′ + 2), . . . , n

Ī i1,k = Ī i2,k = Ī i3,k = L̄ik = B̄i
k = 0, k = 1, . . . , n. (111)

6.2 Prevention of (re-)infection and reactivation

In the model with universal vaccination with a vaccine preventing (re-)infection and reac-

tivation, the proportion p of seronegative (S) and seropositive individuals (L, B, I1, I2, and

I3) individuals in age group k′ is effectively vaccinated. The seronegative and seropositive

vaccinated individuals transit to class V1 and V2, respectively. As before, p is the effec-

tively vaccinated proportion, which is the product of vaccination coverage and vaccine

efficacy. Vaccinated individuals (V1 and V2) lose protection at rate δ (average duration of

protection, 1/δ), returning from class V1 to the susceptible class (S) and from class V2 to

the latent class with low antibody concentrations (L). Schematic of this model is given in

Figure S2. For different scenarios, the vaccinated age groups are k′ = 2 (6-months-old),

k′ = 4 (10-years-old), k′ = 7 (25-years-old).

6.2.1 Individuals in age class k′ and waning protection

The model equations are
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Figure S2: Schematic of the model with universal vaccination with a vaccine pre-

venting (re-)infection and reactivation. The vaccine is assumed to protect against

primary infection in seronegative individuals and re-infection/reactivation in seropositive

individuals. In this vaccination scenario, the proportion p of susceptible individuals (S)

in age group k′ is effectively vaccinated (V1). The proportion p of all seropositive persons

(L, B, I1, I2, and I3) in age group k′ is vaccinated (V2) as well. After the protection is lost

(average duration: 1/δ), V1 and V2 individuals return to the S and L class, respectively.
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dSi1(t)

dt
=

n∑
k=1

φik{S
~
k(t) + V ~

1,k(t) + V ~
2,k(t) + (1− q)[I~1,k(t) + L~k(t) + I~2,k(t) +B~

k(t) +

+ I~3,k(t)]} −
[
m1 + λi1(t) + µi1

]
Si1(t),

dSik(t)

dt
= mk−1S

i
k−1(t)−

[
mk + λik(t) + µik

]
Sik(t), k = 2, . . . , (k′ − 1)

dV i
1,k(t)

dt
= 0, k = 1, . . . , (k′ − 1)

dSik′(t)

dt
= (1− p)mk′−1S

i
k′−1(t)−

[
mk′ + λik′(t) + µik′

]
Sik′(t) + δV i

1,k′(t),

dV i
1,k′(t)

dt
= pmk′−1S

i
k′−1(t)−

[
δ +mk′ + µik′

]
V i
1,k′(t),

dSir(t)

dt
= mr−1S

i
r−1(t)−

[
mr + λir(t) + µir

]
Sir(t) + δV i

1,r(t), r = (k′ + 1), (k′ + 2), . . . , n

dV i
1,r(t)

dt
= mr−1V

i
1,r−1(t)−

[
δ +mr + µir

]
V i
1,r(t), r = (k′ + 1), (k′ + 2), . . . , n

dV i
2,k(t)

dt
= 0, k = 1, . . . , (k′ − 1)

dV i
2,k′(t)

dt
= pmk′−1

[
I i1,k′−1(t) + Lik′−1(t) + I i2,k′−1(t) +Bi

k′−1(t) + I i3,k′−1(t)
]
−

−
[
δ +mk′ + µik′

]
V i
2,k′(t),

dV i
2,r(t)

dt
= mr−1V

i
2,r−1(t)−

[
δ +mr + µir

]
V i
2,r(t), r = (k′ + 1), (k′ + 2), . . . , n

dI i1,1(t)

dt
= q

n∑
k=1

φik[I
~
1,k(t) + L~k(t) + I~2,k(t) +B~

k(t) + I~3,k(t)] + λi1(t)S
i
1(t)−

−
[
m1 + γi1,1 + µi1

]
I i1,1(t),

dI i1,k(t)

dt
= λik(t)S

i
k(t) + (1− pχk,k′)mk−1I

i
1,k−1(t)−

[
mk + γi1,k + µik

]
I i1,k(t),

dLi1(t)

dt
= γi1,1I

i
1,1(t)−

[
m1 + ρi1 + zλi1(t) + µi1

]
Li1(t) + (1− pLB)γi2,1I

i
2,1(t),

dLik(t)

dt
= γi1,kI

i
1,k(t) + (1− pχk,k′)mk−1L

i
k−1(t)−

[
mk + ρik + zλik(t) + µik

]
Lik(t) +

+ (1− pLB)γi2,kI
i
2,k(t) + δV i

2,k(t),

dI i2,1(t)

dt
=

[
ρi1 + zλi1(t)

]
Li1(t)−

[
m1 + γi2,1 + µi1

]
I i2,1(t),

dI i2,k(t)

dt
=

[
ρik + zλik(t)

]
Lik(t) + (1− pχk,k′)mk−1I

i
2,k−1(t)−

[
mk + γi2,k + µik

]
I i2,k(t),
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dBi
1(t)

dt
= pLBγ

i
2,1I

i
2,1(t)−

[
m1 + ρi1 + zλi1(t) + µi1

]
Bi

1(t) + γi3,1I
i
3,1(t),

dBi
k(t)

dt
= pLBγ

i
2,kI

i
2,k(t) + (1− pχk,k′)mk−1B

i
k−1(t)−

[
mk + ρik + zλik(t) + µik

]
Bi
k(t) +

+ γi3,kI
i
3,k(t),

dI i3,1(t)

dt
=

[
ρi1 + zλi1(t)

]
Bi

1(t)−
[
m1 + γi3,1 + µi1

]
I i3,1(t),

dI i3,k(t)

dt
=

[
ρik + zλik(t)

]
Bi
k(t) + (1− pχk,k′)mk−1I

i
3,k−1(t)−

[
mk + γi3,k + µik

]
I i3,k(t),(112)

where k = 2, . . . , n in the equations for I i1,k(t), L
i
k(t), I

i
2,k(t), B

i
k(t) and I i3,k(t).

The equations for the calculation of Re (without the equations for susceptibles) are

dV i
1,k′(t)

dt
= pmk′−1

[
N i
k′−1 − I i1,k′−1(t)− Lik′−1(t)− I i2,k′−1(t)−Bi

k′−1(t)− I i3,k′−1(t)
]
−

− [δ +mk′ ]V
i
1,k′(t),

dV i
1,r(t)

dt
= mr−1V

i
1,r−1(t)− [δ +mr]V

i
1,r(t), r = (k′ + 1), (k′ + 2), . . . , n

dV i
2,k′(t)

dt
= pmk′−1

[
I i1,k′−1(t) + Lik′−1(t) + I i2,k′−1(t) +Bi

k′−1(t) + I i3,k′−1(t)
]
−

− [δ +mk′ ]V
i
2,k′(t),

dV i
2,r(t)

dt
= mr−1V

i
2,r−1(t)− [δ +mr]V

i
2,r(t), r = (k′ + 1), (k′ + 2), . . . , n

dI i1,1(t)

dt
= q

n∑
k=1

φik[I
~
1,k(t) + L~k(t) + I~2,k(t) +B~

k(t) + I~3,k(t)]−
[
m1 + γi1,1

]
I i1,1(t) +

+ λi1(t)[N
i
1 − I i1,1(t)− Li1(t)− I i2,1(t)−Bi

1(t)− I i3,1(t)],
dI i1,k(t)

dt
= λik(t)[N

i
k − I i1,k(t)− Lik(t)− I i2,k(t)−Bi

k(t)− I i3,k(t)] +mk−1I
i
1,k−1(t)−

−
[
mk + γi1,k

]
I i1,k(t), k = 2, 3, . . . , (k′ − 1)

dI i1,r(t)

dt
= λir(t)[N

i
r − I i1,r(t)− Lir(t)− I i2,r(t)−Bi

r(t)− I i3,r(t)− V i
1,r(t)− V i

2,r(t)] +

+ (1− pχr,k′)mr−1I
i
1,r−1(t)−

[
mr + γi1,r

]
I i1,r(t), r = k′, (k′ + 1), . . . , n

dLi1(t)

dt
= γi1,1I

i
1,1(t)−

[
m1 + ρi1 + zλi1(t)

]
Li1(t) + (1− pLB)γi2,1I

i
2,1(t),

dLik(t)

dt
= γi1,kI

i
1,k(t) + (1− pχk,k′)mk−1L

i
k−1(t)−

[
mk + ρik + zλik(t)

]
Lik(t) +

+ (1− pLB)γi2,kI
i
2,k(t) + δV i

2,k(t),
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dI i2,1(t)

dt
=

[
ρi1 + zλi1(t)

]
Li1(t)−

[
m1 + γi2,1

]
I i2,1(t),

dI i2,k(t)

dt
=

[
ρik + zλik(t)

]
Lik(t) + (1− pχk,k′)mk−1I

i
2,k−1(t)−

[
mk + γi2,k

]
I i2,k(t),

dBi
1(t)

dt
= pLBγ

i
2,1I

i
2,1(t)−

[
m1 + ρi1 + zλi1(t)

]
Bi

1(t) + γi3,1I
i
3,1(t),

dBi
k(t)

dt
= pLBγ

i
2,kI

i
2,k(t) + (1− pχk,k′)mk−1B

i
k−1(t)−

[
mk + ρik + zλik(t)

]
Bi
k(t) +

+ γi3,kI
i
3,k(t),

dI i3,1(t)

dt
=

[
ρi1 + zλi1(t)

]
Bi

1(t)−
[
m1 + γi3,1

]
I i3,1(t),

dI i3,k(t)

dt
=

[
ρik + zλik(t)

]
Bi
k(t) + (1− pχk,k′)mk−1I

i
3,k−1(t)−

[
mk + γi3,k

]
I i3,k(t), (113)

where k = 2, . . . , n, 2 ≤ k′ ≤ n in the equations for Lik(t), I
i
2,k(t), B

i
k(t) and I i3,k(t). χk,k′

is the kronecker symbol: χk,k′ = 1, k = k′ and χk,k′ = 0 otherwise.

The disease free steady state for the calculation of Re is

S̄i1 =
1

m1

n∑
k=1

φikN
~
k ,

S̄ik =
m1

mk

S̄i1, k = 2, . . . , (k′ − 1)

V̄ i
1,k = 0, k = 1, 2, . . . , (k′ − 1)

S̄ik′ =
1

mk′

[
(1− p)m1S̄

i
1 +

δpmk′−1

δ +mk′
N i
k′−1

]
,

V̄ i
1,k′ =

pmk′−1

δ +mk′
N i
k′−1,

V̄ i
1,r =

mr−1

δ +mr

V̄ i
1,r−1, r = (k′ + 1), (k′ + 2), . . . , n

S̄ir =
mr−1

mr

(
S̄ir−1 +

δ

δ +mr

V̄ i
1,r−1

)
, r = (k′ + 1), (k′ + 2), . . . , n

V̄ i
2,k = Ī i1,k = Ī i2,k = Ī i3,k = L̄ik = B̄i

k = 0, k = 1, . . . , n. (114)

7 Model outcomes

We evaluated the impact of all interventions on the percent reduction in the incidence of

cCMV, primary infections and re-infections/reactivations after a time frame of 20 years.

The incidence of primary infections at time t was computed as

n∑
k=1

∑
i∈{|,~}

λik(t)S
i
k(t). (115)
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The incidence of re-infections/reactivations at time t was computed as

n∑
k=1

∑
i∈{|,~}

[ρik + zλik(t)][L
i
k(t) +Bi

k(t)]. (116)

The incidence of congenital infections at time t was computed as

γqc

n∑
k=1

∑
i∈{|,~}

φik[I
~
1,k(t) + I~2,k(t) + I~3,k(t)], (117)

where 1/γ is the duration of acute infection.

8 Parameter summary

The description of the model parameters is given in Table S1.

Notation Unit Description Value/Source

µik 1/year death rate of persons of sex i in age group k µik = 0 (Type I mortality)

M years maximum attainable age 80 years (max. age in serological data)

N total population size 17 million, Statistics Netherlands

φik 1/year women’s fertility rate Statistics Netherlands

number of contacts per day between

c̃ijkl 1/day one individual of sex i in age group k and [41]

one individual of sex j in age group l

q ∈ [0, 1] probability of vertical transmission estimated

qc ∈ [0, 1] probability of congenital infection estimated

λik 1/year force of infection for persons of sex i in age group k estimated

ρik 1/year reactivation rate for persons of sex i in age group k estimated

reduction in susceptibility to re-infection

z ∈ [0, 1] in latently infected persons estimated

compared to seronegative persons

pLB ∈ [0, 1] probability of progression from low to high antibody concentrations estimated

1/γi1,k = 1/γ days

1/γi2,k = 1/γ days duration of acute infection 14 days, sensitivity analyses

1/γi3,k = 1/γ days

β1 1/year infectivity of primary infection estimated

β2 1/year infectivity of re-infection/reactivation estimated

p effectively vaccinated proportion (vaccine efficacy × vaccination coverage) 0—100%, sensitivity analyses

1/δ years duration of protection 2.5—80 years, sensitivity analyses

Table S1: Summary of the model parameters

9 Parameter inference

Parameters estimates of the transmission model were obtained using the cross-sectional

serological data providing information on the infection status of the Dutch population

in 2006/2007, and a retrospective cohort study carried out in 2008 providing infor-

mation on the birth prevalence of cCMV (i.e. the fraction of infants infected during
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Figure S3: Histogram of the estimated parameter values. The solid lines are the

median estimates. The dashed lines correspond to 95% credible intervals obtained from

1000 parameter samples from the posterior distribution.
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pregnancy) [33,34]. Parameters were broadly estimated using methods developed ear-

lier [41]. Briefly, assuming an endemic equilibrium and the short disease approximation,

estimates were obtained using a Bayesian framework. In comparison with our earlier

analyses, we extended the model by (i) allowing for multiple reactivation and re-infection

events occurring over a person’s life (Figure 1 in the main text), (ii) using cubic B-splines

for more flexible estimation of the age-dependent reactivation rates, and (iii) including

the birth cohort data to enable estimation of the probability of cCMV. For horizontal

transmission we used an age- and sex-specific contact matrix with 17 age classes. The

model is fitted to the data using Hamiltonian Monte Carlo method as implemented in

Stan (https://mc-stan.org). Data, model code, and Rmarkdown file are available at

https://github.com/mvboven/cmv-vaccination. The Rmarkdown file with prior spec-

ifications and parameter settings is attached at the end of the Supplementary Material.

Figure S3 shows an overview of all parameter estimates which are not given in the

main text.

10 Results for the scenario with high reactivation

rates

Estimates of the reactivation rates, infectivity of re-infection and reactivation, and proba-

bility to move from the L to B class depend sensitively on the assumed prior distributions

of the reactivation rates. In the main analyses, we took prior distributions such that a

priori reactivation rates range from 0.005 to 0.11 per year (95% range), which seemed

reasonable given what we had found earlier [41].However, with our more flexible model

which allows for multiple reactivation and re-infection events in the infected classes (L

and B), the reactivation rate estimates are found to depend sensitively on the prior dis-

tributions (Figure S4). For instance, with broader and higher prior distributions for these

rates, the posterior distributions of the reactivation rates are also (markedly) higher, while

the infectivity and probability to move from the L to the B class are (markedly) lower

(Figure S5). Fortunately, due to the neutralizing effects of the parameter shifts, the im-

pact of vaccination, in particular the estimated reductions in cCMV, primary infections,

re-infections, and reactivations are quantitatively very similar to the main scenario and

sensitivity analyses (cf. Table 1 in the main text and Table S2). Hence, while consider-

able uncertainty surrounds the actual magnitude of the reactivation rates and associated

parameters, the impact on the effectiveness of vaccination is small.
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Figure S4: Overview of the estimation results in the scenario with high reacti-

vation rates. (A) and (B) show the age-specific prevalence of seronegative, seropositive

with low antibody concentrations and seropositive with high antibody concentrations in

females (A) and males (B), respectively. (C) shows the age-specific reactivation rates per

year for females (black) and males (blue), respectively. The solid lines are the median

estimates, and the shaded regions correspond to 95% credible intervals obtained from

1000 parameter samples from the posterior distribution. Note that the seroprevalence is

estimated with high precision, and that credible intervals for the reactivation rates are

quite broad.

28



0.25 0.30 0.35 0.40 0.45
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

probability of vertical transmission (q)

pr
ob
ab
ili
ty

0.010 0.015 0.020 0.025
0.00

0.05

0.10

0.15

0.20

probability of congenital infection (qc)

pr
ob
ab
ili
ty

0.025 0.030 0.035 0.040 0.045 0.050 0.055
0.00

0.05

0.10

0.15

0.20

0.25

probability of progression from low
to high antibody concentrations (qLB)

pr
ob
ab
ili
ty

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.05

0.10

0.15

0.20

0.25

reduction in susceptibility to re-infection
in latently infected persons

compared to seronegative persons (z)

pr
ob
ab
ili
ty

0.0 0.1 0.2 0.3 0.4 0.5 0.6
0.0

0.1

0.2

0.3

0.4

0.5

infectivity of primary infection, 1/year (β1)

pr
ob
ab
ili
ty

0.02 0.03 0.04 0.05 0.06 0.07
0.0

0.1

0.2

0.3

0.4

infectivity of re-infection/reactivation, 1/year (β2)

pr
ob
ab
ili
ty

Figure S5: Histogram of the estimated parameter values in the scenario with

high reactivation rates. The solid lines are the median estimates. The dashed lines

correspond to 95% credible intervals obtained from 1000 parameter samples from the

posterior distribution.
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Intervention scenario

Reduction % Reduction %

Reduction % incidence incidence Effective

birth prevalence primary re-infection/ reproduction

cCMV infection reactivation number

median (95%CrI) median (95%CrI) median (95%CrI) median (95%CrI)

Universal vaccination

prevention of (re-)infection and reactivation

6-months-old boys and girls 4.0 (3.6—4.5) 18.7 (17.3—20.6) 5.3 (4.3—6.0) 1.14 (1.11—1.17)

10-years-old boys and girls 10.7 (10.0—11.5) 17.5 (15.9—19.2) 7.0 (6.0—8.2) 1.15 (1.11—1.18)

10-years-old girls 10.2 (9.5—10.9) 10.7 (9.4—11.6) 4.7 (3.9—5.5) 1.19 (1.15—1.23)

25-years-old women 30.3 (30.0—30.8) 9.6 (8.6—11.0) 7.4 (6.4—8.8) 1.17 (1.13—1.22)

prevention of infection

6-months-old boys and girls 2.4 (2.1—2.8) 15.3 (14.3—17.3) 2.3 (1.9—2.9) 1.18 (1.15—1.20)

10-years-old boys and girls 4.5 (3.9—5.0) 12.6 (11.6—14.0) 2.1 (1.8—2.7) 1.22 (1.19—1.25)

10-years-old girls 4.3 (3.8—4.8) 7.1 (6.4—7.8) 1.5 (1.2—1.9) 1.25 (1.22—1.28)

25-years-old women 3.9 (3.7—4.3) 4.4 (4.1—4.8) 1.0 (0.9—1.2) 1.32 (1.28—1.35)

Vaccination during pregnancy 71.2 (71.0—71.4) 2.7 (1.6—4.3) 5.9 (4.8—7.0) 1.11 (1.04—1.19)

Hygienic measures 0.9 (0.8—1.1) 2.9 (2.6—3.4) 0.7 (0.6—0.9) 1.33 (1.30—1.37)

Table S2: Impact of interventions on cCMV, primary infection and re-

infection/reactivation in the scenario with high reactivation rates. The re-

ductions are evaluated 20 years after the start of the intervention. The proportion of

effectively vaccinated persons (vaccination coverage × vaccine efficacy) is 70%, and the

average duration of protection is 10 years. Hygienic measures are modeled as a 70% re-

duction in infectious contacts between women of reproductive age (15-50 years) and young

children (0-5 years). The effective reproduction number is defined as the average number

of secondary infections at the start of an epidemic with one infected individual introduced

in a population where 70% of persons are effectively vaccinated. This number smaller than

1 indicates that a given intervention is going to lead to the disease elimination in the long

run.
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11 DALY computation

To compute the disease burden caused by cCMV in the Netherlands, we used the yearly

incidence of cCMV predicted by the model. From the yearly incidence we computed num-

bers of cases of cCMV per year using a population size of 17 million for the Netherlands

in 2017. Furthermore, we used an estimate of the disability-adjusted life years (DALYs)

per case of 3.034 (95%CrI: 1.202—6.105) from the meta-analysis for Belgium [13].The

DALY per case result is not reported in the published paper, but was provided to us by

Brecht Devleesschauwer (personal communication). For every vaccination scenario, we

computed the yearly incidence for a period of 20 years, calculated the number of cCMV

cases based on the population size of 17 million, and computed the number of DALYs per

year by multiplying with the DALY per case estimate. We then calculated the number of

DALYs prevented in subsequent years compared to reference year zero and added those

prevented DALYs for the period of 20 years to arrive at the number of DALYs prevented

over that time period.

We did the computation for the median incidence and the 95% credible interval of the

incidences (which is based on the uncertainty of model parameters, but not the uncertainty

in DALY per case estimate). Table S3 shows the computed numbers for one scenario,

namely the vaccination of pregnant women. Figure S6 shows the DALYs prevented for all

scenarios together with the 95% credible intervals based on the uncertainty in incidences.
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Year Incidence per Number of Cases DALYs per DALYs per DALYs

100,000 cases in NL prevented 100,000 year prevented

0 6.84 1,163 20.75 3,527

1 2.05 348 814 6.22 1,057 2,470.3

2 2.05 348 815 6.21 1,056 2,471.4

3 2.05 348 815 6.21 1,055 2,472.5

4 2.04 347 815 6.20 1,054 2,473.7

5 2.04 347 816 6.19 1,053 2,474.8

6 2.04 347 816 6.19 1,051 2,476.0

7 2.04 346 816 6.18 1,050 2,477.2

8 2.03 346 817 6.17 1,049 2,478.5

9 2.03 345 817 6.16 1,047 2,480.0

10 2.03 345 818 6.15 1,046 2,481.7

11 2.02 344 819 6.14 1,044 2,483.5

12 2.02 343 819 6.13 1,042 2,485.5

13 2.02 343 820 6.12 1,040 2,487.5

14 2.01 342 821 6.10 1,038 2,489.7

15 2.01 341 821 6.09 1,035 2,492.2

16 2.00 340 822 6.07 1,032 2,495.1

17 2.00 339 823 6.05 1,029 2,498.2

18 1.99 338 824 6.03 1,026 2,501.6

19 1.98 337 826 6.01 1,022 2,505.5

20 1.97 335 827 5.98 1,017 2,510.2

Totals 6,870 16,382 20,843 49,705.1

Table S3: DALY computation for vaccination of pregnant women.
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Figure S6: DALYs prevented over 20 years for various vaccination scenarios in

the Netherlands.
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Data from a birth prevalence study are included, and the model is extended to be able to estimate the probability of

congenital transmission. This is an important extension as much of the health burden is due to congenital infections

(which can lead to serious long-term sequelae).

The analyses and results presented here form the starting point of a manuscript that evaluates the impact of various

vaccination strategies against CMV. Authors of the manuscript are Ganna Rozhnova, Mirjam Kretzschmar, Fiona van der Klis,

Debbie van Baarle, Marjolein Korndewal, Ann Vossen, and Michiel van Boven.

Data

All data have been described and published elsewhere, and are available in the data directory or R script

(https://github.com/mvboven/cmv-vaccination).

The serological data have been analysed earlier (see

https://www.sciencedirect.com/science/article/pii/S1386653214004612, https://journals.plos.org/ploscompbiol/article?

id=10.1371/journal.pcbi.1005719, and the PhD thesis of M. Korndewal, available at

https://openaccess.leidenuniv.nl/handle/1887/45778). As in our earlier analyses, from the serological study we select

persons of Western ethnicity (ethnicity is a known independent risk factor for infection and the majority of persons in the

Netherlands are of Western ethnicity), and exclude infants under 6 months (to prevent interference of maternal

antibodies). Further, a subset of 651 samples are right-censored, so 2,842 and 2,337 samples from female and male

participants are included in the analyses.

The cCMV birth prevalence data also have been described earlier (see

https://www.cambridge.org/core/journals/epidemiology-and-infection/article/disease-burden-of-congenital-

cytomegalovirus-infection-at-school-entry-age-study-design-participation-rate-and-birth-

prevalence/DED925A2D496FF0ED8DCDCA5E692AFB2/core-reader, and in particular the PhD thesis of M. Korndewal,

available at https://openaccess.leidenuniv.nl/handle/1887/45778). In the birth prevalence study, 154 infants of a cohort of

31484 (0.5%) are found positive. This is broadly in line with findings from other high-income countries.

Human contact data (stratified by sex, 16 age groups of 5 years) are as in our previous study. See

https://github.com/kassteele/Contact-patterns for explanation, alternative options, and do-it-yourself instructions.

Ages of mothers in the Netherlands in 2006/2007 are taken from Statistics Netherlands (http://www.cbs.nl), see also the

MSc thesis of Sophia de Jong (available on request).

Stan model

Data

Data and fixed parameter values are specified in the data directory (serological data and contact matrix) and R script (all

other). Throughout, I take the estimated means and standard deviations of the mixing distributions as estimated in our earlier

analyses. The data block of the Stan model looks as follows:

data { 
  int<lower=0> N;                             // number of subjects 
  int<lower=1> DeltaA;                        // length of age intervals 
  int<lower=1> A;                             // number of age intervals 
  matrix<lower=0>[A, A] Contact_MM;           // gender- and age-specific contact matrices 
  matrix<lower=0>[A, A] Contact_FM;           // male to female contact matrix 
  matrix<lower=0>[A, A] Contact_MF;           // female to male contact matrix 
  matrix<lower=0>[A, A] Contact_FF;           // female to female 
  int<lower=0, upper=DeltaA*A> Ages[N];       // subject ages (unit: years; precision: 1/12) 
  real Titers[N];                             // antibody titers 
  int Censor[N];                              // 0 = normal, 1 = censored, 2 = spike (see mvb17) 
  real RightCensor;                           // titers above this value are right-censored 
  real MuS;                                   // mean of classification mixture (S) (estimated in mvb17) 
  real MuL;                                   // mean of classification mixture (L) 
  real MuB;                                   // mean of classification mixture (B) 
  real<lower=0> SigmaS;                       // standard deviation of the uninfected component 
  real<lower=0> SigmaL;                       // standard deviation of the infected component 
  real<lower=0> SigmaB;                       // standard deviation of infected with raised antibodies 
  int<lower=1> numbertestedinfants;           // # infants tested for cCMV - total: 31,484 
  int<lower=1> numbercCMVinfants;             // # infants positive for cCMV - total: 154 
  real<lower=0> Penalty;                      // estimation of the fois/S0: LHS ~ N(RHS,1/Penalty) 
  int<lower=0, upper=1> Gender[N];            // 0 = female, 1 = male 

https://github.com/mvboven/cmv-vaccination
https://www.sciencedirect.com/science/article/pii/S1386653214004612
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005719
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  vector[A] BirthContribution;                // prob dist of ages of mothers with a newborn in 2006/2007  
  int num_knots;                              // number of spline knots 
  vector[num_knots] knots;                    // the sequence of knots  
  int spline_degree;                          // the spline degree (order - 1)  
  real ts[DeltaA*A];                          // ages at which splines are calculated 
  real<lower=0, upper=1> reducinf;            // infectivity reduction in L compared to B 
  int<lower=0, upper=1> mode;                 // 0 = regular sampling, 1 = sampling to compute WBIC 
} 

Parameters

Fundamental parameters of the model are the infectiousness of persons with a primary infection (beta_1), the infectiousness

after re-infection or reactivation (beta_2), the reduced susceptibility to re-infection as compared with primary infection (z), the

probability that re-infection or reactivation lead to antibody boosting (probLtoB), the fraction of the population that is

uninfected at 6 months (i.e. not infected congenitally or postnatally) (S0), and the probabilities of congential infection from an

acutely infected mother (qcCMV) and postnatal infection (e.g., by breastfeeding, transfer of saliva from mother to offspring)

(nu). Also estimated are the spline wieghts for the reactivation rates in females and males (a_raw). The 16x2=32 nonlinear

equations for the age-specific forces of infection at equilibrium (lambda_f and lambda_m) that result after interval

decomposition (16 for each sex; see e.g., Chapter 9 of https://press.princeton.edu/titles/9916.html for details) are efficiently

solved using a trick (see below). The parameter block is given by:

parameters { 
  real<lower=0> beta1;                        // infectivity after primary infection 
  real<lower=0> beta2;                        // infectivity after reactivation/re-infection in L or L/B 
  real<lower=0, upper=1> z;                   // reduction in susceptibility to reinfection 
  real<lower=0, upper=1> probLtoB;            // prob that reactivation/reinfection leads to Ab boosting 
  real<lower=0> S0;                           // fraction of the population not vertically infected 
  real<lower=0, upper=1> qcCMV;               // prob cCMV during acute infection of mother 
  real<lower=0> nu;                           // prob vertical transmission (including cCMV) 
  matrix<lower=0>[2, num_basis] a_raw;        // spline basis functions; 1 = female, 2 = male 
  vector<lower=0>[A] lambda_f;                // forces of infection on the age-intervals in females 
  vector<lower=0>[A] lambda_m;                // forces of infection on the age-intervals in males 
} 

Analysis

The transformed parameters block contains the specifications of the sex- and age-specific reactivation rates on age intervals,

and the age-specific fractions in the S, L, or B compartments at points of the age intervals:

/* reactivation rates on age intervals */ 
vector<lower=0>[DeltaA*A] rho_f;              // reactivation rate in females on intervals             
vector<lower=0>[DeltaA*A] rho_m;              // reactivation rate in females on intervals 
 
/* prevalence in S, L, and B at points of age intervals */ 
vector<lower=0, upper=1>[DeltaA*A+1] S_f;     // susceptible prevalence at points of intervals (female) 
vector<lower=0, upper=1>[DeltaA*A+1] S_m;     // susceptible prevalence at points of intervals (male) 
vector<lower=0, upper=1>[DeltaA*A+1] L_f;     // latently infected (female) 
vector<lower=0, upper=1>[DeltaA*A+1] L_m;     // latently infected (male) 
vector<lower=0, upper=1>[DeltaA*A+1] B_f;     // infected with boosted titers (female) 
vector<lower=0, upper=1>[DeltaA*A+1] B_m;     // infected with boosted titers (male) 

In addition, the transformed parameters block contains specifications of auxiliary parameters for efficient solution of the

discretised ODEs (see below), and forces of infection on the (broader) age intervals for which the contact matrix is specified:

/* auxiliary vectors to efficiently solve ODEs for S, L, and B */ 
vector<lower=0, upper=1>[DeltaA*A+1] X_f;     // boys latently infected at birth 
vector<lower=0, upper=1>[DeltaA*A+1] X_m;     // girls latently infected at birth 
vector<lower=0>[DeltaA*A+1] Y_f;              // =(L_f-X_f)/X_f ratio in L infected hor/vert 
vector<lower=0>[DeltaA*A+1] Y_m;              // =(L_m-X_m)/X_m 
 
/* lambda hat (i.e. the force of infection) should be very similar to lambda */ 
vector<lower=0>[A] lambda_hat_f; 
vector<lower=0>[A] lambda_hat_m; 

Next, the main steps are as follows:

https://press.princeton.edu/titles/9916.html
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First, the ODEs for the age- and sex-specific prevalence at equilbrium are solved in terms of the forces of infection and

other parameters. Details are available on request.

Second, the resulting equations are discretised on a fine-grained mesh (now 1 year), assuming that rate parameters (i.e.

reactivation rates) are constant on the intervals. The mesh can be made even more fine grained, or interpolations can be

used to make the likelihood contributions of the serological data more precise. In our experience, there is little additional

precision to be gained by such approaches. See below for code relating to the first two steps.

/* solution of the ODEs S, L, B, and intermediates X/Y in terms of the foi in females and males      */ 
/* X : perinatally infected and still in L                                                           */ 
/* Y : ratio of persons in L that are infected after birth (L-X) over those infected perinatally (X) */ 
   
S_f = S0 * exp(-cumulative_sum(append_row(Zero, longLambda_f))); 
S_m = S0 * exp(-cumulative_sum(append_row(Zero, longLambda_m))); 
 
X_f = (1.0 - S0) * exp(-cumulative_sum(append_row(Zero, probLtoB * longPi_f))); 
X_m = (1.0 - S0) * exp(-cumulative_sum(append_row(Zero, probLtoB * longPi_m))); 
   
Y_f = cumulative_sum(append_row(Zero, longLambda_f .* (S_f[:DeltaA*A] ./ X_f[:DeltaA*A])  
  .* (LongOnes - exp(-(longLambda_f - probLtoB * longPi_f))) ./ (longLambda_f - probLtoB * longPi_f))); 
Y_m = cumulative_sum(append_row(Zero, longLambda_m .* (S_m[:DeltaA*A] ./ X_m[:DeltaA*A])  
  .* (LongOnes - exp(-(longLambda_m - probLtoB * longPi_m))) ./ (longLambda_m - probLtoB * longPi_m))); 
 
L_f = X_f .* (Y_f + LlongOnes); 
L_m = X_m .* (Y_m + LlongOnes); 
 
B_f = LlongOnes - S_f - L_f; 
B_m = LlongOnes - S_m - L_m; 

Third, the discretised solutions for the prevalence in S, L, and B are inserted in the equations for the forces of infection,

while using the short-disease approximation (acute infections are 2-4 orders of magnitude shorter than human lifespan).

This procedure yields 32 (16 age groups, 2 sexes) non-linear equations for the forces of infection. See below for code:

/* new model (compared to mvb17) that splits between infectiousness from L vs B and enables estimation      
*/ 
/* of all parameters. It still may not entirely be biologically intuitive. A full model which distinguishes 
*/ 
/* between infectiousness after reactivation and re-infection and allows cycling in L and B would need at   
*/ 
/* least five infected classes.                                                                             
*/ 
for (a in 1 : A) { 
  aggr_S_f[a] = sum(longLambda_f[1+DeltaA*(a-1):DeltaA*a] .* S_f[1+DeltaA*(a-1):DeltaA*a]);  
  aggr_L_f[a] = sum((rho_f[1+DeltaA*(a-1):DeltaA*a] + z * longLambda_f[1+DeltaA*(a-1):DeltaA*a])  
                    .* L_f[1+DeltaA*(a-1):DeltaA*a]);  
  aggr_L_m[a] = sum((rho_m[1+DeltaA*(a-1):DeltaA*a] + z * longLambda_m[1+DeltaA*(a-1):DeltaA*a])  
                    .* L_m[1+DeltaA*(a-1):DeltaA*a]); 
  aggr_B_f[a] = sum((rho_f[1+DeltaA*(a-1):DeltaA*a] + z * longLambda_f[1+DeltaA*(a-1):DeltaA*a])  
                    .* B_f[1+DeltaA*(a-1):DeltaA*a]);  
  aggr_B_m[a] = sum((rho_m[1+DeltaA*(a-1):DeltaA*a] + z * longLambda_m[1+DeltaA*(a-1):DeltaA*a])  
                    .* B_m[1+DeltaA*(a-1):DeltaA*a]); 
} 
lambda_hat_f = Contact_FF * (beta1 * (S_f[ReduceIdxs] - S_f[ReduceIdxsRightShift]) + reducinf * beta2 * 
aggr_L_f + beta2 * aggr_B_f)  
             + Contact_FM * (beta1 * (S_m[ReduceIdxs] - S_m[ReduceIdxsRightShift]) + reducinf * beta2 * 
aggr_L_m + beta2 * aggr_B_m); 
lambda_hat_m = Contact_MM * (beta1 * (S_m[ReduceIdxs] - S_m[ReduceIdxsRightShift]) + reducinf * beta2 * 
aggr_L_m + beta2 * aggr_B_m)  
             + Contact_MF * (beta1 * (S_f[ReduceIdxs] - S_f[ReduceIdxsRightShift]) + reducinf * beta2 * 
aggr_L_f + beta2 * aggr_B_f); 

Finally, the equations for the forces of infection are solved, and the result is inserted in the solution of the ODEs. Here, the

above equations are solved (quite efficiently) using Stan. More precisely, taking our parameters of interest (lambda_f and

lambda_m) to be random variates, calculate the right-hand sides of the equations for the forces of infection (lambda_hat_f

and lambda_hat_m), and obtain approximate solutions by assuming that lambda_f and lambda_m are normally distributed

with means lambda_hat_f and lambda_hat_m and very small standard deviations (1/Penalty). The code in the parameters

block is as follows:

/* penalise the difference between lambda and lambda_hat/S0 and S0_hat to solve the equations           */ 
/* lambda_f - lambda_hat_f ~ normal(0,1/Penalty) does not work: do  target += log(det(Jacobian))        */ 
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/* future: use solver. I have tried this but now still seems prohibitively slow                         */ 
/* the formulation below can be viewed as a model in itself: A priori we would like to select parameter */ 
/* values that are compatible with a transmission model. Taking a high penalty, the result will match   */ 
/* the transmission model. For low penalty the result may differ from the transmission model.           */ 
/* Here, I have taken the penalty to be 10^4, which forces lambda and lambda_hat to be quite similar.   */ 
 
lambda_f ~ normal(lambda_hat_f, 1/Penalty);                 
lambda_m ~ normal(lambda_hat_m, 1/Penalty);                 

Priors and likelihood

Apart from the forces of infection and fraction of the population that is susceptible explicit prior distributions are provided for

the spline weights. Based on earlier analyses and the expectation that reactivation is a rare event, I take Gamma(2,50) prior

distributions for all weights, yielding prior expectations for the reactivation rates of 0.04 per year. In a sensitivity analysis I

have included a scenario in which reactivation is expected to be (much) more frequent (taking Gamma (10,20) prior

distributions), yielding prior expectations of the reactivation rates of 0.5 per year.

model {     
  /* spline weights for the reactivation rates */ 
  for (s in 1:num_basis) { 
   a_raw[,s] ~  gamma(2, 50);       // default, based on mvb17 and the premise that reactivation is rare 
   //a_raw[,s] ~  gamma(10, 20);    // alternative, assuming that reactivation may occur frequently 
  } 

Next, the likelihood contains contributions from the serological study and birth cohort. See our earlier anaylses and the code

below:

/* data set 1: serological data from PIENTER2 study */ 
for ( i in 1 : N ) {// loop over subjects 
   int aa; 
   real pS; real pL; real pB; 
       
   // improve readability 
 aa = Ages[i] + 1; // the index for S, L and B 
       
   // compute the compartment-probabilities given the subjects' age 
   if ( Gender[i] == 0 ) { // 0 = female 
      pS = S_f[aa]; 
      pL = L_f[aa]; 
      pB = B_f[aa]; 
   } 
   else { // 1 = male 
      pS = S_m[aa]; 
      pL = L_m[aa]; 
      pB = B_m[aa]; 
   } 
       
   // likelihood contributions 
   if ( Censor[i] == 0 ) { // normal data 
     target += watanabe_beta * log( pS * exp(normal_lpdf(Titers[i] | MuS, SigmaS)) + 
                                    pL * exp(normal_lpdf(Titers[i] | MuL, SigmaL)) + 
                                    pB * exp(normal_lpdf(Titers[i] | MuB, SigmaB)) ); //or log_exp_sum  
   } 
   else if ( Censor[i] == 1 ) { // right censored 
          target += watanabe_beta * log( pS * exp(normal_lccdf(RightCensor | MuS, SigmaS)) + 
                                         pL * exp(normal_lccdf(RightCensor | MuL, SigmaL)) + 
                                         pB * exp(normal_lccdf(RightCensor | MuB, SigmaB)) ); 
        } 
        else if ( Censor[i] == 2 ) { // spike 
               target += watanabe_beta * log(pS); 
             } 
} 
/* data set 2: cCMV cases from the CROCUS study (PhD thesis M Korndewal) */ 
target += watanabe_beta * binomial_lpmf(numbercCMVinfants | numbertestedinfants, pcCMV);  
} 

Results
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Results as presented in Rozhnova et al (2019) are obtained with the following Stan settings:

# estimate parameters with Stan
# main analysis with gamma(2,50) priors for spline weights
fit = stan(file = 'cmv_22082019.stan',  
           data = data_values,  
           init = parameter_inits,  
           iter = 2000,  
           warmup = 1000,  
           thin = 20,  
           chains = 20, 
           control = list(adapt_delta = 0.97, max_treedepth = 15) 
)

Running this may take a couple of hours, so let's load an earlier result (.rda file):

# Load the rda object 
load(file = "cmv_22082019.rda")

As a first check, I plot the traceplots of the main parameters:

The traceplots look reasonable, so I proceed.

Posterior quantiles of the main parameters also seem reasonable (compared to earlier analyses), effective sample sizes of all

parameters are around 1,000, and Rhat is close to 1 for all parameters. This is reassuring:

Inference for Stan model: cmv (18042019). 
20 chains, each with iter=2000; warmup=1000; thin=20;  
post-warmup draws per chain=50, total post-warmup draws=1000. 
 
          mean se_mean    sd  2.5%   25%   50%   75% 97.5% n_eff  Rhat 
beta1    0.003   0.000 0.003 0.000 0.001 0.002 0.004 0.010  1085 1.000 
beta2    0.020   0.000 0.005 0.013 0.017 0.020 0.023 0.032  1036 1.000 
z        0.446   0.008 0.278 0.029 0.203 0.420 0.666 0.953  1085 0.995 
S0       0.833   0.000 0.014 0.805 0.824 0.833 0.842 0.861  1065 0.998 
nu       0.369   0.001 0.030 0.311 0.349 0.370 0.389 0.429  1094 0.999 
qcCMV    0.172   0.001 0.038 0.106 0.143 0.168 0.194 0.254  1082 1.001 
probLtoB 0.495   0.003 0.114 0.315 0.418 0.476 0.558 0.760  1120 1.000 
 
Samples were drawn using NUTS(diag_e) at Thu Aug 22 17:26:08 2019. 
For each parameter, n_eff is a crude measure of effective sample size, 
and Rhat is the potential scale reduction factor on split chains (at  
convergence, Rhat=1). 

https://github.com/mvboven/cmv-vaccination/blob/master/figures/traces_default-1.png
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More checks can be done by inspection of derived parameters, i.e. the forces of infection and the reactivation rates in

selected age groups. Again, all seems well:

Inference for Stan model: cmv (18042019). 
20 chains, each with iter=2000; warmup=1000; thin=20;  
post-warmup draws per chain=50, total post-warmup draws=1000. 
 
              mean se_mean    sd  2.5%   25%   50%   75% 97.5% n_eff  Rhat 
lambda_f[1]  0.014   0.000 0.001 0.012 0.013 0.014 0.014 0.015  1125 1.005 
lambda_f[2]  0.016   0.000 0.001 0.014 0.016 0.016 0.017 0.018  1171 1.005 
lambda_f[3]  0.016   0.000 0.001 0.014 0.015 0.016 0.017 0.019  1153 0.997 
lambda_f[4]  0.014   0.000 0.001 0.012 0.013 0.014 0.014 0.016  1025 0.997 
lambda_f[5]  0.010   0.000 0.001 0.009 0.009 0.010 0.010 0.011   976 1.001 
lambda_f[6]  0.010   0.000 0.001 0.009 0.010 0.010 0.011 0.012  1050 1.005 
lambda_f[7]  0.012   0.000 0.001 0.011 0.011 0.012 0.012 0.013  1114 1.007 
lambda_f[8]  0.012   0.000 0.001 0.011 0.012 0.012 0.012 0.013  1139 1.007 
lambda_f[9]  0.012   0.000 0.001 0.010 0.011 0.011 0.012 0.013  1068 1.011 
lambda_f[10] 0.011   0.000 0.001 0.010 0.011 0.011 0.012 0.013  1021 1.004 
lambda_f[11] 0.011   0.000 0.001 0.009 0.010 0.011 0.011 0.012  1064 0.999 
lambda_f[12] 0.010   0.000 0.001 0.008 0.009 0.009 0.010 0.011  1141 0.999 
lambda_f[13] 0.009   0.000 0.001 0.008 0.008 0.009 0.010 0.011  1119 1.002 
lambda_f[14] 0.010   0.000 0.001 0.008 0.009 0.010 0.011 0.012  1099 1.000 
lambda_f[15] 0.009   0.000 0.001 0.007 0.008 0.008 0.009 0.011  1098 1.002 
lambda_f[16] 0.006   0.000 0.001 0.005 0.006 0.006 0.007 0.008  1100 1.000 
lambda_m[1]  0.012   0.000 0.001 0.011 0.012 0.012 0.012 0.013  1188 1.005 
lambda_m[2]  0.015   0.000 0.001 0.013 0.014 0.015 0.015 0.017  1218 1.006 
lambda_m[3]  0.013   0.000 0.001 0.012 0.013 0.013 0.014 0.015  1131 1.000 
lambda_m[4]  0.011   0.000 0.001 0.009 0.010 0.011 0.011 0.012  1030 0.997 
lambda_m[5]  0.008   0.000 0.000 0.007 0.007 0.008 0.008 0.009   909 1.001 
lambda_m[6]  0.008   0.000 0.001 0.007 0.008 0.008 0.009 0.009   929 1.002 
lambda_m[7]  0.010   0.000 0.001 0.009 0.010 0.010 0.010 0.011  1033 1.008 
lambda_m[8]  0.012   0.000 0.001 0.011 0.012 0.012 0.013 0.014  1055 1.007 
lambda_m[9]  0.011   0.000 0.001 0.010 0.011 0.011 0.012 0.013  1035 1.012 
lambda_m[10] 0.010   0.000 0.001 0.009 0.010 0.010 0.011 0.012  1003 1.005 
lambda_m[11] 0.010   0.000 0.001 0.008 0.009 0.010 0.010 0.011  1007 1.002 
lambda_m[12] 0.009   0.000 0.001 0.008 0.009 0.009 0.010 0.011  1056 1.000 
lambda_m[13] 0.011   0.000 0.001 0.009 0.010 0.011 0.011 0.013  1074 0.997 
lambda_m[14] 0.009   0.000 0.001 0.007 0.009 0.009 0.010 0.012  1131 0.999 
lambda_m[15] 0.008   0.000 0.001 0.006 0.008 0.008 0.009 0.011  1127 1.003 
lambda_m[16] 0.008   0.000 0.001 0.006 0.007 0.008 0.009 0.011  1155 1.005 
rho_f[25]    0.042   0.000 0.012 0.024 0.034 0.041 0.049 0.068   995 1.003 
rho_f[50]    0.059   0.000 0.016 0.033 0.048 0.057 0.069 0.095  1038 1.005 
rho_f[75]    0.049   0.001 0.019 0.021 0.035 0.047 0.060 0.092  1130 1.001 
rho_m[25]    0.023   0.000 0.008 0.011 0.018 0.022 0.028 0.042  1042 0.997 
rho_m[50]    0.025   0.000 0.008 0.011 0.019 0.024 0.029 0.043  1077 0.999 
rho_m[75]    0.038   0.000 0.015 0.013 0.027 0.036 0.048 0.072  1131 0.998 
 
Samples were drawn using NUTS(diag_e) at Thu Aug 22 17:26:08 2019. 
For each parameter, n_eff is a crude measure of effective sample size, 
and Rhat is the potential scale reduction factor on split chains (at  
convergence, Rhat=1). 

Pair plots of the main parameters uncover strong correlations between some parameters, and substantial differences in

precision of estimates. For instance, the reduction in susceptibiliy to re-infection as compared to primary infection (z) cannot

be estimated with any meaningful precision, while there is a strong correlation between the fraction of of the population that is

stil susceptible at 6 months (S0), and the probability of vertical transmission (nu):
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The above results make intuitive sense, and can be explained in biological terms.

It is convenient to have the maximum a posteriori (MAP) estimate at hand for forward simulations from the endemic

equilibrium. The MAP is also used to draw some of the figures in the manuscript:

# extract parameters
params = rstan::extract(fit) 
# max(params$lp__)
posmax <- as.numeric(which(params$lp__ == max(params$lp__))) 
MAP <- as.data.frame(fit)[posmax, c("beta1", 
                                    "beta2", 
                                    "z", 
                                    "S0", 
                                    "nu", 
                                    "probLtoB", 
                                    "qcCMV")]  
print(MAP, digits = 4)

      beta1   beta2      z     S0    nu probLtoB  qcCMV 
721 0.00677 0.01792 0.3779 0.8583 0.321    0.491 0.1384 

For model selection based on (approximations of) leave-one-out predictive performance, I use the loo package (see, e.g.,

https://mc-stan.org/loo/ and references on that page):

LL = extract_log_lik(fit, parameter_name = 'log_lik') 
loo(LL)

Warning: Relative effective sample sizes ('r_eff' argument) not specified. 
For models fit with MCMC, the reported PSIS effective sample sizes and  
MCSE estimates will be over-optimistic. 

 
Computed from 1000 by 5179 log-likelihood matrix 

https://github.com/mvboven/cmv-vaccination/blob/master/figures/pairs_default-1.png
https://mc-stan.org/loo/
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         Estimate    SE 
elpd_loo -11071.8 184.4 
p_loo         7.6   0.2 
looic     22143.6 368.8 
------ 
Monte Carlo SE of elpd_loo is 0.1. 
 
All Pareto k estimates are good (k < 0.5). 
See help('pareto-k-diagnostic') for details. 

Finally, let's visualise the estimated prevalence in females and males, as well as the reactivation rates. The estimated

prevalence are in good agreement with our earlier estimates (as they should). As in our earlier study, reactivation rate

estimates are generally higher in females than in males.

Female prevalence:

Male prevalence:

Reactivation rates:

https://github.com/mvboven/cmv-vaccination/blob/master/figures/prevalence_female_default-1.png
https://github.com/mvboven/cmv-vaccination/blob/master/figures/prevalence_male_default-1.png
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Sensitivity analysis

Speaking from experience, the results (i.e. parameter estimates) are remarkably robust to variations in the prior distributions.

In fact, explicit prior distributions are only specified for spline weights. The prior distributions for the weights do have a strong

impact on the parameter estimates. Therefore, I show results for an alternative scenario with higher (gamma(10,20)) prior

distributions for the splines weights. Results form the default scenario are removed, and an alternative scenario is loaded:

# Load the rda object 
rm(fit) 
rm(params) 
load(file = "high reactivation_10052019.rda") 
params = rstan::extract(fit)

Again, the traces, effective sample sizes, Rhat, and pairplots suggest that the fitting procedure has delivered good results:

Inference for Stan model: cmv (18042019). 
20 chains, each with iter=2000; warmup=1000; thin=20;  
post-warmup draws per chain=50, total post-warmup draws=1000. 
 

https://github.com/mvboven/cmv-vaccination/blob/master/figures/reactivation_default-1.png
https://github.com/mvboven/cmv-vaccination/blob/master/figures/traces_high-1.png
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          mean se_mean    sd  2.5%   25%   50%   75% 97.5% n_eff  Rhat 
beta1    0.003   0.000 0.003 0.000 0.001 0.002 0.004 0.011  1159 1.007 
beta2    0.002   0.000 0.000 0.001 0.001 0.002 0.002 0.002  1138 1.000 
z        0.485   0.009 0.291 0.023 0.223 0.493 0.728 0.980  1036 0.994 
S0       0.835   0.000 0.013 0.810 0.826 0.835 0.844 0.863  1082 0.996 
nu       0.364   0.001 0.028 0.305 0.346 0.366 0.382 0.419  1032 0.998 
qcCMV    0.017   0.000 0.003 0.012 0.015 0.017 0.018 0.023  1016 1.004 
probLtoB 0.039   0.000 0.004 0.031 0.036 0.038 0.041 0.048  1056 0.999 
 
Samples were drawn using NUTS(diag_e) at Thu May  9 18:39:18 2019. 
For each parameter, n_eff is a crude measure of effective sample size, 
and Rhat is the potential scale reduction factor on split chains (at  
convergence, Rhat=1). 

LOOIC suggests that the variant model has slightly higher statistical support:

LL = extract_log_lik(fit, parameter_name = 'log_lik') 
loo(LL)

Warning: Relative effective sample sizes ('r_eff' argument) not specified. 
For models fit with MCMC, the reported PSIS effective sample sizes and  
MCSE estimates will be over-optimistic. 

 
Computed from 1000 by 5179 log-likelihood matrix 
 
         Estimate    SE 
elpd_loo -11071.3 184.4 
p_loo         5.5   0.1 
looic     22142.7 368.8 
------ 
Monte Carlo SE of elpd_loo is 0.1. 
 
All Pareto k estimates are good (k < 0.5). 
See help('pareto-k-diagnostic') for details. 

https://github.com/mvboven/cmv-vaccination/blob/master/figures/pairs_high-1.png
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Next, as in the default scenario let's visualise the estimated prevalences in females and males, as well as the reactivation

rates.

Female prevalence:

Male prevalence:

Reactivation rates:

https://github.com/mvboven/cmv-vaccination/blob/master/figures/prevalence_female_high-1.png
https://github.com/mvboven/cmv-vaccination/blob/master/figures/prevalence_male_high-1.png
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Notice that there is very good correspondence for the prevalence in both sexes between the two scenarios, but that the

reactivation rate is much higher in the scenario with high spline priors. The increase in the reactivation rates is offset by a

concomitant decrease in the transmissibilities of primary infection and re-infection/reactivation (beta1 and beta2).

https://github.com/mvboven/cmv-vaccination/blob/master/figures/reactivation_high-1.png

