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Supplemental Tables and Figures

DESI-IMS LC-MS

888

Figure S1. Venn Diagram showing the number of conserved and unique features between LC-MS and
DESI-MS.

LC-MS acquisition settings:

Ligquid chromatography-mass spectrometry (LC-MS) experiments were performed on a Waters Synapt G2
HDMS (Milford, MA, USA) mass spectrometer equipped with a Waters nanoAcquity UPLC system and
autosampler (Milford, MA, USA). Metabolites were separated on a reverse phase 1 mm x 100 mm HSS T3
Cis column packed with 1.8-pym particles (Waters, Milford, MA, USA) held at 45°C. Liquid chromatography
was performed using a 30-min gradient at a flow rate of 75 yL min~" using mobile phase A (0.1% formic
acid in H20) and mobile phase B (0.1% formic acid in ACN). The following elution gradient was used for
analysis: 0 min, 99% A; 1 min, 99% A; 10 min, 40% A; 20 min, 1% A; 22 min, 1% A; 25 min, 99% A.

LC-MS analyses were run using high-resolution mode, with a capillary voltage of — 0.8 kV, source
temperature at 100°C, sample cone voltage at 30 V, extraction cone voltage at 5V, source gas flow of
400 mL min~', desolvation gas temperature of 325°C, and He cell flow of 180 mL min~'. The data were
acquired in negative ion mode from 50 to 1200 Da with a 1-s scan time; leucine enkephalin was used as
the lock mass (m/z 554.262). All analytes were analyzed using MSE with an energy ramp from 10 to 40 eV
and an injection volume of 5 L.
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Myxovirescin Phosphatidylglycerol (16:0/17:1)
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Figure S2. Fragmentation spectra of identified metabolites.

Table S1. Calculated values annotating sampling efficiency across methods (n=3).
Microporous

Sample Dried Agar Imprinting Membrane Scaffold
Average TIC 4.30x10° 9.84x10° 1.75x10°
Significant Fn;?tures (S/IN = 193 340 355
Average Intensity* 27x10% £14x103 57x10% £ 25x103 27x103 £ 5x103
Percent Covariance* 54.60% 44.10% 20.20%
Average S/N* 15.5 +10.6 110.3 + 49.65 77.1 +15.0

* Calculated using Dkxanthene-534, Dkxanthene-560, Myxovirescin A, lyso-PE 16:1, and PG 16:0/17:1
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Mass Spectra
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Figure S3. Average Mass Spectra of dried agar, imprinting, and microporous membrane scaffold sampling

methods. Intensities are shown with the internal standard and lock mass leucine-enkephalin (m/z 554.26)
intensity representing 100%.
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Optical Image Segmentation Output
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Figure S4. Biological replicates of unsupervised segmentation from MMS DESI-IMS. The ion image of the
primary contributing feature to each segment is shown across replicates with the segment denoted in
parentheses by color.
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Dereplication
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Figure S5. Natural product discovery workflow combining unsupervised segmentation and dereplication.
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Figure S6. Production of reported natural products Myxovirescin A and DKxanthene-560 in biological
replicates of WT and M. xanthus Ataf phase variants.
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Figure S7. Drift time vs relative intensity of WT and M. xanthus Ata7 phase variants.

Table S2. Observed features with regions resulting from unsupervised segmentation. Columns

correspond to: “t-statistic” value denoting their significance in the region, standard deviation of “t-statistic”

values across replicates (n=3), identification, molecular formula, adduct, mass accuracy in parts per

million (ppm), and normalized intensity.
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