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ABSTRACT

Ollivier-Ricci curvature is a method for measuring the robustness of connections in a network. In this work,
we use curvature to measure changes in robustness of brain networks in children with autism spectrum
disorder (ASD). In an open label clinical trials, participants with ASD were administered a single infusion
of autologous umbilical cord blood and, as part of their clinical outcome measures, were imaged with
diffusion MRI before and after the infusion. By using Ricci curvature to measure changes in robustness,
we quantified both local and global changes in the brain networks and their potential relationship with the
infusion. Our results find changes in the curvature of the connections between regions associated with
ASD that were not detected via traditional brain network analysis.

Supplemental Curvature Information

Introduction
Geometric techniques can be used to study the properties of complex networks, including as a method to
measure a network’s robustness to certain perturbations [1, 2, 3, 4, 5]. Curvature, for this task, is based on
the theory of optimal mass transport [6, 7]. First, note that the space of probability densities on a given
Riemannian manifold also inherits a natural Riemannian structure [8, 9, 10] for which changes in entropy and
Ricci curvature are positively correlated [11, 12]. In conjunction with the Fluctuation Theorem [13], we can
conclude that an increase in Ricci curvature is positively correlated with an increase in network robustness,
herein expressed as ∆Ric×∆R≥ 0. This is the key observation that we will exploit below. This observation
leads to a notion of curvature on the space of probability distributions on rather general metric measure
spaces.

There have been several notions of graph curvature proposed, including those based on the Bochner-
Weitzenböck decomposition of the Laplace operator [14] (Forman-Ricci curvature), and those based on
Bakry-Émery theory [5, 15]. In this work, we use the formulation of Ollivier [16] because of its direct link
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to the geometry of optimal mass transport, and therefore its link to entropy and network robustness. There
are several other properties of the Ollivier-Ricci curvature that make it attractive for studying the robustness
of networks. There is a direct correlation of changes in the rate function from large deviations theory
and Ollivier-Ricci curvature [1, 16]. Second, the Ollivier-Ricci curvature is a natural measure of feedback
connectivity. This is because the number of triangles in a network (redundant pathways) can be characterized
by an explicit lower bound based on Ollivier-Ricci curvature [17]. Similar to control theory, redundancy in
feedback is the main characteristic of a robust system architecture. Finally, positive Olliver-Ricci curvature
governs the rate of convergence to an invariant distribution on a weighted graph which is modeled as a
Markov chain. For these reasons, we chose to use the Ollivier-Ricci curvature for our analysis.

Ricci curvature and entropy
We briefly sketch the connection of curvature and entropy and curvature on a Riemannian manifold. Ac-
cordingly, let X denote a complete connected Riemannian manifold equipped with metric d. Ricci curvature
provides a way of measuring the degree to which the geometry determined by a given Riemannian metric
differs from that of ordinary Euclidean space [18]. The Ricci curvature tensor is obtained as the trace of
the sectional curvature [18], and a lower bound on Ricci curvature provides an estimate of the tendency
of geodesics to converge or diverge. Through the work of Lott-Sturm-Villani [11, 12], optimal transport
connects the bounds on Ricci curvature with entropy, as sketched out below.

First, let P(X) denote the space of probability densities with finite second moments on X . One can show
that P(X) also has a Riemannian structure [8, 10] via the Wasserstein metric W2 from optimal mass transport
theory (OMT). Next, for a probability measure µ ∈P(X), the Boltzmann entropy is defined as

H(µ) =−
∫

X
µ log µ dvol.

Lott, Sturm, and Villani [11, 12] found a very interesting connection between Ricci curvature and the
Boltzmann entropy via OMT. Namely, the Ricci curvature Ric≥ k if and only if the entropy functional is
displacement k-concave along the 2-Wasserstein geodesics, that is, for µ0,µ1 ∈P(X) we have

H(µt)≥ (1− t)H(µ0)+ tH(µ1)+ k
t(1− t)

2
W2(µ0,µ1)

2 ∀t ∈ [0,1], (1)

where (µt)0≤t≤1 is a 2-Wasserstein geodesic between µ0 and µ1. This inequality indicates the positive
correlation between changes in entropy and changes in curvature, which we denote as

∆H×∆Ric≥ 0.

Entropy and robustness
As previously mentioned, we are interested in the connection between robustness and the network entropy.
Informally, functional robustness is defined as the ability of a system to adapt to random perturbations in its
environment. This has been exploited in several works [1, 2, 3, 4] in order to employ changes in curvature as
a proxy for robustness. This has been extensively explored in the aforementioned papers, and so we will only
briefly describe the necessary results.

The starting point is the paper [13], in which the authors characterize robustness via the fluctuation decay
rate after random perturbations. Denote by pε(t), the probability that the deviation of the sample mean is
more than ε at time t from the original value. Following large deviations theory [19], the fluctuation decay
rate is defined as

R := lim
t→∞,ε→0

(−1
t

log pε(t)).



The larger the value of R, the faster the systems converges to a stationary state. The Fluctuation Theorem
[13] states that the changes in entropy and robustness are positively correlated:

∆H×∆R≥ 0. (2)

Combining (1) and (2) give a relationship which indicates the correlation of changes in curvature and
robustness:

∆R×∆Ric≥ 0. (3)

Thus changes in curvature serve as a measure of changes in system robustness. Positive changes indicate
increase in robustness, while negative changes indicate the increase in system fragility.

Wasserstein distance on discrete spaces
We will not need a general definition of the Wasserstein distance in defining the curvature, and so we will
suffice with a definition that applies to a weighted connected undirected graph G = (V,E) with n nodes (V )
and m edges (E). See [6, 7, 20] and the references therein for the details.

Given two probability densities ρ0,ρ1 ∈ Rn on the graph, the Kantorovich formulation of the optimal
transport problem [6, 7] seeks a joint distribution ρ ∈ Rn×n with marginals ρ0 and ρ1 minimizing the total
cost ∑ci jρi j:

WC(ρ
0,ρ1) = min

ρ

{
n

∑
i, j=1

ci jρi j | ∑
k

ρik = ρ
0
i , ∑

k
ρk j = ρ

1
j , ∀i, j

}
. (4)

Here, ci j is the cost of moving unit mass from node i to node j. If ci j is defined via some intrinsic distance on
G (e.g., the hop metric), the minimum of (4) defines a metric W1 (the Earth Mover’s Distance) on the space
probability densities on G.

An alternative formulation may be formulated via the fluxes u ∈ Rm on the edges. Letting D ∈ Rn×m

denote the oriented incidence matrix of G , we have

W1(ρ
0,ρ1) = min

u

{
m

∑
i=1
|ui| | ρ

0−ρ
1−Du = 0

}
.

The incidence matrix D = [dik]∈Rn×m is defined by associating an orientation to each edge ek = (i, j) = ( j, i)
of the graph: one of the nodes i, j is defined to be the head and the other the tail, and then we set dik =+1(−1)
if i is the head (tail) of ek and 0 otherwise. Compared to the Kantorovich formulation which has n2 variables,
the above formulation has only m variables. It may greatly reduce the computational load when the graph G
is sparse, i.e., m << n2 and is often the case in real data.

Olliver-Ricci curvature
In this section, we define the Ricci curvature on discrete networks. Specifically, we assume that our network
is presented by an undirected and positively weighted graph, G = (V,E), where V is the set of n vertices
(nodes) in the network and E is the set of all edges connecting them, with wxy > 0 denoting the weight of the
edge between node x and y. (If there is no edge connecting the two nodes, then wxy = 0.) We should note
that in our treatment above we connected curvature and entropy via W2, and now we will be using W1. This
technical point is discussed and justified in detail in [3].



Let dx := ∑z wxz, where the sum is taken over all nodes z in a neighborhood of x. At each node, we define
the probability measure

µx(y) :=
wxy

dx
.

Let d : V ×V → R+ denote an intrinsic metric on G, e.g., the hop distance. Then for any two distinct points
x,y ∈V , the Ollivier-Ricci (OR) curvature [16] is defined as

k(x,y) := 1−
W1(µx,µy)

d(x,y)
.

Using this edge based notion of curvature, we can define the scalar curvature at a given node by

ŜOR(x) := ∑
y

µx(y)k(x,y), (5)

where the sum is taken over all neighbors of x.
Given our above arguments, the positive correlation of robustness and curvature, we use curvature as a

proxy for robustness in our study of autism. Curvature can be defined either nodally (scalar) or relative to
edges (Ricci). Various advantages of using Ricci curvature in this framework are described in more detail in
[1].



Supplemental Figures
For the following figures, VABS: Vineland Adaptive Behavior Scales-II, EOW: Expressive One-Word Picture
Vocabulary Test, CGI: Clinical Global Impression Scales, TP1: time point 1 (initial clinical visit), TP2: time
point 2 (six months after the infusion).



Figure 1. Correlation between the ratio of edge curvature and difference in clinical scores



Figure 2. Correlation between the ratio of node curvature and difference in clinical scores
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