
APPENDIX

PD METHODS FOR SOLVING EQ. (7)

Algorithm 2 PD Algorithm for solving Eq. (7)

Input: Indicator vector α̂, hyperparameter τ , precision se-
quence {ε(b)}, and threshold εH .
Initialization: Choose any (βfeas, βfeas

0 ) ∈ S × R
and Υ ≥ max{fH(α̂,βfeas, βfeas

0 ),minβ0,γ q(β
feas, β0,γ)}

(where fH is defined in Eq. (2) and q in Eq. (8)). Let ρ0 > 0

and σ > 1 be arbitrarily chosen. Set b = 0 and β̃
(0)

= βfeas.
1: repeat . Beginning of PD
2: Solve Eq. (8) with ρ = ρ(b) by BCD (initialize s = 0):
3: repeat

3.1: Use IPM to solve Eq. (8) for β = β̃
(s)

, i.e.,
(β̃

(s+1)
0 , γ̃(s+1)) ∈ Argminβ0,γq(β̃

(s)
, β0,γ)

3.2: Solve Eq. (8) with β0 = β̃
(s+1)
0 and γ = γ̃(s+1):

{i1, . . . , ip} ← Sort indices of γ̃(s+1) s.t.
|γ̃(s+1)
ij

| ≥ |γ(s+1)
ij+1

|

β̃
(s+1)

i ←

{
γ̃

(s+1)
i , if i ∈ {i1, . . . , iτ}

0, otherwise
3.3: s← s+ 1

4: until
max

{
‖β̃(s+1)−β̃

(s)‖∞
max{‖β̃(s)‖∞,1}

,
|β̃(s+1)

0 −β̃(s)
0 |

max{|β̃(s)
0 |,1}

, ‖γ̃
(s+1)−γ̃(s)‖∞

max{‖γ̃(s)‖∞,1}

}
<ε(b)

5: Update β(b) ← β̃
(s)

, β(b)
0 ← β̃

(s)
0 , γ(b) ← γ̃(s)

6: Update ρ(b+1) ← σρ(b)

7: Update β̃
(0)
←
{
β(b), if minβ0,γ q(β

(b), β0,γ) ≤ Υ

βfeas, otherwise
8: b← b+ 1
9: until ‖β(b) − γ(b)‖∞ ≤ εH . Stopping Criteria

Output: (β̂, β̂0) = (β(b), β
(b)
0 )

Remarks to Algorithm 2: Each PD iteration performs another
BCD to approximate Eq. (8) until the stopping criterion (Step 4 in
Algorithm 2) is reached. Specifically, by first fixing β, Eq. (8)
simplifies to a convex optimization problem (Step 3.1 in the
Algorithm), which can be solved, for example, by the Interior
Point Method (IPM) [90]. Next, (β0,γ) is fixed and then Eq. (8)
becomes minβ

{
‖β − γ‖22 : ‖β‖0 ≤ τ

}
, which can be solved

in closed-form (i.e., Step 3.2 in Algorithm 2) according to [65,
Proposition 3.1] (also quoted in Section S1 of the Supplement).
The computational complexity of this problem is O(plog(p)).
Therefore, the computational cost of Algorithm 2 is

O(NPNB(CI(n, p) + plog(p))),

where CI(n, p) is the computational complexity of IPM for
`2-regularized logistic regression problems and NP (resp., NB)
is the maximum number of PD (resp., BCD) iterations. Note that
CI(n, p) can be different in various implementations but it is not
more than polynomial.

The following proposition derives the convergence of PD to a
local minimum.

Proposition A.1. Suppose that (β̂, β̂0) is an accumulation point
of the sequence {(β(b), β

(b)
0 )} generated by PD. Then (β̂, β̂0) is

a local minimum of Eq. (7).

Proof. Let x := (β, β0), X := Rp+1, J := {1, · · · , p} and
f(x) := fH(α̂, x) = l(α̂, x) + λ

2 ‖xJ‖
2
2. Then, X is a closed

convex set and f : Rp+1 → R is a continuously differentiable
function. Moreover, f is convex and any level set XΥ := {x ∈
X : f(x) ≤ Υ} is compact. Define x̂ := (β̂, β̂0) and r := τ then
the Robinson condition [65, Theorem 2.1] (see also Section S1 of
the Supplement) holds at x̂. It then follows from Theorem 4.3 of
[65] that x̂ is a local minimum of Eq. (7).

P-BCD METHODS FOR SOLVING EQ. (9)

Algorithm 3 P-BCD Algorithm for solving Eq. (9)

Input: Indicator vector α̂, hyperparameters λ and r, precision
sequence {ε(b)}, and threshold εP .
Initialization: Choose β(0), 0 < Lmin < Lmax, ν > 1,
c > 0 and integer N ≥ 0 arbitrarily. Set b = 0 and
f (0) =∞.

1: repeat . Beginning of BCD
2: Use simplex search to solve Eq. (10) with β = β(b), i.e.,

β
(b+1)
0 ← argminβ0 l(α̂,β

(b), β0)

3: Solve Eq. (11) with β0 = β
(b+1)
0 and β̃

(0)
= β(b) via NPG

(initialize s = 0):
4: repeat

Choose any L(s) ∈ [Lmin,Lmax]
5: repeat

5.1: g(s) = β̃
(s) − Oβl(α̂, β̃

(s)
, β

(b+1)
0 )/L(s)

5.2: {i1, . . . , ip} ← Sort g(s), s. t. |g(s)ij | ≤ |g
(s)
ij+1
|

5.3: β̃
(s+1)

i ←


sign(g

(s)
i )max(|g(s)i | − λ/L

(s), 0),

if i ∈ {i1, . . . , ip−r}
g
(s)
i , otherwise

5.4: L(s) ← νL(s)

5.5: f (s+1) ← fP (α̂, β̃
(s+1)

, β
(b+1)
0 ) (as in Eq. (4))

6: until f (s+1) ≤ max
max(s−N,0)≤j≤s

f (j)− c
2
‖β̃(s+1)−β̃(s)‖22

7: s← s+ 1

8: until ‖Oβl(α̂, β̃
(s)
, β

(b+1)
0 )− Oβl(α̂, β̃

(s−1)
, β

(b+1)
0 )

−L(s−1)(β̃
(s) − β̃

(s−1)
)‖∞ < ε(b)

9: Update β(b+1) ← β̃
(s)

10: Update b← b+ 1
11: until min{|f (s) − fP (α̂,β(b−1), β

(b−1)
0 )|/|f (s)|, |f (s)|} ≤ εP

Output: (β̂, β̂0) = (β(b), β
(b)
0 )

Remarks to Algorithm 3: P-BCD solves Eq. (9) by iterating be-
tween updating β0 via the simplex search approach and β via the
Nonmonotone Proximal Gradient (NPG) method. At each iteration
of P-BCD, NPG (Steps 3-8) updates β by iteratively determining
the solution to Eq. (11) until the stopping criterion (i.e., the
convergence with respect to β, Step 8) is reached. At each iteration
of NPG, the method estimates β̃

(s+1)
by minimizing a proximal

function l(α̂, β̃
(s)
, β

(b+1)
0 )+Oβl(α̂, β̃

(s)
, β

(b+1)
0 )T (β−β̃

(s)
)+

L(s)

2 ‖β− β̃
(s)
‖22 + λ‖β‖(r)1 with Oβl(·, ·, ·) denoting the partial

derivative of l(·, ·, ·) with respect to β and Oβl(α,β, β0) =
−
∑n
i=1 αiyixi(1 + exp(yi(β

>xi +β0)))−1. According to [48,
Theorem 5.5] (quoted also in Section S1 of the Supplement),
this problem has a closed-form solution (i.e., Step 5.3). The
computational complexity of this problem is O(p(n + log(p))).

The method updates the current estimate of β̃
(s+1)

(Step 5.3) until
the acceptance criterion (Step 6) is reached, that is, the current
objective is slightly smaller than the largest objective from the last
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N iterations. Consequently, the computational cost of Algorithm
3 is

O(NBp(n(NS +n) + (n+ log(p))(log L̄− logLmin)/ log ν)),

where L̄ = max{Lmax, νL, ν(1 + c)} for some L > 0 and
NB (resp., NS) is the maximum number of BCD iterations (resp.,
Nelder–Mead search steps).

The convergence of the P-BCD method to a local minimum
of Eq. (9) is established in Theorem 2.2, which relies on the as-
sumptions that β0

(b+1) is an optimal solution of Eq. (10) and that
β(b+1) is a local minimum of Eq. (11). Since the simplex search
method converges to the optimal solution of Eq. (10) according to
[66, Theorem 4.1] (see also Section S1 of the Supplement), the
former assumption is satisfied trivially. We next show that P-BCD
fulfills the latter assumption, namely, NPG converges to a local
minimum of Eq. (11).

Proposition A.2. Suppose that β̃ is an accumulation point of the
sequence {β̃

(s)
} generated by NPG for Eq. (11). Then β̃ is a local

minimum of Eq. (11).

Proof. We first show that β̃ is a first-order stationary point
(defined as in [48, Definition 4] or Section S1 of the Supplement)
of Eq. (11) and then a local minimum of Eq. (11).

To show that β̃ is a first-order stationary point, note that
l(α̂, ·, β(b+1)

0 ) is a continuously differentiable function on
Rp. Moreover, fP (α̂, ·, β(b+1)

0 ) = l(α̂, ·, β(b+1)
0 ) + λ‖ · ‖(r)1

is bounded below and uniformly continuous on any level set
S(β̌) := {β ∈ Rp : fP (α̂,β, β

(b+1)
0 ) ≤ fP (α̂, β̌, β

(b+1)
0 )}.

By directly applying [48, Theorem 5.2] (see also Section S1
of the Supplement) to Eq. (11) with f(·) = l(α̂, ·, β(b+1)

0 ),
F (·) = fP (α̂, ·, β(b+1)

0 ), Φ(·) = ‖ · ‖(r)1 , Lf = 1, A = 1 and
B = F (β̌), then β̃ is a first-order stationary point of Eq. (11),
i.e.,

0 ∈ Oβl(α̂, β̃, β
(b+1)
0 ) + λ ∂Φ(β̃), (25)

where ∂Φ(β̃) = {γ : γT (β − β̃) ≤ Φ(β)− Φ(β̃),∀β ∈ Rp}
denotes the subdifferential of Φ at β̃.

Now to show that β̃ is a local minimum of Eq. (11), let
N (β̃, ε) = {β : ‖β − β̃‖∞ < ε} be a neighbourhood of β̃
and β̄ ∈ N (β̃, ε) be arbitrarily chosen. From Eq. (25), we know
that

− 1

λ
Oβl(α̂, β̃, β

(b+1)
0 ) ∈ ∂Φ(β̃),

which along with the definition of ∂Φ(β̃) yields that

− 1

λ
Oβl(α̂, β̃, β

(b+1)
0 )T (β̄ − β̃) ≤ Φ(β̄)− Φ(β̃).

Using this relation, λ ≥ 0 and the convexity of l(α̂, ·, β(b+1)
0 ),

we further have

fP (α̂, β̄, β
(b+1)
0 ) = l(α̂, β̄, β

(b+1)
0 ) + λΦ(β̄)

≥ l(α̂, β̄, β(b+1)
0 )− Oβl(α̂, β̃, β

(b+1)
0 )T (β̄ − β̃) + λΦ(β̃)

≥ l(α̂, β̃, β(b+1)
0 ) + Oβl(α̂, β̃, β

(b+1)
0 )T (β̄ − β̃)

− Oβl(α̂, β̃, β
(b+1)
0 )T (β̄ − β̃) + λΦ(β̃)

= l(α̂, β̃, β
(b+1)
0 ) + λΦ(β̃) = fP (α̂, β̃, β

(b+1)
0 ),

where the second inequality is due to the convexity of
l(α̂, ·, β(b+1)

0 ) on Rp. Given our choice of β̄, it thus implies that
β̃ is a local minimum of Eq. (11).
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