APPENDIX

PD METHODS FOR SOLVING EQ. (7)

Algorithm 2 PD Algorithm for solving Eq. (7)

Input: Indicator vector $\hat{\alpha}$, hyperparameter τ , precision sequence $\{\epsilon^{(b)}\}$, and threshold ϵ_H . **Initialization:** Choose any $(\beta^{\text{feas}}, \beta_0^{\text{feas}}) \in \mathbb{S} \times \mathbb{R}$ and $\Upsilon \ge \max\{f_H(\hat{\alpha}, \beta^{\text{feas}}, \beta_0^{\text{feas}}), \min_{\beta_0, \gamma} q(\beta^{\text{feas}}, \beta_0, \gamma)\}$ (where f_H is defined in Eq. (2) and q in Eq. (8)). Let $\rho_0 > 0$ and $\sigma > 1$ be arbitrarily chosen. Set b = 0 and $\tilde{\beta}^{(0)} = \beta^{\text{feas}}$. 1: repeat ▷ Beginning of PD Solve Eq. (8) with $\rho = \rho^{(b)}$ by BCD (initialize s = 0): 2: repeat 3: $\tilde{\boldsymbol{\beta}}_{0}^{(s+1)}, \tilde{\boldsymbol{\gamma}}^{(s+1)}) \in \operatorname{Argmin}_{\boldsymbol{\beta}_{0},\boldsymbol{\gamma}}q(\tilde{\boldsymbol{\beta}}^{(s)}, i.e., (\tilde{\boldsymbol{\beta}}_{0}^{(s+1)}, \tilde{\boldsymbol{\gamma}}^{(s+1)}) \in \operatorname{Argmin}_{\boldsymbol{\beta}_{0},\boldsymbol{\gamma}}q(\tilde{\boldsymbol{\beta}}^{(s)}, \boldsymbol{\beta}_{0}, \boldsymbol{\gamma})$ 3.2: Solve Eq. (8) with $\boldsymbol{\beta}_{0} = \tilde{\boldsymbol{\beta}}_{0}^{(s+1)}$ and $\boldsymbol{\gamma} = \tilde{\boldsymbol{\gamma}}^{(s+1)}$: $\{i_{1}, \ldots, i_{p}\} \leftarrow \text{Sort indices of } \tilde{\boldsymbol{\gamma}}^{(s+1)} \text{ s.t.} |\tilde{\boldsymbol{\gamma}}_{i_{j}}^{(s+1)}| \geq |\boldsymbol{\gamma}_{i_{j+1}}^{(s+1)}|$ $\tilde{\boldsymbol{\beta}}_{i}^{(s+1)} \leftarrow \begin{cases} \tilde{\boldsymbol{\gamma}}_{i}^{(s+1)}, \text{ if } i \in \{i_{1}, \ldots, i_{\tau}\} \\ 0, \text{ otherwise} \end{cases}$ 3.3: $s \leftarrow s + 1$ $\begin{array}{l} \begin{array}{l} \text{until} \\ \max\left\{ \frac{\|\tilde{\boldsymbol{\beta}}^{(s+1)} - \tilde{\boldsymbol{\beta}}^{(s)}\|_{\infty}}{\max\{\|\tilde{\boldsymbol{\beta}}^{(s)}\|_{\infty,1}\}}, \frac{|\tilde{\boldsymbol{\beta}}^{(s+1)} - \tilde{\boldsymbol{\beta}}^{(s)}_{0}|}{\max\{\|\tilde{\boldsymbol{\beta}}^{(s)}\|_{\infty,1}\}}, \frac{\|\tilde{\boldsymbol{\gamma}}^{(s+1)} - \tilde{\boldsymbol{\gamma}}^{(s)}\|_{\infty}}{\max\{\|\tilde{\boldsymbol{\gamma}}^{(s)}\|_{\infty,1}\}}\right\} < \epsilon^{(b)} \\ \text{Update } \boldsymbol{\beta}^{(b)} \leftarrow \tilde{\boldsymbol{\beta}}^{(s)}, \boldsymbol{\beta}^{(b)}_{0} \leftarrow \tilde{\boldsymbol{\beta}}^{(s)}_{0}, \boldsymbol{\gamma}^{(b)} \leftarrow \tilde{\boldsymbol{\gamma}}^{(s)} \\ \text{Update } \rho^{(b+1)} \leftarrow \sigma\rho^{(b)} \\ \text{Update } \tilde{\boldsymbol{\beta}}^{(0)} \leftarrow \begin{cases} \boldsymbol{\beta}^{(b)}, \text{ if } \min_{\beta_{0}, \boldsymbol{\gamma}} q(\boldsymbol{\beta}^{(b)}, \beta_{0}, \boldsymbol{\gamma}) \leq \boldsymbol{\Upsilon} \\ \boldsymbol{\beta}^{\text{feas}}, \text{ otherwise} \end{cases} \end{array}$ until 4: 5: 6: 7: 8: $b \leftarrow b + 1$ 9: **until** $\|\boldsymbol{\beta}^{(b)} - \boldsymbol{\gamma}^{(b)}\|_{\infty} \leq \epsilon_H$ **Output:** $(\hat{\boldsymbol{\beta}}, \hat{\boldsymbol{\beta}}_0) = (\boldsymbol{\beta}^{(b)}, \boldsymbol{\beta}_0^{(b)})$ ▷ Stopping Criteria

Remarks to Algorithm 2: Each PD iteration performs another BCD to approximate Eq. (8) until the stopping criterion (Step 4 in Algorithm 2) is reached. Specifically, by first fixing β , Eq. (8) simplifies to a convex optimization problem (Step 3.1 in the Algorithm), which can be solved, for example, by the Interior Point Method (IPM) [90]. Next, (β_0, γ) is fixed and then Eq. (8) becomes $\min_{\beta} \{ \|\beta - \gamma\|_2^2 : \|\beta\|_0 \le \tau \}$, which can be solved in closed-form (*i.e.*, Step 3.2 in Algorithm 2) according to [65, Proposition 3.1] (also quoted in Section S1 of the Supplement). The computational complexity of this problem is $O(p\log(p))$.

$$O(N_P N_B(C_I(n, p) + p\log(p))),$$

where $C_I(n, p)$ is the computational complexity of IPM for ℓ_2 -regularized logistic regression problems and N_P (resp., N_B) is the maximum number of PD (resp., BCD) iterations. Note that $C_I(n, p)$ can be different in various implementations but it is not more than polynomial.

The following proposition derives the convergence of PD to a local minimum.

Proposition A.1. Suppose that $(\hat{\beta}, \hat{\beta}_0)$ is an accumulation point of the sequence $\{(\beta^{(b)}, \beta_0^{(b)})\}$ generated by PD. Then $(\hat{\beta}, \hat{\beta}_0)$ is a local minimum of Eq. (7).

Proof. Let $x := (\beta, \beta_0), \mathcal{X} := \mathbb{R}^{p+1}, J := \{1, \cdots, p\}$ and $f(x) := f_H(\widehat{\alpha}, x) = l(\widehat{\alpha}, x) + \frac{\lambda}{2} \|x_J\|_2^2$. Then, \mathcal{X} is a closed

convex set and $f : \mathbb{R}^{p+1} \to \mathbb{R}$ is a continuously differentiable function. Moreover, f is convex and any level set $\mathcal{X}_{\Upsilon} := \{x \in \mathcal{X} : f(x) \leq \Upsilon\}$ is compact. Define $\hat{x} := (\hat{\beta}, \hat{\beta}_0)$ and $r := \tau$ then the Robinson condition [65, Theorem 2.1] (see also Section S1 of the Supplement) holds at \hat{x} . It then follows from Theorem 4.3 of [65] that \hat{x} is a local minimum of Eq. (7).

P-BCD METHODS FOR SOLVING EQ. (9)

Algorithm 3 P-BCD Algorithm for solving Eq. (9) **Input:** Indicator vector $\hat{\boldsymbol{\alpha}}$, hyperparameters λ and r, precision sequence $\{\epsilon^{(b)}\}$, and threshold ϵ_P . **Initialization:** Choose $\beta^{(0)}$, $0 < \mathcal{L}_{\min} < \mathcal{L}_{\max}$, $\nu > 1$, c > 0 and integer $N \geq 0$ arbitrarily. Set b = 0 and $f^{(0)} = \infty.$ ▷ Beginning of BCD 1: repeat Use simplex search to solve Eq. (10) with $\boldsymbol{\beta} = \boldsymbol{\beta}^{(b)}, i.e., \beta_0^{(b+1)} \leftarrow \operatorname{argmin}_{\beta_0} l(\hat{\boldsymbol{\alpha}}, \boldsymbol{\beta}^{(b)}, \beta_0)$ 2: Solve Eq. (11) with $\beta_0 = \beta_0^{(b+1)}$ and $\tilde{\boldsymbol{\beta}}^{(0)} = \boldsymbol{\beta}^{(b)}$ via NPG 3: (initialize s = 0): 4: repeat Choose any $\mathcal{L}^{(s)} \in [\mathcal{L}_{\min}, \mathcal{L}_{\max}]$
$$\begin{split} & \text{repeat} \\ & 5.1: g^{(s)} = \tilde{\boldsymbol{\beta}}^{(s)} - \nabla \beta l(\hat{\boldsymbol{\alpha}}, \tilde{\boldsymbol{\beta}}^{(s)}, \beta_0^{(b+1)}) / \mathcal{L}^{(s)} \\ & 5.2: \{i_1, \dots, i_p\} \leftarrow \text{Sort } g^{(s)}, \text{ s. t. } |g_{i_j}^{(s)}| \leq |g_{i_{j+1}}^{(s)}| \\ & 5.3: \tilde{\boldsymbol{\beta}}_i^{(s+1)} \leftarrow \begin{cases} \text{sign}(g_i^{(s)}) \max(|g_i^{(s)}| - \lambda / \mathcal{L}^{(s)}, 0), \\ \text{if } i \in \{i_1, \dots, i_{p-r}\} \\ g_i^{(s)}, \text{ otherwise} \end{cases} \\ & 5.4: \mathcal{L}^{(s)} \leftarrow \nu \mathcal{L}^{(s)} \\ & 5.5: f^{(s+1)} \leftarrow f_P(\widehat{\boldsymbol{\alpha}}, \widetilde{\boldsymbol{\beta}}^{(s+1)}, \beta_0^{(b+1)}) \text{ (as in Eq. (4))} \\ & \text{until } f^{(s+1)} \leq \max_{\max(s-N,0) \leq j \leq s} f^{(j)} - \frac{c}{2} \| \widetilde{\boldsymbol{\beta}}^{(s+1)} - \widetilde{\boldsymbol{\beta}}^{(s)} \|_2^2 \end{split}$$
5: repeat 6:
$$\begin{split} s &\leftarrow s+1 \\ \mathbf{until} \|\nabla_{\boldsymbol{\beta}} l(\hat{\boldsymbol{\alpha}}, \tilde{\boldsymbol{\beta}}^{(s)}, \beta_0^{(b+1)}) - \nabla_{\boldsymbol{\beta}} l(\hat{\boldsymbol{\alpha}}, \tilde{\boldsymbol{\beta}}^{(s-1)}, \beta_0^{(b+1)}) \\ &- \mathcal{L}^{(s-1)}(\tilde{\boldsymbol{\beta}}^{(s)} - \tilde{\boldsymbol{\beta}}^{(s-1)}) \|_{\infty} < \epsilon^{(b)} \\ Update \ \boldsymbol{\beta}^{(b+1)} \leftarrow \tilde{\boldsymbol{\beta}}^{(s)} \end{split}$$
7: 8: 9: Update $b \leftarrow b + 1$ 10: 11: **until** min{ $|f^{(s)} - f_P(\widehat{\alpha}, \boldsymbol{\beta}^{(b-1)}, \beta_0^{(b-1)})| / |f^{(s)}|, |f^{(s)}|$ } $\leq \epsilon_P$ **Output:** $(\widehat{\boldsymbol{\beta}}, \widehat{\boldsymbol{\beta}}_0) = (\boldsymbol{\beta}^{(b)}, \beta_0^{(b)})$

Remarks to Algorithm 3: P-BCD solves Eq. (9) by iterating between updating β_0 via the simplex search approach and β via the Nonmonotone Proximal Gradient (NPG) method. At each iteration of P-BCD, NPG (Steps 3-8) updates β by iteratively determining the solution to Eq. (11) until the stopping criterion (*i.e.*, the convergence with respect to β , Step 8) is reached. At each iteration of NPG, the method estimates $\tilde{\beta}^{(s+1)}$ by minimizing a proximal function $l(\hat{\alpha}, \tilde{\beta}^{(s)}, \beta_0^{(b+1)}) + \nabla_{\beta} l(\hat{\alpha}, \tilde{\beta}^{(s)}, \beta_0^{(b+1)})^T (\beta - \tilde{\beta}^{(s)}) + \frac{\mathcal{L}_2^{(s)}}{2} ||\beta - \tilde{\beta}^{(s)}||_2^2 + \lambda ||\beta||_1^{(r)}$ with $\nabla_{\beta} l(\cdot, \cdot, \cdot)$ denoting the partial derivative of $l(\cdot, \cdot, \cdot)$ with respect to β and $\nabla_{\beta} l(\alpha, \beta, \beta_0) = -\sum_{i=1}^n \alpha_i y_i \mathbf{x}_i (1 + \exp(y_i (\beta^\top \mathbf{x}_i + \beta_0)))^{-1}$. According to [48, Theorem 5.5] (quoted also in Section S1 of the Supplement), this problem has a closed-form solution (*i.e.*, Step 5.3). The computational complexity of this problem is $O(p(n + \log(p)))$. The method updates the current estimate of $\tilde{\beta}^{(s+1)}$ (Step 5.3) until the acceptance criterion (Step 6) is reached, that is, the current objective is slightly smaller than the largest objective from the last N iterations. Consequently, the computational cost of Algorithm 3 is

$$O(N_B p(n(N_S + n) + (n + \log(p))(\log L - \log \mathcal{L}_{\min}) / \log \nu)),$$

where $\overline{L} = \max\{\mathcal{L}_{\max}, \nu \underline{L}, \nu(1+c)\}$ for some $\underline{L} > 0$ and N_B (resp., N_S) is the maximum number of BCD iterations (resp., Nelder-Mead search steps).

The convergence of the P-BCD method to a local minimum of Eq. (9) is established in Theorem 2.2, which relies on the assumptions that $\beta_0^{(b+1)}$ is an optimal solution of Eq. (10) and that $\beta^{(b+1)}$ is a local minimum of Eq. (11). Since the simplex search method converges to the optimal solution of Eq. (10) according to [66, Theorem 4.1] (see also Section S1 of the Supplement), the former assumption is satisfied trivially. We next show that P-BCD fulfills the latter assumption, namely, NPG converges to a local minimum of Eq. (11).

Proposition A.2. Suppose that $\tilde{\beta}$ is an accumulation point of the sequence $\{\tilde{\boldsymbol{\beta}}^{(s)}\}$ generated by NPG for Eq. (11). Then $\tilde{\boldsymbol{\beta}}$ is a local minimum of Eq. (11).

Proof. We first show that $\tilde{\boldsymbol{\beta}}$ is a first-order stationary point (defined as in [48, Definition 4] or Section S1 of the Supplement) of Eq. (11) and then a local minimum of Eq. (11).

To show that $\hat{\beta}$ is a first-order stationary point, note that It show that β is a insteader stationary point, note that $l(\hat{\alpha}, \cdot, \beta_0^{(b+1)})$ is a continuously differentiable function on \mathbb{R}^p . Moreover, $f_P(\hat{\alpha}, \cdot, \beta_0^{(b+1)}) = l(\hat{\alpha}, \cdot, \beta_0^{(b+1)}) + \lambda \| \cdot \|_1^{(r)}$ is bounded below and uniformly continuous on any level set $\mathcal{S}(\check{\beta}) := \{\beta \in \mathbb{R}^p : f_P(\hat{\alpha}, \beta, \beta_0^{(b+1)}) \le f_P(\hat{\alpha}, \check{\beta}, \beta_0^{(b+1)})\}.$ By directly applying [48, Theorem 5.2] (see also Section S1 of the Supplement) to Eq. (11) with $f(\cdot) = l(\hat{\alpha}, \cdot, \beta_0^{(b+1)})$, $F(\cdot) = f_P(\hat{\alpha}, \cdot, \beta_0^{(b+1)}), \Phi(\cdot) = \|\cdot\|_1^{(r)}, L_f = 1, A = 1 \text{ and}$ $B = F(\check{\beta})$, then $\check{\beta}$ is a first-order stationary point of Eq. (11),

i.e.,

$$\mathbf{0} \in \nabla_{\boldsymbol{\beta}} l(\hat{\boldsymbol{\alpha}}, \tilde{\boldsymbol{\beta}}, \beta_0^{(b+1)}) + \lambda \ \partial \Phi(\tilde{\boldsymbol{\beta}}), \tag{25}$$

where $\partial \Phi(\tilde{\boldsymbol{\beta}}) = \{\gamma : \gamma^T (\boldsymbol{\beta} - \tilde{\boldsymbol{\beta}}) \leq \Phi(\boldsymbol{\beta}) - \Phi(\tilde{\boldsymbol{\beta}}), \forall \boldsymbol{\beta} \in \mathbb{R}^p \}$ denotes the subdifferential of Φ at $\tilde{\beta}$.

Now to show that $\hat{\beta}$ is a local minimum of Eq. (11), let $\mathcal{N}(\tilde{\boldsymbol{\beta}},\epsilon) = \{\boldsymbol{\beta} : \|\boldsymbol{\beta} - \tilde{\boldsymbol{\beta}}\|_{\infty} < \epsilon\}$ be a neighbourhood of $\tilde{\boldsymbol{\beta}}$ and $\bar{\beta} \in \mathcal{N}(\tilde{\beta}, \epsilon)$ be arbitrarily chosen. From Eq. (25), we know that

$$-rac{1}{\lambda}
abla_{oldsymbol{eta}}l(\widehat{oldsymbol{lpha}},\widetilde{oldsymbol{eta}},eta_{0}^{(b+1)})\in\partial\Phi(\widetilde{oldsymbol{eta}}),$$

which along with the definition of $\partial \Phi(\tilde{\beta})$ yields that

$$-\frac{1}{\lambda} \nabla_{\boldsymbol{\beta}} l(\hat{\boldsymbol{\alpha}}, \tilde{\boldsymbol{\beta}}, \beta_0^{(b+1)})^T (\bar{\boldsymbol{\beta}} - \tilde{\boldsymbol{\beta}}) \le \Phi(\bar{\boldsymbol{\beta}}) - \Phi(\tilde{\boldsymbol{\beta}}).$$

Using this relation, $\lambda \geq 0$ and the convexity of $l(\hat{\alpha}, \cdot, \beta_0^{(b+1)})$, we further have

$$\begin{split} f_{P}(\widehat{\boldsymbol{\alpha}}, \overline{\boldsymbol{\beta}}, \beta_{0}^{(b+1)}) &= l(\widehat{\boldsymbol{\alpha}}, \overline{\boldsymbol{\beta}}, \beta_{0}^{(b+1)}) + \lambda \Phi(\overline{\boldsymbol{\beta}}) \\ \geq l(\widehat{\boldsymbol{\alpha}}, \overline{\boldsymbol{\beta}}, \beta_{0}^{(b+1)}) - \nabla_{\boldsymbol{\beta}} l(\widehat{\boldsymbol{\alpha}}, \widetilde{\boldsymbol{\beta}}, \beta_{0}^{(b+1)})^{T} (\overline{\boldsymbol{\beta}} - \widetilde{\boldsymbol{\beta}}) + \lambda \Phi(\widetilde{\boldsymbol{\beta}}) \\ \geq l(\widehat{\boldsymbol{\alpha}}, \widetilde{\boldsymbol{\beta}}, \beta_{0}^{(b+1)}) + \nabla_{\boldsymbol{\beta}} l(\widehat{\boldsymbol{\alpha}}, \widetilde{\boldsymbol{\beta}}, \beta_{0}^{(b+1)})^{T} (\overline{\boldsymbol{\beta}} - \widetilde{\boldsymbol{\beta}}) \\ &- \nabla_{\boldsymbol{\beta}} l(\widehat{\boldsymbol{\alpha}}, \widetilde{\boldsymbol{\beta}}, \beta_{0}^{(b+1)})^{T} (\overline{\boldsymbol{\beta}} - \widetilde{\boldsymbol{\beta}}) + \lambda \Phi(\widetilde{\boldsymbol{\beta}}) \\ &= l(\widehat{\boldsymbol{\alpha}}, \widetilde{\boldsymbol{\beta}}, \beta_{0}^{(b+1)}) + \lambda \Phi(\widetilde{\boldsymbol{\beta}}) = f_{P}(\widehat{\boldsymbol{\alpha}}, \widetilde{\boldsymbol{\beta}}, \beta_{0}^{(b+1)}), \end{split}$$

where the second inequality is due to the convexity of $l(\widehat{\alpha}, \cdot, \beta_0^{(b+1)})$ on \mathbb{R}^p . Given our choice of $\overline{\beta}$, it thus implies that β is a local minimum of Eq. (11).