APPENDIX

PD METHODS FOR SOLVING EQ. [\(7\)](#page--1-0)

Algorithm 2 PD Algorithm for solving Eq. [\(7\)](#page--1-0)

Input: Indicator vector $\hat{\alpha}$, hyperparameter τ , precision sequence $\{\epsilon^{(b)}\}$, and threshold ϵ_H . **Initialization:** Choose any $(\beta^{\text{feas}}, \beta^{\text{feas}}_0) \in \mathbb{S} \times \mathbb{R}$ and $\Upsilon \ge \max\{f_H(\hat{\alpha}, \beta^{\text{feas}}, \beta^{\text{feas}}_0), \min_{\beta_0, \gamma} q(\beta^{\text{feas}}, \beta_0, \gamma)\}\$
(where f_{res} is defined in Eq. (2) and g in Eq. (3)) Let $g \ge 0$ (where $\overline{f_H}$ is defined in Eq. [\(2\)](#page--1-1) and q in Eq. [\(8\)](#page--1-2)). Let $\rho_0 > 0$ and $\sigma > 1$ be arbitrarily chosen. Set $b = 0$ and $\tilde{\boldsymbol{\beta}}^{(0)} = \boldsymbol{\beta}^{\text{feas}}$. 1: repeat \triangleright Beginning of PD 2: Solve Eq. [\(8\)](#page--1-2) with $\rho = \rho^{(b)}$ by BCD (initialize $s = 0$): 3: repeat 3.1: Use IPM to solve Eq. [\(8\)](#page--1-2) for $\beta = \tilde{\beta}^{(s)}$, *i.e.*, $(\tilde{\beta}_0^{(s+1)}, \tilde{\boldsymbol{\gamma}}^{(s+1)}) \in \text{Argmin}_{\beta_0, \boldsymbol{\gamma}} q(\tilde{\boldsymbol{\beta}}^{(s)}, \beta_0, \boldsymbol{\gamma})$ 3.2: Solve Eq. [\(8\)](#page--1-2) with $\beta_0 = \tilde{\beta}_0^{(s+1)}$ and $\gamma = \tilde{\gamma}^{(s+1)}$: $\{i_1,\ldots,i_p\} \leftarrow$ Sort indices of $\tilde{\gamma}^{(s+1)}$ s.t. $|\tilde{\boldsymbol{\gamma}}_{i_j}^{(s+1)}| \ge |\boldsymbol{\gamma}_{i_{j+1}}^{(s+1)}|$ $\tilde{\boldsymbol{\beta}}_i^{(s+1)} \leftarrow$ $\int \tilde{\gamma}_i^{(s+1)}$, if $i \in \{i_1, \ldots, i_{\tau}\}\$ 0, otherwise 3.3: $s \leftarrow s + 1$ 4: **until**

max $\begin{cases} \frac{\|\tilde{\boldsymbol{\beta}}^{(s+1)} - \tilde{\boldsymbol{\beta}}^{(s)}\|_{\infty}}{\max\{\|\tilde{\boldsymbol{\beta}}^{(s)}\|_{\infty},1\}}, \frac{|\tilde{\beta}_0^{(s+1)} - \tilde{\beta}_0^{(s)}|_{\infty}\}\end{cases}$ $\frac{|\tilde{\beta}^{(s+1)}_0 - \tilde{\beta}^{(s)}_0|}{\max\{|\tilde{\beta}^{(s)}_0|,1\}}, \frac{\|\tilde{\gamma}^{(s+1)} - \tilde{\gamma}^{(s)}\|_{\infty}}{\max\{\|\tilde{\gamma}^{(s)}\|_{\infty},1\}}$ $\max\{\|\tilde{\boldsymbol{\gamma}}^{(s)}\|_{\infty},1\}$ $\left.\cdot\right\}<\epsilon^{(b)}$ 5: Update $\boldsymbol{\beta}^{(b)} \leftarrow \tilde{\boldsymbol{\beta}}^{(s)}, \beta_0^{(b)} \leftarrow \tilde{\beta}_0^{(s)}, \boldsymbol{\gamma}^{(b)} \leftarrow \tilde{\boldsymbol{\gamma}}^{(s)}$ 6: Update $\rho^{(b+1)} \leftarrow \sigma \rho^{(b)}$ 7: Update $\tilde{\boldsymbol{\beta}}^{(0)} \leftarrow \begin{cases} \boldsymbol{\beta}^{(b)}, \text{ if } \min_{\beta_0, \boldsymbol{\gamma}} q(\boldsymbol{\beta}^{(b)}, \beta_0, \boldsymbol{\gamma}) \leq \Upsilon \end{cases}$ β ^{feas}, otherwise 8: $b \leftarrow b + 1$ 9: until $\|\boldsymbol{\beta}^{(b)}-\boldsymbol{\gamma}$ ⊳ Stopping Criteria **Output:** $(\widehat{\boldsymbol{\beta}}, \widehat{\beta}_0) = (\boldsymbol{\beta}^{(b)}, \beta_0^{(b)})$

Remarks to Algorithm [2:](#page-0-0) Each PD iteration performs another BCD to approximate Eq. [\(8\)](#page--1-2) until the stopping criterion (Step 4 in Algorithm [2\)](#page-0-0) is reached. Specifically, by first fixing β , Eq. [\(8\)](#page--1-2) simplifies to a convex optimization problem (Step 3.1 in the Algorithm), which can be solved, for example, by the Interior Point Method (IPM) [\[90\]](#page--1-3). Next, (β_0, γ) is fixed and then Eq. [\(8\)](#page--1-2) becomes $\min_{\beta} {\{\|\beta - \gamma\|_2^2 : \|\beta\|_0 \leq \tau\}}$, which can be solved in closed-form (*i.e.*, Step 3.2 in Algorithm [2\)](#page-0-0) according to [\[65,](#page--1-4) Proposition 3.1] (also quoted in Section S1 of the Supplement). The computational complexity of this problem is $O(p \log(p))$. Therefore, the computational cost of Algorithm [2](#page-0-0) is

$$
O(N_P N_B(C_I(n,p) + p \log(p))),
$$

where $C_I(n, p)$ is the computational complexity of IPM for ℓ_2 -regularized logistic regression problems and N_P (resp., N_B) is the maximum number of PD (resp., BCD) iterations. Note that $C_I(n, p)$ can be different in various implementations but it is not more than polynomial.

The following proposition derives the convergence of PD to a local minimum.

Proposition A.1. *Suppose that* (β, β_0) *is an accumulation point of the sequence* $\{(\boldsymbol{\beta}^{(b)}, \beta_0^{(b)})\}$ *generated by PD. Then* $(\widehat{\boldsymbol{\beta}}, \widehat{\beta}_0)$ *is* α *local minimum of Eq.* [\(7\)](#page--1-0).

Proof. Let $x := (\beta, \beta_0), \mathcal{X} := \mathbb{R}^{p+1}, J := \{1, \cdots, p\}$ and $f(x) := f_H(\hat{\alpha}, x) = l(\hat{\alpha}, x) + \frac{\lambda}{2} ||x_J||_2^2$. Then, X is a closed

convex set and $f : \mathbb{R}^{p+1} \to \mathbb{R}$ is a continuously differentiable function. Moreover, f is convex and any level set $\mathcal{X}_{\Upsilon} := \{x \in$ $\mathcal{X} : f(x) \leq \Upsilon$ is compact. Define $\hat{x} := (\beta, \beta_0)$ and $r := \tau$ then
the Bobinson condition [65] Theorem 2.11 (can also Section S1 of the Robinson condition [\[65,](#page--1-4) Theorem 2.1] (see also Section S1 of the Supplement) holds at \hat{x} . It then follows from Theorem 4.3 of [65] that \hat{x} is a local minimum of Eq. (7). [\[65\]](#page--1-4) that \hat{x} is a local minimum of Eq. [\(7\)](#page--1-0).

P-BCD METHODS FOR SOLVING EQ. [\(9\)](#page--1-5)

Algorithm 3 P-BCD Algorithm for solving Eq. [\(9\)](#page--1-5) **Input:** Indicator vector $\hat{\alpha}$, hyperparameters λ and r, precision sequence $\{\epsilon^{(b)}\}$, and threshold ϵ_P . **Initialization:** Choose $\boldsymbol{\beta}^{(0)}$, $0 < \mathcal{L}_{\text{min}} < \mathcal{L}_{\text{max}}$, $\nu > 1$, $c > 0$ and integer $N \geq 0$ arbitrarily. Set $b = 0$ and $f^{(0)}=\infty.$ 1: **repeat** \triangleright Beginning of BCD 2: Use simplex search to solve Eq. [\(10\)](#page--1-6) with $\beta = \beta^{(b)}$, *i.e.*, $\beta_0^{(b+1)} \leftarrow \operatorname{argmin}_{\beta_0} l(\widehat{\boldsymbol{\alpha}}, \boldsymbol{\beta}^{(b)}, \beta_0)$ 3: Solve Eq. [\(11\)](#page--1-7) with $\beta_0 = \beta_0^{(b+1)}$ and $\tilde{\boldsymbol{\beta}}^{(0)} = \boldsymbol{\beta}^{(b)}$ via NPG (initialize $s = 0$): 4: repeat Choose any $\mathcal{L}^{(s)} \in [\mathcal{L}_{\text{min}}, \mathcal{L}_{\text{max}}]$ 5: repeat 5.1: $g^{(s)} = \tilde{\boldsymbol{\beta}}^{(s)} - \nabla_{\boldsymbol{\beta}} l(\hat{\boldsymbol{\alpha}}, \tilde{\boldsymbol{\beta}}^{(s)}, \beta_0^{(b+1)}) / \mathcal{L}^{(s)}$ 5.2: $\{i_1, \ldots, i_p\} \leftarrow \text{Sort } g^{(s)}, \text{ s. t. } |g^{(s)}_{i_j}| \leq |g^{(s)}_{i_{j+1}}|$ 5.3: $\tilde{\boldsymbol{\beta}}_i^{(s+1)} \leftarrow$ $\sqrt{ }$ \int \mathcal{L} $\text{sign}(g_i^{(s)}) \max(|g_i^{(s)}| - \lambda/\mathcal{L}^{(s)}, 0),$ if *i* ∈ {*i*₁, . . . , *i*_{*p*−*r*}} $g_i^{(s)}$, otherwise 5.4: $\mathcal{L}^{(s)} \leftarrow \nu \mathcal{L}^{(s)}$ 5.5: $f^{(s+1)} \leftarrow f_P(\hat{\alpha}, \tilde{\beta}^{(s+1)}, \beta_0^{(b+1)})$ (as in Eq. [\(4\)](#page--1-8))
 $f^{(s+1)} \leftarrow f^{(s+1)}$ 6: **until** $f^{(s+1)} \le \max_{\max(s-N,0)\le j\le s} f^{(j)} - \frac{c}{2} \|\tilde{\boldsymbol{\beta}}^{(s+1)} - \tilde{\boldsymbol{\beta}}^{(s)}\|^2_2$ 7: $s \leftarrow s + 1$ 8: **until** $\|\nabla_{\beta} l(\hat{\alpha}, \hat{\beta}^{(s)}, \beta_0^{(b+1)}) - \nabla_{\beta} l(\hat{\alpha}, \hat{\beta}^{(s-1)}, \beta_0^{(b+1)})\|_{\nabla_{\beta} (s-1) \setminus \vec{\beta}^{(s)}}$ $-\mathcal{L}^{(s-1)}(\tilde{\boldsymbol{\beta}}^{(s)}-\tilde{\boldsymbol{\beta}}^{(s-1)})\|_\infty<\epsilon^{(b)}$ 9: Update $\boldsymbol{\beta}^{(b+1)} \leftarrow \tilde{\boldsymbol{\beta}}^{(s)}$ 10: Update $b \leftarrow b + 1$ 11: **until** $\min\{|f^{(s)} - f_P(\hat{\alpha}, \beta^{(b-1)}, \beta_0^{(b-1)})|/|f^{(s)}|, |f^{(s)}|\} \le \epsilon_F$ **Output:** $(\widehat{\boldsymbol{\beta}}, \widehat{\beta}_0) = (\boldsymbol{\beta}^{(b)}, \beta_0^{(b)})$

Remarks to Algorithm [3:](#page-0-1) P-BCD solves Eq. [\(9\)](#page--1-5) by iterating between updating β_0 via the simplex search approach and β via the Nonmonotone Proximal Gradient (NPG) method. At each iteration of P-BCD, NPG (Steps 3-8) updates β by iteratively determining the solution to Eq. [\(11\)](#page--1-7) until the stopping criterion (*i.e.*, the convergence with respect to β , Step 8) is reached. At each iteration of NPG, the method estimates $\tilde{\beta}^{(s+1)}$ by minimizing a proximal function $l(\hat{\alpha}, \tilde{\beta}^{(s)}, \beta_0^{(b+1)}) + \nabla_{\beta} l(\hat{\alpha}, \tilde{\beta}^{(s)}, \beta_0^{(b+1)})^T (\beta - \tilde{\beta}^{(s)}) +$ $\mathcal{L}^{(s)}$ $\frac{1}{2}$ $\|\boldsymbol{\beta}-\tilde{\boldsymbol{\beta}}^{(s)}\|_2^2 + \lambda \|\boldsymbol{\beta}\|_1^{(r)}$ with $\nabla_{\boldsymbol{\beta}} l(\cdot,\cdot,\cdot)$ denoting the partial derivative of $l(\cdot, \cdot, \cdot)$ with respect to β and $\nabla_\beta l(\alpha, \beta, \beta_0)$ = $-\sum_{i=1}^{n} \alpha_i y_i \mathbf{x}_i (1 + \exp(y_i(\boldsymbol{\beta}^\top \mathbf{x}_i + \beta_0)))^{-1}$. According to [\[48,](#page--1-9) Theorem 5.5] (quoted also in Section S1 of the Supplement), this problem has a closed-form solution (*i.e.*, Step 5.3). The computational complexity of this problem is $O(p(n + \log(p)))$. The method updates the current estimate of $\tilde{\beta}^{(s+1)}$ (Step 5.3) until the acceptance criterion (Step 6) is reached, that is, the current objective is slightly smaller than the largest objective from the last

 N iterations. Consequently, the computational cost of Algorithm [3](#page-0-1) is

$$
O(N_B p(n(N_S+n) + (n + \log(p))(\log \bar{L} - \log \mathcal{L}_{\min})/\log \nu)),
$$

where $\bar{L} = \max\{\mathcal{L}_{\text{max}}, \nu \underline{L}, \nu(1 + c)\}\$ for some $\underline{L} > 0$ and N_B (resp., N_S) is the maximum number of BCD iterations (resp., Nelder–Mead search steps).

The convergence of the P-BCD method to a local minimum of Eq. [\(9\)](#page--1-5) is established in Theorem [2.2,](#page--1-10) which relies on the assumptions that $\beta_0^{(b+1)}$ is an optimal solution of Eq. [\(10\)](#page--1-6) and that $\beta^{(b+1)}$ is a local minimum of Eq. [\(11\)](#page--1-7). Since the simplex search method converges to the optimal solution of Eq. [\(10\)](#page--1-6) according to [\[66,](#page--1-11) Theorem 4.1] (see also Section S1 of the Supplement), the former assumption is satisfied trivially. We next show that P-BCD fulfills the latter assumption, namely, NPG converges to a local minimum of Eq. (11) .

Proposition A.2. *Suppose that* $\tilde{\boldsymbol{\beta}}$ *is an accumulation point of the* 18 *sequence* $\{\tilde{\boldsymbol{\beta}}^{(s)}\}$ generated by NPG for Eq. [\(11\)](#page--1-7). Then $\tilde{\boldsymbol{\beta}}$ is a local *minimum of Eq. [\(11\)](#page--1-7).*

Proof. We first show that $\hat{\beta}$ is a first-order stationary point (defined as in [\[48,](#page--1-9) Definition 4] or Section S1 of the Supplement) of Eq. (11) and then a local minimum of Eq. (11) .

To show that β is a first-order stationary point, note that $l(\hat{\alpha}, \cdot, \beta_0^{(b+1)})$ is a continuously differentiable function on \mathbb{R}^p . Moreover, $f_P(\hat{\alpha}, \cdot, \beta_0^{(b+1)}) = l(\hat{\alpha}, \cdot, \beta_0^{(b+1)}) + \lambda \|\cdot\|_1^{(r)}$
is bounded below and uniformly continuous on any level set $S(\check{\beta}) := \{ \beta \in \mathbb{R}^p : f_P(\hat{\alpha}, \beta, \beta_0^{(b+1)}) \leq f_P(\hat{\alpha}, \check{\beta}, \beta_0^{(b+1)}) \}.$
By directly englying $\{ \beta_0, \text{ Theorem 5-3d} \text{ (see also Section)}$ By directly applying [\[48,](#page--1-9) Theorem 5.2] (see also Section S1

of the Supplement) to Eq. [\(11\)](#page--1-7) with $f(\cdot) = l(\hat{\alpha}, \cdot, \beta_0^{(b+1)})$, $F(\cdot) = f_P(\hat{\alpha}, \cdot, \beta_0^{(b+1)}), \Phi(\cdot) = {\lVert \cdot \rVert}_1^{(r)}, L_f = 1, A = 1$ and $B = F(\check{\beta})$, then $\check{\beta}$ is a first-order stationary point of Eq. [\(11\)](#page--1-7), *i.e.*,

$$
\mathbf{0} \in \nabla_{\beta} l(\widehat{\alpha}, \widetilde{\beta}, \beta_0^{(b+1)}) + \lambda \, \partial \Phi(\widetilde{\beta}), \tag{25}
$$

where $\partial \Phi(\tilde{\boldsymbol{\beta}}) = {\{\gamma : \gamma^T(\boldsymbol{\beta} - \tilde{\boldsymbol{\beta}}) \leq \Phi(\boldsymbol{\beta}) - \Phi(\tilde{\boldsymbol{\beta}}), \forall \boldsymbol{\beta} \in \mathbb{R}^p\}}$ denotes the subdifferential of Φ at $\tilde{\beta}$.

Now to show that $\hat{\beta}$ is a local minimum of Eq. [\(11\)](#page--1-7), let $\mathcal{N}(\tilde{\boldsymbol{\beta}}, \epsilon) = \{\boldsymbol{\beta} : ||\boldsymbol{\beta} - \tilde{\boldsymbol{\beta}}||_{\infty} < \epsilon\}$ be a neighbourhood of $\tilde{\boldsymbol{\beta}}$ and $\bar{\beta} \in \mathcal{N}(\tilde{\beta}, \epsilon)$ be arbitrarily chosen. From Eq. [\(25\)](#page-1-0), we know that

$$
-\frac{1}{\lambda} \nabla_{\boldsymbol{\beta}} l(\widehat{\boldsymbol{\alpha}}, \widetilde{\boldsymbol{\beta}}, \beta_0^{(b+1)}) \in \partial \Phi(\widetilde{\boldsymbol{\beta}}),
$$

which along with the definition of $\partial \Phi(\tilde{\beta})$ yields that

$$
-\frac{1}{\lambda} \nabla_{\beta} l(\widehat{\boldsymbol{\alpha}}, \widetilde{\boldsymbol{\beta}}, \beta_0^{(b+1)})^T (\bar{\boldsymbol{\beta}} - \widetilde{\boldsymbol{\beta}}) \leq \Phi(\bar{\boldsymbol{\beta}}) - \Phi(\widetilde{\boldsymbol{\beta}}).
$$

Using this relation, $\lambda \geq 0$ and the convexity of $l(\hat{\alpha}, \cdot, \beta_0^{(b+1)})$, we further have

$$
f_P(\hat{\alpha}, \bar{\beta}, \beta_0^{(b+1)}) = l(\hat{\alpha}, \bar{\beta}, \beta_0^{(b+1)}) + \lambda \Phi(\bar{\beta})
$$

\n
$$
\geq l(\hat{\alpha}, \bar{\beta}, \beta_0^{(b+1)}) - \nabla_{\beta} l(\hat{\alpha}, \tilde{\beta}, \beta_0^{(b+1)})^T (\bar{\beta} - \tilde{\beta}) + \lambda \Phi(\tilde{\beta})
$$

\n
$$
\geq l(\hat{\alpha}, \tilde{\beta}, \beta_0^{(b+1)}) + \nabla_{\beta} l(\hat{\alpha}, \tilde{\beta}, \beta_0^{(b+1)})^T (\bar{\beta} - \tilde{\beta})
$$

\n
$$
- \nabla_{\beta} l(\hat{\alpha}, \tilde{\beta}, \beta_0^{(b+1)})^T (\bar{\beta} - \tilde{\beta}) + \lambda \Phi(\tilde{\beta})
$$

\n
$$
= l(\hat{\alpha}, \tilde{\beta}, \beta_0^{(b+1)}) + \lambda \Phi(\tilde{\beta}) = f_P(\hat{\alpha}, \tilde{\beta}, \beta_0^{(b+1)}),
$$

where the second inequality is due to the convexity of $\left(\hat{\alpha}, \cdot, \beta_0^{(b+1)}\right)$ on \mathbb{R}^p . Given our choice of $\bar{\beta}$, it thus implies that β is a local minimum of Eq. [\(11\)](#page--1-7). \Box