
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE S1

Logistic Regression Confined by Cardinality-
Constrained Sample and Feature Selection

(Supplementary Material)
Ehsan Adeli∗, Member, IEEE, Xiaorui Li∗, Dongjin Kwon, Yong Zhang, and Kilian M. Pohl

F

S1 THEORETICAL DISCUSSIONS QUOTED FROM
THE LITERATURE

Note that all the citations and reference numbers in this Section
are the same as the main paper.

Theorem 4.1 of [66]:
“The point of this restriction is that a strictly convex
function with bounded level sets has a unique minimizer
xmin.
Theorem 4.1. (Convergence of one-dimensional Nelder-
Mead method.) Let f be a strictly convex function onR1

with bounded level sets. Assume that the Nelder-Mead
algorithm is applied to f with parameters satisfying
ρ > 0, χ > 1, χ > ρ, ρχ ≥ 1, and 0 < γ < 1, be-
ginning with a nondegenerate initial simplex ∆0. Then
both endpoints of the Nelder-Mead interval converge to
xmin.”

To prove this theorem, the authors introduced several intermediate
lemmas. For detailed analysis please refer to [66].

Theorems 2.1 and 4.3 and Proposition 3.1 of [65]:
“Mathematically, all these applications can be
formulated into the following `0 minimization problems:

min
x∈X
{f(x) : g(x) ≤ 0, h(x) = 0, ‖xJ‖0 ≤ r}, (1.1)

min
x∈X
{f(x) + ν‖xJ‖0 : g(x) ≤ 0, h(x) = 0} (1.2)

for some integer r ≥ 0 and ν ≥ 0 controlling the
sparsity (or cardinality) of the solution, where X is a
close convex set in the n-dimensional Euclidean space
Rn, f : Rn → R, g : Rn → Rm and h : Rn → Rp

are continuously differentiable functions, and ‖xJ‖0
denotes the cardinality of the subvector formed by the
entries of x indexed by J .
Theorem 2.1. Assume that x∗ is a local minimizer of
problem (1.1). Let J∗ ⊆ J be an index set with |J∗| = r
such that x∗j = 0 for all j ∈ J̄∗, where J̄∗ = J \ J∗.
Suppose that the following Robinson condition

g′(x∗)d− vh′(x∗)d
(IJ̄∗)>d

 :
d ∈ TX (x∗), v ∈ Rm,
vi ≤ 0, i ∈ A(x∗)


= Rm × Rp × R|J|−r

(2.1)

holds, where g′(x∗) and h′(x∗) denote the Jacobian of
the functions g = (g1, . . . , gm) and h = (h1, . . . , hp)
at x∗, respectively, and

A(x∗) = {1 ≤ i ≤ m : gi(x
∗) = 0}. (2.2)

Then, there exists (λ∗, µ∗, z∗) ∈ Rm × Rp × Rn

together with x∗ satisfying

−∇f(x∗)−∇g(x∗)λ∗ −∇h(x∗)µ∗ − z∗ ∈ NX (x∗),

λ∗i ≥ 0, λ∗i gi(x
∗) = 0, i = 1, · · · ,m,

z∗j = 0, j ∈ J̄ ∪ J∗,
(2.3)

where J̄ is the complement of J in {1, . . . , n}.
Proposition 3.1. Let Xi ⊆ R and φi : R → R for
i = 1, . . . , n be given. Suppose that r is a positive
integer and 0 ∈ Xi for all i. Consider the following `0
minimization problem:

min

{
n∑

i=1

φi(xi) : ‖x‖0 ≤ r, x ∈ X1 × · · · × Xn

}
.

(3.1)
Let x̃∗i ∈ Argmin{φi(xi) : xi ∈ Xi}, and let
I∗ ⊆ {1, . . . , n} be the index set corresponding to the r
largest values of {v∗i }ni=1, where v∗i = φi(0)− φi(x̃∗i )
for i = 1, . . . , n. Then x∗ is an optimal solution of
problem (3.1), where x∗ is defined as follows:

x∗i =

{
x̃∗i if i ∈ I∗;
0 otherwise, i = 1, . . . , n.

Theorem 4.3. Assume that εk → 0. Let {(xk, yk)}
be the sequence generated by the above PD method,
Ik = {ik1 , · · · , ikr} be a set of r distinct indices in
{1, . . . , |J |} such that (yk)i = 0 for any i /∈ Ik, and
let Jk = {J(i) : i ∈ Ik}. Suppose that the level set
XΥ := {x ∈ X : f(x) ≤ Υ} is compact. Then, the
following statements hold:

(a) The sequence {(xk, yk)} is bounded.
(b) Suppose (x∗, y∗) is an accumulation point of

{(xk, yk)}. Then, x∗ = y∗ and x∗ is a feasible
point of problem (1.1). Moreover, there exists
a subsequence K such that {(xk, yk)}k∈K →
(x∗, y∗), Ik = I∗ and Jk = J∗ := {J(i) : i ∈
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I∗} for some index set I∗ ⊆ {1, . . . , |J |} when
k ∈ K is sufficiently large.

(c) Let x∗, K and J∗ be defined above, and
let J̄∗ = J \ J∗. Suppose that the Robin-
son condition (2.1) holds at x∗ for such J̄∗.
Then, {(λk, µk, $k)}k∈K is bounded, where
λk = ρk[g(xk)]+, µk = ρkh(xk), $k =
ρk(xkJ−yk). Moreover, each accumulation point
(λ∗, µ∗, $∗) of {(λk, µk, $k)}k∈K together
with x∗ satisfies the first-order optimality condi-
tions (2.3) with z∗j = $∗i for all j = J(i) ∈ J̄∗.
Further, if ‖x∗J‖0 = r, h’s are affine functions,
and f and g’s are convex functions, then x∗ is a
local minimizer of problem (1.1).

”

Refer to [65] for the proofs of the above theorems.

Definition 4, Assumptions 1 and 4, Theorems 5.2 and 5.4 of
[48]:

“In particular, we propose a feasible augmented La-
grangian (FAL) method for solving them, which solves
a sequence of partially regularized unconstrained opti-
mization problems in the form of

min
x∈Rn

{
F (x) := f(x) + λ

n∑
i=r+1

φ(|x|[i])
}
. (22)

In addition, for convenience of presentation, let Φ(x) :=∑n
i=r+1 φ(|x|[i]).

Definition 4. (first-order stationary point) x∗ ∈ Rn is a
first-order stationary point of (22) if

0 ∈ ∇f(x∗) + λ ∂Φ(x∗).

Assumption 1. φ is lower semi-continuous and increas-
ing in [0,∞). Moreover, φ(0) = 0.
Assumption 4. (i) f is continuously differentiable in
U(x0; ∆) for some x0 ∈ Rn and ∆ > 0, and moreover,
there exists some Lf > 0 such that

‖∇f(x)−∇f(y)‖ ≤ Lf‖x− y‖,∀x, y ∈ U(x0; ∆),

where

U(x0; ∆) := {x : ‖x−z‖ ≤ ∆ for some z ∈ S(x0)}.

S(x0) := {x ∈ Rn : F (x) ≤ F (x0)}.

(ii) F is bounded below and uniformly continuous in
S(x0).
(iii) The quantities A and B defined below are finite:

A := sup
x∈S(x0)

‖∇f(x)‖, B := sup
x∈S(x0)

n∑
i=r+1

φ(|x|[j]).

Theorem 5.1. Let {xk} and L̄k be generated in
Algorithm 1, and let

L̄ := max{Lmax, τL, τ(Lf +c)}, L :=
2(A∆ +B)

∆2
,

where A, B, Lf and ∆ are given in Assumption 4.
Under Assumption 4, the following statements hold:

(i) For each k ≥ 0, the inner termination criterion
(24) is satisfied after at most⌊

log L̄− logLmin

log τ
+ 1

⌋
inner iterations;

(ii) F (xk) ≤ F (x0) and L̄k ≤ L̄ for all k ≥ 0.

Theorem 5.2. Let the sequence {xk} be generated by
Algorithm 1. There holds:

(i) ‖xk+1 − xk‖ → 0 as k →∞;
(ii) Any accumulation point of {xk} is a first-order

stationary point of (22);
(iii) For any ε > 0, xk is a first-order ε-stationary

point of problem (22) when k is sufficiently large.

We are now ready to discuss how to solve efficiently
the subproblem (23) of Algorithm 1. Clearly, (23) is
equivalent to

min
x∈Rn

{1

2

∥∥∥∥x− (xk − 1

Lk
Of(xk)

)∥∥∥∥2

2

+
λ

Lk

n∑
i=r+1

φ(|x|[i])
}
,

which is a special case of a more general problem

min
x∈Rn

{
1

2
‖x− a‖22 + λ̃

n∑
i=r+1

φ(|x|[i])
}
, (31)

for some a ∈ Rn and λ̃ > 0. In what follows, we show
that problem (31) can be solved as n − r number of
one-dimensional problems in the form of (26).
Theorem 5.4. Suppose that φ satisfies Assumption 1.
Let I∗ be the index set corresponding to the n − r
smallest entries of |a| and x∗ ∈ Rn be defined as
follows:

x∗i ∈

 Argmin
u∈<

{
1
2 (u− ai)2 + λ̃φ(|u|)

}
if i ∈ I∗,

{ai} otherwise

i = 1, . . . , n. Then x∗ is an optimal solution of problem
(31).
”

For more detailed discussions, please refer to [48].

S2 MRI DATA PREPROCESSING AND FEATURE
EXTRACTION

Preprocessing of the T1-weighted (T1w) MR images involves
noise removal [Coupé et al., 2008] and correcting field inhomo-
geneity via N4ITK (Version 2.1.0) [Tustison et al., 2010]. Next,
the brain mask is segmented by majority voting [Rohlfing et al.,
2004] across maps extracted by FSL BET (Version 5.0.6) [Smith,
2002], AFNI 3dSkullStrip (Version AFNI 2011 12 21 1014)
[Cox, 1996], FreeSurfer mri-gcut (Version 5.3.0) [Sadananthan
et al., 2010], and the Robust Brain Extraction (ROBEX) method
(Version 1.2) [Iglesias et al., 2011]. We further apply the cross-
sectional approach of FreeSurfer (Version 5.3.0) software [Dale
et al., 1999], [Reuter et al., 2012] to the skull-stripped T1w MRI
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of each subject in order to measure the mean curvature (Mean-
Curv), surface area (SurfArea), gray matter volume (GrayVol), and
average thickness (ThickAvg) of 34 bilateral cortical Regions Of
Interest (ROIs) [2 hemispheres× 4 measurement types× 34 ROIs
= 272], the volumes of 8 bilateral sub-cortical ROIs (i.e., thalamus,
caudate, putamen, pallidum, hippocampus, amygdala, accumbens,
cerebellar cortex) [2 × 8 = 16], the volumes of 5 subregions
of the corpus callosum (posterior, mid-posterior, central, mid-
central and anterior), and the combined volume of all white
matter hypointensities [5 + 1 = 6]. Additionally, supratentorial
volume (svol) of the left and right lateral ventricles, and the third
ventricle [1 + 2 × 2 = 5] are measured by non-rigidly aligning
the SRI24 atlas [Rohlfing et al., 2010] to the T1w MRI of the
subject via ANTS (Version: 2.1.0) [Avants et al., 2008]. In addition
to svol, each subject is thus represented by the z-scores of 298
morphometric measures (i.e., features).

S3 ADDITIONAL EXPERIMENTS

In addition to the experiments in the main paper, to compare our
method to published findings, we also apply the methods to the
real data provided by two benchmark datasets of the UCI machine
learning repository [Lichman, 2013]: the Lymphography Domain
Dataset and the SPECTF Heart Dataset. Both datasets are char-
acterized by redundant and uninformative features with respect to
group separation. In addition, the Lymphography Domain Dataset
contains samples that are outliers, i.e., they do not belong to either
of the two cohorts under investigation.

S3.1 UCI Benchmark Datasets
The Lymphography Domain dataset contains 148 samples, each
being represented by 19 features1. The samples are divided into
four classes: 2 are labeled as ‘normal’, 81 as ‘metastases’, 61 as
‘malignant lymphoma’, and 4 as ‘fibrosis’. The first and the last
classes are quite small so that we view them as outliers in the
experiment of distinguishing the metastases from the malignant
lymphoma samples. For simplicity, the normal cases are assigned
to the metastases group (N = 83) and the fibrosis cases to the
malignant lymphoma group (N = 65). Thus, the two groups of
interest are unequal in size and contain outliers.

The SPECTF Heart Dataset contains measurements of cardiac
Single Proton Emission Computed Tomography (SPECT) images
of 267 subjects. 212 participants are labelled as abnormal and 55
as normal. Each SPECT image is summarized by 44 continuous
measurements, which are generated by counting the number of
‘rested’ and ‘stressed’ voxels in 22 regions of interest (ROIs).
Given this type of evaluation, we expect high redundancy between
features of this imbalanced dataset.

S3.2 Results of Comparison
Table S1 summaries the accuracy scores of all implementations
on the two benchmark datasets. As on the synthetic dataset, our
proposed sample-feature selection scheme with hybrid regulariza-
tion (i.e., SFSH ) achieved a higher BAcc score on both datasets
than the other proposed implementations (i.e., SFSP , SFSC ),
which were again higher than all alternative approaches. The
same observation was true for the F1-score. Of those methods,

1. This lymphography domain was obtained from the University Medical
Centre, Institute of Oncology, Ljubljana, Yugoslavia. Thanks go to M. Zwitter
and M. Soklic for providing the data.

Method Lymphography Heart
BAcc Pre Rec F1 BAcc Pre Rec F1

SFSH 87.9 0.87 0.89 0.88 82.9 0.78 0.82 0.80
SFSP 85.5 0.88 0.82 0.85 81.5 0.79 0.80 0.79
SFSC 81.8 0.83 0.79 0.81 81.7 0.79 0.80 0.79
JFSS`1 -W 77.8 0.79 0.72 0.75 76.8 0.75 0.79 0.77
JFSS`1 69.5 0.75 0.62 0.68 55.4 0.56 0.96 0.71
LR`0 -W 76.8 0.79 0.78 0.78 78.5 0.75 0.80 0.77
SFS+SVM-W 75.9 0.75 0.73 0.74 79.1 0.74 0.80 0.77
SVM-W 74.6 0.75 0.72 0.73 78.8 0.69 0.80 0.74
SVM 66.7 0.78 0.55 0.65 58.0 0.57 0.84 0.68

TABLE S1: Comparison of the results on benchmark datasets. In
each column the best result is typeset in bold typeface.

SFSC reported the lowest precision and recall, which were at
least as high as those of the alternative approaches. Furthermore,
SFSH never selected outliers to be included in the cost function
during training.

As mentioned, we turned the Lymphography dataset into a
binary classification problem by interpreting the small classes as
outliers that were merged with the large ones. Published accuracy
scores are not directly comparable to our findings as they use
different validation schemes to solve the multi-class classification
problem and report on the accuracy without normalizing for group
size. For example, the knowledge-based approach by Centnik et
al. [Cestnik et al., 1987] reports 76% accuracy, the rule-induction
methods by Clark and Niblett [Clark and Niblett, 1987] achieves
83% accuracy, and the probability series expansion classifiers by
Agarwal et al. [Agarwal and Hudson, 2017] measures 86.4%
accuracy. In comparison, the ‘un-normalized’ accuracy score of
SFSH is 88.1%, which would drop down to 87.4% if we viewed
all ‘outliers’ as misclassified (i.e., the original multi-class prob-
lem). We conclude that on this dataset our findings are highly
competitive to existing publications.

With respect to the Heart dataset, the proposed techniques are
superior to all other methods not only in terms of the balanced
accuracy but also for the F1-score and the balance between
the precision and recall. Note, only the methods that perform
sample selection (i.e., the proposed methods and JFSS`1 -W) report
balanced precision and recall scores (i.e., the difference is less than
5%). Also, it is important to note that JFSS`1 , which is based on
`1 regularization, was not designed for highly imbalanced cases.
The reimplemented version of this method using a weighted loss
function performs relatively well on this dataset, but still inferior to
our methods. Unlike the rigerous 10-fold cross-validation scheme
proposed here, the experimental design for the Heart dataset
in previous works [Pant et al., 2017], [Cios et al., 1997] split
the dataset into a balanced training set (containing 40 samples
for each class) and use the remaining samples for testing (172
samples for one class and 12 for the other). They report the
accuracy instead of the balanced accuracy score. The CLIP3 [Cios
et al., 1997] algorithm achieved a 77.0% accuracy. The authors in
[Pant et al., 2017] also obtained accuracies of 78.4% using twin
SVM and 83.3% using neural network methods. Our proposed
implementations, especially SFSH , show comparable results even
through they are trained on imbalanced data.
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