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S2 Appendix: Statistical analysis 4 

S2.1 Principal components for the large contraction group 5 

In our statistical analysis, the large contraction group, denoted here by “Cont”, was represented 6 

by its four principal components, denoted by “Cont.var1”, “Cont.var2”, “Cont.var3”, and 7 

“Cont.var4”, as grouped variables. For each grouped variable, we list here the 10 uncontracted 8 

environmental variables with the highest absolute correlations with it (“I.”, “H.”, and “F.” mean 9 

insecticide, herbicide, and fungicide, respectively). 10 

Cont.var1: I.thiamethoxam (–0.86), H.bromobutide (–0.83), H.bentazone (–0.83), TP (–0.81), 11 

F.pyroquilon (–0.77), H.oxaziclomefon (–0.75), F.tiadinil (–0.72), F.furametpyr (–0.69), 12 

H.chlomeprop (–0.68), TN (–0.67); 13 

Cont.var2: E-plant noncoverage (0.80), I.malathion (–0.77), I.tebufenozide (–0.75), I.buprofezin 14 

(–0.64), SS (–0.61), H.pentoxazone (0.55), H.butachlor (0.51), F.isoprothiolane (0.50), 15 

I.imidacloprid (0.48), F.pyroquilon (–0.48); 16 

Cont.var3: H.butachlor (–0.70), F.fthalide (–0.61), black bass (–0.59), F.ferimzone (–0.59), WT 17 

(0.58), F.isoprothiolane (–0.50), I.tebufenozide (–0.49), H.pentoxazone (–0.49), I.clothanidin (–18 

0.47), I.malathion (–0.47); 19 

Cont.var4: Chl-a (0.69), pH (0.68), H.oxaziclomefon (–0.43), H.chlomeprop (–0.42), 20 

F.azoxystrobin (–0.41), SS (0.40), TN (0.39), H.pyriminobac_methyl_E (0.39), F.furametpyr 21 

(0.37), H.mefenacet (0.37). 22 

 23 

S2.2 Model selection 24 

We used the 14 contracted environmental variables as the explanatory variables to explain the 25 

response variable, taxonomic richness of a focal animal category. For convenience, all 26 

explanatory variables were rescaled to range from 0 to 1 (their mean and standard deviation 27 
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could deviate from 0 and 1 after this operation). For each of the possible subsets of the 14 28 

explanatory variables, we constructed a Poisson regression mixed model (Broström and 29 

Holmberg 2011), where any model has at least one explanatory variable. In each model, the 30 

response variables were described by a vector 𝐲 = (𝑦1, … , 𝑦𝑀) of length 𝑀 = 21 (the number 31 

of studied ponds), where 𝑦𝑖 is its value for the 𝑖th pond. Explanatory variables were described 32 

by a set of vectors 𝐱1, … , 𝐱𝐾 with 1 ≤ 𝐾 ≤ 14, each of which was denoted by 𝐱𝑘 =33 

(𝑥𝑘,1, … , 𝑥𝑘,𝑀). We assumed that 𝑦𝑖 follows the Poisson distribution, 34 

𝑦𝑖 ~ Poisson(𝑌𝑖) Eq. (1) in the main text 35 

with its mean 𝑌𝑖 described as 36 

ln(𝑌𝑖) = 𝛼 + ∑𝛽𝑘𝑥𝑘,𝑖  +  𝑟𝑖

𝐾

𝑘=1

, Eq. (2) in the main text 37 

where 𝛼 is the intercept, 𝑥𝑘,𝑖 is the intensity of the 𝑘th explanatory variable at the 𝑖th pond 38 

with its regression coefficient 𝛽𝑘, and 𝑟𝑖 is a pond-specific random effect. 𝑟𝑖 follows the 39 

normal distribution with average 0 and standard deviation 𝜎. For each of the models constructed 40 

above, we calculated maximum likelihood estimations for 𝛼, 𝛽1, … , 𝛽𝐾, maximum marginal-41 

likelihood estimation for 𝜎 (Broström and Holmberg 2011), and the Akaike information 42 

criterion (AIC) (Akaike 1973). To suppress the estimation bias of AIC as a distance measure 43 

from an unknown true model, we excluded models that had more free parameters than one-third 44 

of the sample size (Kitagawa et al. 1983); models with 𝑀/3 < 𝐾 +  2 (i.e., 𝛽1, … , 𝛽𝐾, 𝛼, and 45 

𝜎) were excluded. We also fitted the normal Poisson regression model by setting 𝜎 = 0 in 46 

advance, in which case models with 𝑀/3 < 𝐾 +  1 (i.e., 𝛽1, … , 𝛽𝐾, 𝛼) were excluded. 47 

 When the model with the lowest AIC, referred to as the contracted best model, had residuals 48 

with significant spatial autocorrelation (i.e., p-value < 0.05 in either Moran’s I test or Geary’s C 49 

test), we excluded the model because the assumption of independence was violated, and we 50 

treated the second best model as the contracted best model. This operation was repeated until 51 

the spatial autocorrelation in the contracted best model’s residuals became non-significant. (For 52 

the results reported in this paper, none of the initial best models had residuals with significant 53 
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spatial autocorrelation.) 54 

 55 

S2.3 Statistical significance for statistically contributive stressors 56 

In this study, statistical significance for a statistically contributive stressor was evaluated by a 57 

permutation test that explicitly repeats the model selection, as explained below. 58 

Test statistic and p-value 59 

We denote the observed values for the response and explanatory variables (contracted 60 

environmental variables) by 𝐲 and 𝐱1, … , 𝐱𝐻 with 𝐻 = 14, respectively. We describe the best 61 

model for the observed data 𝐲, 𝐱1, … , 𝐱𝐻 by 𝐦 = (𝑚1, … ,𝑚𝐻) with 0 or 1 for each entry, 62 

where 𝑚ℎ = 1 means inclusion of the ℎth explanatory variable in the best model. We assume 63 

without loss of generality that the 𝐻th explanatory variable is to be tested, by its random 64 

resampling for 𝐽 times. In the 𝑗th resampling of 𝐱𝐻 for 𝑗 = 1,… , 𝐽, we denote the resampled 65 

values by 𝐱̃𝐻
𝑗

, and denote the best model for 𝐲, 𝐱1, … , 𝐱̃𝐻
𝑗

 by 𝐦̃𝑗 = (𝑚̃1
𝑗
, … , 𝑚̃𝐻

𝑗
). We use a test 66 

statistic described as 67 

𝐴(𝐱̃𝐻
𝑗
) = {δAIC(𝐱̃𝐻

𝑗
; 𝐦̃𝑗) for condition (a) satisfied

−∞ for otherwise
, (S2.1) 68 

with condition (a): conditions (i) and (iii) for the statistical contributiveness (defined in 69 

“Statistical inference” in the main text) are both satisfied, and the best model 𝐦̃𝑗 for 70 

𝐲, 𝐱1, … , 𝐱̃𝐻
𝑗

 includes the 𝐻th explanatory variable (𝑚̃𝐻
𝑗
= 1) with a negative regression 71 

coefficient. 72 

 Here, δAIC(𝐱̃𝐻
𝑗
; 𝐦̃𝑗) is the AIC difference caused by dropping the 𝐻th explanatory 73 

variable from 𝐦̃𝑗, given by 74 

δAIC(𝐱̃𝐻
𝑗
; 𝐦̃𝑗) = AIC(𝐲, 𝐱1, … , 𝐱𝐻−1, 𝐱̃𝐻

𝑗
; 𝐦̃𝑗,𝐻−) − AIC(𝐲, 𝐱1, … , 𝐱𝐻−1, 𝐱̃𝐻

𝑗
; 𝐦̃𝑗), (S2.2) 75 

with 𝐦̃𝑗,𝐻− = (𝑚̃1
𝑗
, … , 𝑚̃𝐻−1

𝑗
, 0). 76 

Since the 𝐻th explanatory variable is a statistically contributive stressor, satisfying 77 

condition (a) for 𝐲, 𝐱1, … , 𝐱𝐻, and 𝐦, we see 78 
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𝐴(𝐱𝐻) = δAIC(𝐱𝐻;𝐦)

= AIC(𝐲, 𝐱1, … , 𝐱𝐻−1, 𝐱𝐻;𝐦
𝐻−) − AIC(𝐲, 𝐱1, … , 𝐱𝐻−1, 𝐱𝐻;𝐦) (S2.3)

 79 

with 𝐦𝐻− = (𝑚1, … ,𝑚𝐻−1, 0). Then by counting 𝐴(𝐱̃𝐻
𝑗
) that are no less than 𝐴(𝐱𝐻), we 80 

calculate a p-value as 81 

𝑝(𝐴(𝐱𝐻)) =
1

𝐽
∑count + (𝐴(𝐱̃𝐻

𝑗
) − 𝐴(𝐱𝐻))

𝐽

𝑗=1

, (S2.4) 82 

with 83 

count + (𝑡) = {
1 for 𝑡 > 0
0.5 for 𝑡 = 0
0 for 𝑡 < 0

}. (S2.5) 84 

Note that this permutation test corresponds to a one-sided test because condition (a) requires 85 

a negative regression coefficient for the focal explanatory variable. Allowing both signs gives a 86 

two-sided test. 87 

 To see the connection with normal permutation tests for regression coefficients in a given 88 

model, we assume that 𝐦̃𝑗 is always equal to 𝐦 for all 𝑗 = 1,… , 𝐽, and we neglect condition 89 

(a). Then we can transform 𝐴(𝐱̃𝐻
𝑗
) as 90 

𝐴(𝐱̃𝐻
𝑗
) = δAIC(𝐱̃𝐻

𝑗
;𝐦)

= AIC(𝐲, 𝐱1, … , 𝐱𝐻−1, 𝐱̃𝐻
𝑗
;𝐦𝐻−) − AIC(𝐲, 𝐱1, … , 𝐱𝐻−1, 𝐱̃𝐻

𝑗
;𝐦)

= −2𝑙 ((𝐲, 𝐱1, … , 𝐱𝐻−1, 𝐱̃𝐻
𝑗
;𝐦𝐻−))  +  2𝑙(𝐲, 𝐱1, … , 𝐱𝐻−1, 𝐱̃𝐻

𝑗
;𝐦) − 2, (S2.6)

 91 

where 𝑙(𝐲, 𝐱1, … , 𝐱𝐻−1, 𝐱̃𝐻
𝑗
;𝐦) is the maximum log-likelihood for model 𝐦 and dataset 92 

𝐲, 𝐱1, … , 𝐱𝐻−1, 𝐱̃𝐻
𝑗

. We see 𝐴(𝐱𝐻) = −2𝑙(𝐲, 𝐱1, … , 𝐱𝐻−1, 𝐱̃𝐻
𝑗
;𝐦𝐻−) +93 

 2𝑙(𝐲, 𝐱1, … , 𝐱𝐻−1, 𝐱𝐻;𝐦) − 2. Thus, in this case, 𝑝(𝐴(𝐱𝐻)) gives a p-value by a permutation 94 

test using the log-likelihood ratio for the test statistic in a given model 𝐦, without taking into 95 

account the model selection process. 96 

Resampling rule 97 

In our permutation test, following the philosophy of the permutation-of-regressor-residuals test 98 

(Werft and Benner 2010), we keep the expected correlation structure among all explanatory 99 
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variables constant in the contracted best model 𝐦 = (𝑚1, … ,𝑚𝐻). We express 𝐱𝐻 as a linear 100 

function of the remaining explanatory variables and residuals 𝛆𝐻, 101 

𝐱𝐻 = 𝑚0𝜂0  + 𝑚1𝜂1𝐱1  +  … + 𝑚𝐻−1𝜂𝐻−1𝐱𝐻−1  +  𝛆𝐻 , (S2.7), 102 

where 𝑚0 = 1. For ℎ = 1,… ,𝐻, only 𝜂ℎ with 𝑚ℎ = 1 are specified by the least squares 103 

estimations (𝐱ℎ with 𝑚ℎ = 0 are not used for the regression). Then random permutation of the 104 

residuals 𝛆𝐻 by 𝐽 times gives 105 

𝐱̃𝐻
𝑗

= 𝑚0𝜂0  + 𝑚1𝜂1𝐱1  +  … + 𝑚𝐻−1𝜂𝐻−1𝐱𝐻−1  +  𝛆̃𝐻
𝑗 (S2.8) 106 

for 𝑗 = 1,… , 𝐽, with the 𝑗th permutated residual 𝛆̃𝐻
𝑗

. 107 

 108 

S2.4 Discussion on conditions for statistical contributiveness 109 

In condition (i) for the statistical contributiveness (defined in “Statistical inference” in the main 110 

text), the threshold CΔAIC = 2.0 is chosen because any model with ΔAIC > 2.0 is rejected by 111 

the parametric likelihood ratio test for significance level 0.05, when that model is nested in the 112 

contracted best model, as noted by Akaike (1974). This is because the p-value in such a case is 113 

given by Pr (𝜒𝑘
2 > ΔAIC + 2𝑘) in the parametric log-likelihood test, where and 𝜒𝑘

2 is a chi-114 

square random variable with 𝑘 degrees of freedom, i.e., difference in the number of 115 

explanatory variables between the contracted best model and a focal nested model (Murtaugh 116 

2014). Pr(𝜒𝑘
2 > ΔAIC + 2𝑘) < 0.05 holds good for any 𝑘 ≥ 1 under ΔAIC > 2.0. Although 117 

this relationship does not hold for non-nested models, choosing 2.0 seems to be a good starting 118 

point. Condition (ii) reinforces condition (i) by suppressing biases caused by small sample sizes, 119 

because the permutation-of-regressor-residuals test is reportedly robust against small sample 120 

sizes and correlations among explanatory variables (Potter 2005, Werft and Benner 2010). 121 

(When an 𝛼ΔAIC lower than 0.05 is chosen, CΔAIC needs adjustment so that any nested model 122 

of ΔAIC > CΔAIC is rejected by the parametric likelihood ratio test for the significance level 123 

𝛼ΔAIC.) As for condition (iii), its examination is straightforward if the contracted best model in 124 

(i) has no grouped variable, otherwise it becomes somewhat complicated (see the next 125 



6 

 

subsection for details). 126 

Condition (i) examines whether all models with ΔAIC ≤ 2.0 have the focal explanatory 127 

variable with the same sign for its regression coefficients. If models with ΔAIC ≤ 2.0 include 128 

all models with 𝑝 ≥ 0.05 (i.e., models not rejected in comparison with the best model), or 129 

equivalently if ΔAIC > 2.0 ensures 𝑝 < 0.05, then our definition for the statistical 130 

contributiveness has a straightforward connection with the standard concept of statistical 131 

significance. This can be stated as “the focal explanatory variable has the same sign of effect in 132 

all models that may not be rejected by statistical tests in comparison with the best model.” 133 

However, ΔAIC > 2.0 ensures 𝑝 < 0.05 only for models nested in the best model, in the 134 

parametric likelihood-ratio test, as explained above. We can calculate 𝑝-values for non-nested 135 

models by applying the Cox test (Cox 1961), Vuong test (Vuong 1989), or Clarke test (Clarke 136 

2003). In this case, however, the number of models with 𝑝 ≥ 0.05 can be much larger than that 137 

of models with ΔAIC ≤ 2.0, which may result in too conservatively judging the statistical 138 

contributiveness of explanatory variables. Using permutation tests instead might give tighter 𝑝-139 

values, but it slows the analysis considerably. Consequently, for quick extraction of meaningful 140 

information from the data, we adopted ΔAIC ≤ 2.0 instead of 𝑝 > 0.05 in condition (i). 141 

 142 

S2.5 Condition (iii) for statistical contributiveness 143 

We explain how to examine condition (iii) when the contracted best model has grouped 144 

variables. We denote the explanatory variables for the contracted best model by 𝐱1, … , 𝐱𝐾, and 145 

denote the uncontracted environmental variables by 𝐳1, … , 𝐳𝐿. For 𝑘 = 1,… , 𝐾, when 𝐱𝑘 is a 146 

single variable, then among 𝐳1, … , 𝐳𝐿 we can find 𝐳𝑐(𝑘) that is identical to 𝐱𝑘, and we include 147 

it in the initial model for the stepwise selection by AIC. When 𝐱𝑘 is a grouped variable 148 

representing a contraction group having more than two uncontracted environmental variables, 149 

we choose 𝐳𝑐(𝑘) so that its absolute correlation with 𝐱𝑘 is the maximum among 𝐳1, … , 𝐳𝐿, 150 

that is, 𝑐(𝑘) = argmax𝑗∈{1,…,𝐿}(|cor(𝐱𝑘 , 𝐳𝑗)|), and we include 𝐳𝑐(𝑘) in the place of 𝐱𝑘 in the 151 
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initial model. When 𝐱𝑘 is a grouped variable representing a contraction group having exactly 152 

two uncontracted environmental variables, denoted by 𝐳𝑐1(𝑘) and 𝐳𝑐2(𝑘), then both variables 153 

always have the same absolute correlation with 𝐱𝑘. Thus, we include both variables for the 154 

initial model in the place of 𝐱𝑘. 155 

 After obtaining the uncontracted best model by the stepwise model selection, we examine 156 

condition (iii) for each of 𝐱𝑘 for 𝑘 = 1,… , 𝐾, as follows. When 𝐱𝑘 is a single variable, then 157 

we judge that condition (iii) is met if 𝐳𝑐(𝑘) = 𝐱𝑘 is included in the uncontracted best model, 158 

and if the regression coefficient 𝛾𝑐(𝑘) for 𝐳𝑐(𝑘) in the uncontracted best model shares the same 159 

sign with the regression coefficient 𝛽𝑘 for 𝐱𝑘 in the contracted best model, that is, 𝛾𝑐(𝑘)𝛽𝑘 >160 

0. 161 

 When 𝐱𝑘 is a grouped variable representing a contraction group having more than two 162 

uncontracted environmental variables, then we judge that condition (iii) is met if 𝐳𝑐(𝑘) is 163 

included in the uncontracted best model, and if its regression coefficient 𝛾𝑐(𝑘) multiplied by 164 

cor(𝐳𝑐(𝑘), 𝐱𝑘) shares the same sign with the regression coefficient 𝛽𝑘 for 𝐱𝑘 in the contracted 165 

best model, that is, 𝛾𝑐(𝑘)cor(𝐳𝑐(𝑘), 𝐱𝑘)𝛽𝑘 > 0. 166 

 When 𝐱𝑘 is a grouped variable representing a contraction group having exactly two 167 

uncontracted environmental variables 𝐳𝑐1(𝑘) and 𝐳𝑐2(𝑘), then we judge that condition (iii) is 168 

met if (a) 𝐳𝑐1(𝑘) and 𝐳𝑐2(𝑘) are both included and 𝛾𝑐1(𝑘)cor(𝐳𝑐1(𝑘), 𝐱𝑘)𝛽𝑘 > 0 and 169 

𝛾𝑐2(𝑘)cor(𝐳𝑐2(𝑘), 𝐱𝑘)𝛽𝑘 > 0 are both satisfied, or if (b) only 𝐳𝑐1(𝑘) is included and 170 

𝛾𝑐1(𝑘)cor(𝐳𝑐1(𝑘), 𝐱𝑘)𝛽𝑘 > 0 is satisfied, or if (c) only 𝐳𝑐2(𝑘) is included and 171 

𝛾𝑐2(𝑘)cor(𝐳𝑐2(𝑘), 𝐱𝑘)𝛽𝑘 > 0 is satisfied. 172 

 173 

S2.6 Interaction among statistically contributive explanatory variables 174 

When a focal animal category had more than one statistically contributive explanatory variable 175 

in the analysis for main effects (described in “Statistical inference” in the main text), we further 176 
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analyzed interactions among them. First, for each possible combination of the contributive 177 

variables, we calculated the product of the two variables’ intensities at each pond and added it to 178 

the set of contracted environmental variables and to the set of uncontracted environmental 179 

variables. Second, we conducted the analysis described in the sections “Model selection” and 180 

“Statistical inference” in the main text. Note that the set of models examined in this analysis for 181 

interactions includes the set of models in the analysis for main effects. Thus, AICs of the 182 

contracted best models in this analysis for interactions are always no higher than those of the 183 

corresponding contracted best models in the analysis for main effects. Therefore, the contracted 184 

best models with interactions are all as good as the corresponding contracted best models 185 

without interactions. 186 

 187 

S2.7 Best models 188 

The best models for explaining the taxonomic richness of animal groups shown in Figs 2 and 3 189 

in the main text are listed below. All of the best models were not Poisson regression mixed 190 

models but normal Poisson regression models (i.e., 𝜎 = 0, which gives 𝑟𝑖 = 0 for all i in Eq. 191 

(2) in the main text). Each 𝑛model indicates the number of models satisfying ΔAIC ≤ 2.0. 192 

“XXX” between two variable names means the interaction of those variables. Statistically 193 

contributive stressors in contracted best models are indicated with “*” (contributive and 194 

significant) or “%” (contributive but non-significant). 195 

 196 

All-sampled 197 

Contracted best model (𝑟2 = 0.64, 𝑛model = 6): 198 

E(ln(y)) = 4.71 – 0.32[Cont.var1.1] – 0.27[Cont.var1.3] – 0.49[I.BPMC] – 0.61[%shallowness] 199 

– 0.54[*F-plant noncoverage] – 0.38[concrete bank] 200 

Uncontracted best model (𝑟2 = 0.66): 201 

E(ln(y)) = 4.15 + 0.31[I.thiamethoxam] + 0.32[H.butachlor] – 0.44[I.BPMC] – 202 
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0.56[shallowness] – 0.47[F-plant noncoverage] – 0.40[concrete bank] 203 

 204 

Large animal 205 

Contracted best model (𝑟2 = 0.69, 𝑛model = 32) 206 

E(ln(y)) = 4.07 – 0.68[Cont.var1.2] + 0.70[F.IBP...ignition loss] – 1.28[*shallowness] – 0.67[*F-207 

plant noncoverage] 208 

Uncontracted best model (𝑟2 = 0.83) 209 

E(ln(y)) = 4.27 – 0.70[E-plant noncoverage] + 0.74[ignition loss] – 1.44[shallowness] – 210 

0.62[F-plant noncoverage] + 0.89[F.furametpyr] – 0.38[F.metominostrobin Z] 211 

 212 

Small animal 213 

Contracted best model (𝑟2 = 0.59, 𝑛model = 18) 214 

E(ln(y)) = 3.71 – 0.37[Cont.var1.1] – 0.52[*I.BPMC] – 0.52[*F-plant noncoverage] – 215 

0.83[*concrete bank] 216 

Uncontracted best model (𝑟2 = 0.75) 217 

E(ln(y)) = 3.18 – 0.39[I.BPMC] – 0.40[F-plant noncoverage] – 1.03[concrete bank] + 218 

0.62[F.fthalide] + 0.60[area] 219 

 220 

Small animal (with interaction) 221 

Contracted best model (𝑟2 = 0.77, 𝑛model = 27) 222 

E(ln(y)) = 3.87 – 0.61[Cont.var1.1] – 0.33[bullfrog] – 0.45[*F-plant noncoverage] – 223 

1.31[*I.BPMC XXX concrete bank] – 0.72[F-plant noncoverage XXX concrete bank] 224 

Uncontracted best model (𝑟2 = 0.82) 225 

E(ln(y)) = 2.91 – 0.22[bullfrog] – 1.01[I.BPMC XXX concrete bank] – 0.80[F-plant 226 

noncoverage XXX concrete bank] + 0.48[H.pentoxazone] + 0.35[area] 227 

Vertebrate 228 
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Contracted best model (𝑟2 = 0.23, 𝑛model = 17): 229 

E(ln(y)) = 1.66 -0.76[F.Probenazole] 230 

Uncontracted best model (𝑟2 = 0.43): 231 

E(ln(y)) = 1.70 -0.58[F.Probenazole] -0.58[Black_bass] 232 

 233 

Invertebrate 234 

Contracted best model (𝑟2 = 0.72, 𝑛model = 4): 235 

E(ln(y)) = 4.85 – 0.37[Cont.var1.1] – 0.39[Cont.var1.3] – 0.71[*I.BPMC] – 0.65[shallowness] – 236 

0.67[*F-plant noncoverage] – 0.58[%concrete bank] 237 

Uncontracted best model (𝑟2 = 0.75): 238 

E(ln(y)) = 4.14 + 0.36[I.thiamethoxam] + 0.46[H.butachlor] – 0.65[I.BPMC] – 239 

0.58[shallowness] – 0.60[F-plant noncoverage] – 0.64[concrete bank] 240 

 241 

Invertebrate (with interaction) 242 

Contracted best model (𝑟2 = 0.74, 𝑛model = 4): 243 

E(ln(y)) = 4.76 – 0.63[Cont.var1.1] – 0.30[bullfrog] – 0.59[shallowness] – 0.59[F-plant 244 

noncoverage] – 1.25[*I.BPMC XXX concrete bank] – 0.63[%F-plant noncoverage XXX 245 

concrete bank] 246 

Uncontracted best model (𝑟2 = 0.75): 247 

E(ln(y)) = 4.12 + 0.58[I.thiamethoxam] – 0.32[bullfrog] – 0.54[shallowness] – 0.58[F-plant 248 

noncoverage] – 1.19[I.BPMC XXX concrete bank] – 0.38[F-plant noncoverage XXX concrete 249 

bank] 250 

 251 

Fish 252 

Contracted best model (𝑟2 = 0.23, 𝑛model = 15): 253 

E(ln(y)) = 1.35 – 1.03[*F.probenazole] 254 

Uncontracted best model (𝑟2 = 0.68): 255 
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E(ln(y)) = 1.37 – 0.87[F.probenazole] – 4.67[black bass] + 4.87[I.tebufenozide] + 256 

4.40[F.fthalide] – 1.42[F.isoprothiolane] 257 

 258 

Large insect 259 

Contracted best model (𝑟2 = 0.86, 𝑛model = 7): 260 

E(ln(y)) = 4.61 – 1.11[bluegill] – 0.96[Cont.var1.3] – 0.68[crayfish] – 2.12[I.BPMC] – 1.73[F-261 

plant noncoverage] – 0.83[concrete bank] 262 

Uncontracted best model (𝑟2 = 0.85): 263 

E(ln(y)) = 3.93 – 0.97[*bluegill] + 0.93[H.butachlor] – 0.70[crayfish] – 2.14[*I.BPMC] – 264 

1.78[*F-plant noncoverage] – 1.02[concrete bank] 265 

 266 

Large insect (with interaction) 267 

Contracted best model (𝑟2 = 0.88, 𝑛model = 4): 268 

E(ln(y)) = 5.85 – 0.79[Cont.var1.1] – 1.73[Cont.var1.3] – 0.78[crayfish] – 1.53[%shallowness] 269 

– 1.76[*F-plant noncoverage] – 2.58[*bluegill XXX I.BPMC] 270 

Uncontracted best model (𝑟2 = 0.92): 271 

E(ln(y)) = 6.00 + 1.76[H.butachlor] – 0.83[crayfish] – 1.56[shallowness] – 2.18[F-plant 272 

noncoverage] – 2.24[bluegill XXX I.BPMC] – 1.97[E-plant noncoverage] 273 

 274 

Small insect 275 

Contracted best model (𝑟2 = 0.58, 𝑛model = 39): 276 

E(ln(y)) = 2.63 + 0.41[F.probenazole] – 0.43[F-plant noncoverage] – 0.74[concrete bank] 277 

Uncontracted best model (𝑟2 = 0.77): 278 

E(ln(y)) = 2.57 – 1.03[*concrete bank] – 0.95[TN] + 0.93[area] – 0.48[F.isoprothiolane] 279 

 280 

S2.8 Impacts of statistically contributive explanatory variables 281 

When the contracted best model had 𝐾 explanatory variables, of which 𝐽 variables had 282 
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statistically contributive effects, we calculated their impacts on the response variable 283 

(taxonomic richness of the focal animal category) as follows. We permuted the explanatory 284 

variables so that the statistically contributive variables come first, which allowed rewriting of 285 

Eq. (2) in the main text as 286 

ln(𝑌𝑖) = α + ∑𝛽𝑗𝑥𝑗,𝑖 

𝐽

𝑗=1

+ ∑ 𝛽𝑘𝑥𝑘,𝑖 

𝐾

𝑘=𝐽+1

+ 𝑟𝑖. (S2.9) 287 

We assumed a hypothetical 0th pond with all contributive variables having zero intensities and 288 

all non-contributive variables having the average intensities among the studied ponds (i.e., 289 

𝑥𝑗,0 = 0 for all 𝑗 = 1,… , 𝐽, and 𝑥𝑘,0 = 𝑥̅𝑘 =
1

𝑀
∑ 𝑥𝑘,𝑖
𝑀
𝑖=1  for all 𝑘 = 𝐽 + 1,… , 𝐾). We call this 290 

hypothetical pond the normal pond. From Eq. (S2.9), the expected taxonomic richness of the 291 

normal pond is given by 292 

𝑅 = exp(𝛼 + ∑ 𝛽𝑘𝑥̅𝑘

𝐾

𝑘=𝐽+1

) , (S2.10) 293 

where 𝑅 = 𝑌0 holds for the normal Poisson regression (𝑟𝑖 = 0). At the normal pond, if we 294 

increase the intensity of the 𝑗th explanatory variable, 𝑥𝑗,0, from its minimum value 0 to its 295 

average 𝑥̅𝑗 among the studied ponds, then the expected taxonomic richness is given by 296 

𝑅𝑗
mean = 𝑅 exp(𝛽𝑗𝑥̅𝑗). The change rate of the taxonomic richness is calculated as 𝑅𝑗

mean/𝑅 =297 

exp(𝛽𝑗𝑥̅𝑗). On this basis, we calculated the mean impact of the 𝑗th explanatory variable as the 298 

strength of the change rate, 299 

𝐼𝑗
mean =

{
 
 

 
 𝑅𝑗

mean

𝑅
= exp(𝛽𝑗𝑥̅𝑗) for 𝛽𝑗 > 0 

𝑅

𝑅𝑗
mean = exp(−𝛽𝑗𝑥̅𝑗) for 𝛽𝑗 < 0.

(S2.11) 300 

Note that 𝐼𝑗
mean for positive 𝛽𝑗 indicates the strength of the increasing rate, whereas 𝐼𝑗

mean 301 

for negative 𝛽𝑗 gives the strength of the diminishing rate. 302 

 Analogously, if we increase the intensity of the 𝑗th explanatory variable from its minimum 303 

value 0 to its maximum 1 at the normal pond, then the expected taxonomic richness is given by 304 
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𝑅𝑗
max = 𝑅 exp (𝛽𝑗). On this basis, we calculated the maximum impact of the 𝑗th explanatory 305 

variable as follows:  306 

𝐼𝑗
max =

{
 
 

 
 𝑅𝑗

max

𝑅
= exp(𝛽𝑗) for 𝛽𝑗 > 0 

𝑅

𝑅𝑗
max = exp(−𝛽𝑗) for 𝛽𝑗 < 0.

(S2.12) 307 

 When all statistically contributive variables in the contracted best model had negative 308 

effects (i.e., 𝛽𝑗 < 0 for all 𝑗 = 1,… , 𝐽), then by changing their intensities at the normal pond 309 

so that 𝑥𝑗,0 = 𝑥𝑗,𝑖 holds for all 𝑗 = 1,… , 𝐽, we calculated their combined negative impact at the 310 

𝑖th pond as the strength of diminishing rate, 311 

𝐼{1,…,𝐽}
𝑖 =

𝑅

𝑅 exp (∑ 𝛽𝑗𝑥𝑗,𝑖
𝐽
𝑗=1 )

= exp(−∑𝛽𝑗𝑥𝑗,𝑖

𝐽

𝑗=1

). (S2.13) 312 

From this equation, we calculated the mean combined impact as a geometric mean among 313 

𝐼{1,…,𝐽}
𝑖  for 𝑗 = 1,… , 𝐽, as 314 

𝐼{1,…,𝐽}
mean = [Π𝑖=1

𝑀 𝐼{1,…,𝐽}
𝑖 ]

1
𝑀 = exp(−∑𝛽𝑗𝑥̅𝑗

𝐽

𝑗=1

) , (S2.14) 315 

which corresponds to the combined impact on the average pond. In addition, we calculated the 316 

maximum combined impact as the maximum among 𝐼{1,…,𝐽}
𝑖  for 𝑗 = 1,… , 𝐽 as 317 

𝐼{1,…,𝐽}
max = max{𝐼{1,…,𝐽}

1 , … , 𝐼{1,…,𝐽}
𝑀 }. (S2.15) 318 

When some of statistically contributive variables had positive effects, those variables were 319 

omitted. In this study, we also omitted statistically contributive explanatory variables that did 320 

not have statistically significant effects. (As for the combined impact of positive effects, its 321 

mean and maximum can be calculated with Eqs. (S2.13–S2.15) by removing the minus symbol 322 

on the right-hand sides of Eqs. (S2.13) and (S2.14) and omitting variables with negative effects 323 

instead, although such a calculation was not conducted in this study.) 324 

S2.9 Discussion on our statistical method 325 

In multivariate regression analysis, too many explanatory variables can lead to a 326 
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multicollinearity problem as well as extremely heavy calculation for model selection 327 

procedures. However, removing and/or aggregating some of those variables based on relevant 328 

previous studies may cause difficulty in detection of unknown relationships between the 329 

response and explanatory variables. To handle this difficulty, we developed a new statistical 330 

procedure for multivariate regression analysis by combining the contraction of explanatory 331 

variables (by using only correlations among them), best-subset model selection, stepwise model 332 

selection, and permutation tests. This procedure enabled us to detect previously unknown and 333 

significantly negative effects of two pesticides, probenazole (fungicide) and BPMC 334 

(insecticide), on taxonomic richness of the sampled animals and to evaluate the combined 335 

impacts of BPMC and other environmental stressors. In principle, our procedure is applicable to 336 

data with not only univariate response variables but also multivariate ones, as long as the 337 

models’ AICs (or other suitable criteria) can be calculated. 338 

 In this study, the most statistically contributive stressors, those satisfying conditions (i–iii) 339 

defined in the “Statistical inference” section in the main text, were also statistically significant 340 

in the permutation test that explicitly repeats the model selection process. Thus, first finding 341 

statistically contributive explanatory variables and then examining their statistical significance 342 

may be an efficient strategy, because the permutation test that repeats model selection requires 343 

heavy calculation. Further examination and improvement of our procedure, and clarification of 344 

its relationships with other approaches for post-model-selection inference (Leeb et al. 2015; 345 

Taylor and Tibshirani 2015, 2018; Lee and Wu2018), may provide more efficient and robust 346 

tools for such inference. 347 

 348 

 349 
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