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Supplementary Text 2. Details of BMI GWAS in UKB. 

GWAS was performed using 453,397 European samples as determined by both genetic and 

self-reported ancestry. Quality control of the samples have been described previously1. Individuals 

flagged by UKB as having excess heterozygosity, excess missingness, an inferred versus genetic sex 

mismatch, putative aneuploidy, or currently pregnant were additionally excluded. Average BMI from 

up to three assessment center visits of the male and female samples were separately adjusted for 

covariates (average age in months, average age in months squared, genotyping platform, assessment 

year, and the first ten genetic principal components), followed by inverse normal transformation to 

calculate BMI z-scores. BOLT-LMM2 (v2.3.2) was used to perform linear mixed model GWAS on 

sex-combined BMI z-scores. 

  



Supplementary Text 3. Sensitivity analyses of the metabolite classification scheme. 

To assess how sensitive our genetic IV analysis and classification scheme would be to weak 

instrument and pleiotropy bias, we evaluated external metabolite instruments and performed a test for 

pleiotropy for the BMI instrument. First, to address weak instrument bias that could be caused by our 

GM, which were selected using relatively small GWAS, we searched previously published GWAS to 

obtain external instruments for the 10 known metabolites classified in our causality groups. Eight out 

of the 10 known metabolites have genome-wide significant (p < 5 × 10-8) published instruments 

(Supplementary Table 5). Four of these metabolites have published instruments in the same loci (i.e. 

< 100 kb) as our GM, indicating that a good portion of our GM is replicable in larger cohorts. When 

looking at only the top published instruments (i.e. SNP with smallest p-value) for the cause and 

bidirectional metabolites, in all 5 cases, the metabolites showed consistent direction of causal effect 

compared to results obtained using our GM (Supplementary Table 5A). Similarly, when we looked at 

top published instruments for the effect metabolites (i.e. metabolites that lack causal metabolite-to-

BMI evidence in our data), 2 out of 3 metabolites had metabolite-to-BMI IV p > 0.05, thus generally 

agreeing with results from our GM (Supplementary Table 5B). The only exception is valine, which 

we explored in more detail in Discussion of main text. 

Next, to estimate horizontal pleiotropy among individual BMI SNPs (Gb) contained in GB, we 

performed the MR-PRESSO global test for each BMI-associated metabolite (Supplementary Table 

6). Overall, only 17 out of 324 (5.25%) metabolites had MR-PRESSO p < 0.05 in the pleiotropy tests, 

and only two of those were in our causality groups (both unknowns, with OE names HILIC-pos_4106 

and C8-pos_871). Thus, horizontal pleiotropy of the BMI SNPs is unlikely to bias the majority of our 

metabolite classifications using GB. However, due to insufficient numbers of strong instruments 

available in our metabolite GWAS or in the literature, a comparable analysis could not be performed to 

assess pleiotropy in the metabolite instruments. 

  



Supplementary Text 4. Analysis software. 

Unless otherwise indicated in the main text, data analyses were performed using R (v3.2) and 

Python (v2.7). Mapping of unknown metabolites across datasets and pathway analyses were performed 

using PAIRUP-MS (https://github.com/yuhanhsu/PAIRUP-MS). Inverse variance weighted meta-

analyses of BMI-metabolite and metabolite-GB associations in OE and MCDS were performed using 

the meta R package (v4.7.0). Plots in various figures were generated using default R functions, ggplot2 

(v2.2.1), or the heatmap.2() function in gplots (v3.0.1). For main analysis steps described in this paper 

that were not performed using pre-existing software, we provide example scripts and documentation on 

GitHub (https://github.com/yuhanhsu/ObesityMetabolome). 

  



Supplementary Text 5. Data availability. 

Individual-level metabolite data for the OE cohort are available in the PAIRUP-MS GitHub 

(https://github.com/yuhanhsu/PAIRUP-MS); other individual-level OE and BioAge data may be 

requested through the Estonian Biobank (https://www.geenivaramu.ee/en/biobank.ee/data-access) and 

related questions should be directed to Tonu Esko (tesko@broadinstitute.org). We obtained permission 

to analyze the MCDS data from the SIGMA T2D Consortium; previously published MCDS data can 

be accessed through the T2D Knowledge Portal (http://www.type2diabetesgenetics.org) and inquiries 

for unpublished data should be directed to Jose Florez (jcflorez@mgh.harvard.edu) and Dorothy Pazin 

(dorothy@broadinstitute.org). UKB data access can be requested through the UK Biobank Access 

Management System (https://bbams.ndph.ox.ac.uk/ams/). Meta-analyzed metabolite GWAS summary 

statistics with p < 1 × 10-5 are available on GitHub (https://github.com/yuhanhsu/ObesityMetabolome) 

and requests for the full summary statistics should be directly to Joel Hirschhorn 

(Joel.Hirschhorn@childrens.harvard.edu). 

  



Supplementary Text 6. Supplementary discussion of Cirulli et al. 

The observational association of many BMI-associated metabolites in our study generally agree 

with that reported by Cirulli et al3 in a recent survey of the obesity metabolome in a larger number of 

individuals including positive (e.g. kynurenine, leucine, glutamate, valine, alanine, tyrosine, 

propionylcarnitine) and negative associations (e.g. asparagine, glycine, serine). Their data from 

longitudinal weight change metabolomics indicate that changes in the metabolome track with future 

changes in BMI, in a way that is at least partly independent from baseline BMI. We did not examine 

longitudinal weight changes, but rather attempted to identify metabolites with greater evidence of 

being causal for adult BMI. The authors specifically examined variants associated with BMI and their 

association with metabolites, both individually and as a group. Broadly, they did not identify evidence 

that BMI instruments (equivalent to GB and Gb in our study) mediated the effect on BMI via 

metabolites. In contrast, our approach provides another means to test the directionality of effect by 

ranking metabolites as more or less likely to be causes of or effects of BMI using a combination of 

instruments for BMI and the metabolite. Finally, we did identify some metabolites with observational 

associations that differed from the IV association (e.g. valine is an effect of BMI with BMI IV effect 

directionally consistent with the crude association, while tyrosine is bidirectional with BMI vs. 

metabolite IV effect estimates in opposing directions). 

  



Supplementary Text 7. Supplementary discussion of IV analysis limitations. 

The presence of a limited number of GM SNPs associated multiple metabolites could be 

evidence of potential pleiotropy bias whereby a non-causal metabolite may appear to be causal for a 

trait, because of the metabolite has shared genetic instrument with a true causal metabolite. It is also 

plausible, however, that these GM are causal for multiple metabolites along a potentially causal 

metabolic pathway (e.g. variant for an enzyme in the pathway), which is vertical pleiotropy and not a 

violation of the exclusion criterion. Furthermore, because we combined metabolites into causality 

groups to identify enriched metabolite sets in pathway analyses, the influence of misclassification of a 

single metabolite is diminished (i.e. an enriched metabolite set is not driven by a single metabolite in 

the set). 

We sometimes identified cause and effect metabolite associations to be in opposite directions 

from each other and/or the observational BMI-metabolite association. This may be a byproduct of our 

p-value ranking method in a relatively small dataset. Weak instrument bias in a two-sample design will 

bias effect estimates towards the null, thus limiting our ability to discriminate metabolites with 

stronger or weaker evidence of a cause or effect using the top and bottom quartiles of p-values. Thus, 

the inversion of observational and cause/effect associations may be the result of weak instrument bias, 

the result of pleiotropy bias, or a reflection of true complexity of obesity pathophysiology. In addition, 

the two directions of effect of the bidirectional metabolites could represent an admixture of effects, as 

pleiotropy and cyclic biological pathways would violate the exclusion criterion. The downstream 

pathways analyses thus use the classification (i.e. bidirectional) rather than the direction or magnitude 

of the IV effect estimates to infer interesting biology despite this limitation. 

Our study was limited to two discovery metabolomics datasets from disparate ancestral 

backgrounds and at a single point in an individual's lifetime. These ancestral differences could 

potentially affect validity of genetic IV analyses which assume random allocation of variants 

conditional on ancestry. In addition, if the metabolome is ascertained under differing conditions in the 



two population, this could also introduce bias (e.g. ascertainment prior to the onset of other disease 

states in one population versus after the onset in another population). Data from other populations 

(European and other ancestry), with metabolites ascertained at different times in life history will 

improve the validity and generalizability of these findings and the methodologic approach.    
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