
Supplementary Information
for

genozip: a fast and efficient compression tool for VCF files

Divon Lan1*, Ray Tobler1, Yassine Souilmi1✝, Bastien Llamas1✝*

1 School of Biological Sciences, The Environment Institute, Faculty of Sciences, The
University of Adelaide, Adelaide SA 5005, Australia

✝ Equal contribution
* Corresponding authors: DL (divon.lan@adelaide.edu.au) and BL
(bastien.llamas@adelaide.edu.au)

Content

1. Full list of options of genozip, genounzip, genocat and genols
2. Implementation
3. Compression ratio and speed benchmarks in more detail
4. Benchmarking of genotype-only compression algorithms
5. Core scalability test - raw data

1. Full list of options of genozip, genounzip, genocat and genols

Compress VCF (Variant Call Format) files

Usage: genozip [options]... [files or urls]...

See also: genounzip genocat genols

Supported input file types: .vcf .vcf.gz .vcf.bgz .vcf.bz2 .vcf

 .xz .bcf .bcf.gz .bcf.bgz

Note: for .bcf files, bcftools needs to be installed, and for

 .xz files, xz needs to be installed

Examples: genozip file1.vcf file2.vcf -o concat.vcf.genozip

 genozip --optimize --password 12345 ftp://ftp.ncbi.nlm

 .nih.gov/file2.vcf.gz

Actions - use at most one of these actions:

 -d --decompress Same as running genounzip. For more details,

 run: genounzip --help

 -l --list Same as running genols. For more details,

 run: genols --help

 -h --help Show this help page. Use with -f to see

 developer options.

 -L --license Show the license terms and conditions for

 this product

 -V --version Display version number

Flags:

 -c --stdout Send output to standard output instead of a

 file

 -f --force Force overwrite of the output file, or

 force writing .vcf.genozip data to standard

 output

 -^ --replace Replace the source file with the result

 file, rather than leaving it unchanged

 -o --output <output-filename>. This option can also be

 used to concatenate multiple input files

 with the same individuals, into a single

 concatenated output file

 -p --password <password>. Password-protected - encrypted

 with 256-bit AES

 -m --md5 Calculate the MD5 hash of the VCF file.

 When the resulting file is decompressed,

 this MD5 will be compared to the MD5 of the

 decompressed VCF.

 Note: for compressed files, e.g. myfile.vcf

 .gz, the MD5 calculated is that of the

 original, uncompressed file.

 -q --quiet Do not show the progress indicator or

 warnings

 -Q --noisy Stop the suppression of warnings

 -t --test After compressing normally, decompress in

 memory (i.e. without writing the

 decompressed file to disk) - comparing the

 MD5 of the resulting decompressed file to

 that of the original VCF. This option also

 activates --md5.

 -@ --threads <number>. Specify the maximum number of

 threads. By default, this is set to the

 number of cores available. The number of

 threads actually used may be less, if

 sufficient to balance CPU and I/O.

 Tip: if you're concerned about sharing the

 computer with other users, rather than

 using --threads to reduce the number of

 threads, a better option would be to use

 the command nice, e.g. 'nice genozip....'.

 This yields CPU to other users if needed,

 but still uses all the cores that are

 available

 --show-content Show the information content of VCF files

 and the compression ratios of each

 component

Optimizing:

 -9 --optimize Modify the VCF file in ways that are likely

 insignificant for analytical purposes, but

 make a significant difference for

 compression. At the moment, these

 optimizations include:

 - PL data: Phred values of over 60 are

 changed to 60. Example: '0,18,270' ->

 '0,18,60'

 - GL data: Numbers are rounded to 2

 significant digits. Example: '-2.61618,-0

 .447624,-0.193264' -> '-2.6,-0.45,-0.19'

 - GP data: Numbers are rounded to 2

 significant digits, as with GL.

 - VQSLOD data: Number is rounded to 2

 significant digits. Example: '-4.19494' ->

 '-4.2'

 Note: due to these data modifications,

 files compressed with --optimized are NOT

 identical as the original VCF after

 decompression. For this reason, it is not

 possible to use this option in combination

 with --test or --md5

 -B --vblock <number between 1 and 2048>. Set the

 maximum size of memory (in megabytes) of

 VCF file data that can go into one variant

 block. By default, this is set to 128 MB.

 The variant block is the basic unit of data

 on which genozip and genounzip operate.

 This value affects a number of things: 1.

 Memory consumption of both compression and

 decompression are linear with the variant

 block size. 2. Compression is sometimes

 better with larger block sizes, in

 particular if the number of samples is

 small. 3. Smaller blocks will result in

 faster 'genocat --regions' lookups

 -S --sblock <number>. Set the number of samples per

 sample block. By default, it is set to 4096.

 When compressing or decompressing a

 variant block, the samples within the block

 are divided to sample blocks which are

 compressed separately. A higher value will

 result in a better compression ratio, while

 a lower value will result in faster

 'genocat --samples' lookups

 --gtshark Use gtshark instead of the default bzlib as

 the final compression step for allele data

 (the GT subfield in the sample data).

 Note: For this to work, gtshark needs to be

 installed - it is a separate software

 package that is not affiliated with genozip

 in any way. It can be found here: https:/

 /github.com/refresh-bio/GTShark.

 Note: gtshark also needs to be installed

 for decompressing files that were

 compressed with this option.

One or more file names may be given, or if omitted, standard input

is used instead

Uncompress VCF (Variant Call Format) files previously compressed

with genozip

Usage: genounzip [options]... [files]...

See also: genozip genocat genols

Examples: genounzip file1.vcf.genozip file2.vcf.genozip

 genounzip file.vcf.genozip --output file.vcf.gz

 genounzip concat.vcf.genozip --split

Options:

 -c --stdout Send output to standard output instead of a

 file

 -z --bgzip Compress the output VCF file(s) with bgzip.

 Note: this option is implicit if --output

 specifies a filename ending with .gz or .bgz.

 Note: bgzip needs to be installed for this

 option to work

 -f --force Force overwrite of the output file

 -^ --replace Replace the source file with the result

 file, rather than leaving it unchanged

 -O --split Split a concatenated file back to its

 original components

 -o --output <output-filename>. Output to this filename

 instead of the default one

 -p --password <password>. Provide password to access file

 (s) that were compressed with --password

 -m --md5 Shows the MD5 hash of the decompressed VCF

 file. If the file was originally compressed

 with --md5, it also verifies that the MD5

 of the original VCF file is identical to

 the MD5 of the decompressed VCF.

 Note: for compressed files, e.g. myfile.vcf.

 gz, the MD5 calculated is that of the

 original, uncompressed file.

 -q --quiet Do not show the progress indicator or

 warnings

 -Q --noisy Stop the suppression of warnings

 -t --test Decompress in memory (i.e. without writing

 the decompressed file to disk) - comparing

 the MD5 of the resulting decompressed file

 to that of the original VCF. Works only if

 the file was compressed with --md5

 -@ --threads <number>. Specify the maximum number of

 threads. By default, this is set to the

 number of cores available. The number of

 threads actually used may be less, if

 sufficient to balance CPU and I/O.

 Tip: if you are concerned about sharing the

 computer with other users, rather than

 using --threads to reduce the number of

 threads, a better option would be to use

 the command nice, e.g. 'nice genozip....'.

 This yields CPU to other users if needed,

 but still uses all the cores that are

 available

 -h --help Show this help page. Use with -f to see

 developer options.

 -L --license Show the license terms and conditions for

 this product

 -V --version Display version number

One or more file names must be given

Print VCF (Variant Call Format) file(s) previously compressed with

genozip

Usage: genocat [options]... [files]...

See also: genozip genounzip genols

Options:

 -r --regions [^]chr|chr:pos|pos|chr:from-to|chr:from-

 |chr:-to|from-to|from-|-to[,...]

 Show one or more regions of the file.

 Examples:

 genocat myfile.vcf.genozip -r22

 :1000000-2000000 (A range of chromosome 22)

 genocat myfile.vcf.genozip -r

 -2000000,2500000- (Two ranges of all

 chromosomes)

 genocat myfile.vcf.genozip -r21

 ,22 (All of chromosome 21 and

 22)

 genocat myfile.vcf.genozip -r^MT

 ,Y (All of chromosomes except

 for MT and Y)

 genocat myfile.vcf.genozip -r^

 -10000 (All sites on all

 chromosomes, except positions up to 10000)

 Note: genozip files are indexed

 automatically during compression. There is

 no separate indexing step or separate index

 file.

 Note: Indels are considered part of a

 region if their start position is.

 Note: Multiple -r arguments may be

 specified - this is equivalent to chaining

 their regions with a comma separator in a

 single argument

 -t --targets Identical to --regions, provided for

 pipeline compatibility

 -s --samples [^]sample[,...]

 Show a subset of samples (individuals).

 Examples:

 genocat myfile.vcf.genozip -s

 HG00255,HG00256 (show two samples)

 genocat myfile.vcf.genozip -s

 ^HG00255,HG00256 (show all samples except

 these two)

 Note: This does not change the INFO data

 (including the AC and AN tags).

 Note: sample names are case-sensitive.

 Note: Multiple -s arguments may be

 specified - this is equivalent to chaining

 their samples with a comma separator in a

 single argument

 -G --drop-genotypes Output the data without the individual

 genotypes and FORMAT column

 -H --no-header Do not output the VCF header

 --header-only Output only the VCF header

 --GT-only For samples, output only genotype (GT) data,

 dropping the other subfields

 --strip Do not output values for ID, QUAL, FILTER,

 INFO; FORMAT is only GT (at most); Samples

 include allele values (i.e. GT subfield)

 only

 -o --output <output-filename>. Output to this filename

 instead of stdout

 -p --password Provide password to access file(s) that

 were compressed with --password

 -@ --threads Specify the maximum number of threads. By

 default, this is set to the number of cores

 available. The number of threads actually

 used may be less, if sufficient to balance

 CPU and I/O.

 Tip: if you're concerned about sharing the

 computer with other users, rather than

 using --threads to reduce the number of

 threads, a better option would be to use

 the command nice, e.g. 'nice genozip....'.

 This yields CPU to other users if needed,

 but still uses all the cores that are

 available

 -q --quiet Do not show warnings

 -Q --noisy Stop the suppression of warnings

 -h --help Show this help page. Use with -f to see

 developer options. Use --header-only if

 that is what you are looking for

 -L --license Show the license terms and conditions for

 this product

 -V --version Display version number

One or more file names must be given

View metadata of VCF (Variant Call Format) files previously

compressed with genozip

Usage: genols [options]... [files or directories]...

See also: genozip genounzip genocat

Options:

 -q --quiet Do not show warnings

 -h --help Show this help page

 -L --license Show the license terms and conditions for

 this product

 -V --version Display version number

One or more file or directory names may be given, or if omitted,

genols runs on the current directory

Options useful mostly for developers of genozip:

 --show-time Show what functions are consuming the most

 time

 --show-memory Show what buffers are consuming the most

 memory

 --show-sections Show the section types of the output

 genozip file and the compression ratios of

 each component

 --show-alleles Output allele values to stdout. Each row

 corresponds to a row in the VCF file. Mixed-

 ploidy regions are padded, and 2-digit

 allele values are replaced by an ascii

 character

 --show-dict Show dictionary fragments written for each

 variant block (works for genounzip too)

 --show-one-dict <field-name>. Show the dictionary for this

 field in a tab-separated list - <field-name>

 may be one of the fields 1-9 (CHROM to

 FORMAT) or a INFO tag or a FORMAT tag

 (works for genounzip too)

 --show-gt-nodes Show transposed GT matrix - each value is

 an index into its dictionary

 --show-b250 Show fields 1-9 (CHROM to FORMAT) as well

 as INFO tags - each value shows the line

 (counting from 1) and the index into its

 dictionary (note: REF and ALT are

 compressed together as they are correlated.)

 This also works with genounzip, but

 without the line numbers.

 --show-one-b250 <field-name>. Show the values for this field

-

 may be one of the fields 1-9 (CHROM to

 FORMAT) or an INFO tag

 --dump-one-b250 <field-name>. Dump the binary content of

 this field, exactly as they appear in the

 genozip format, to stdout - may be one of

 the fields 1-9 (CHROM to FORMAT) or an INFO

 tag

 --show-headers Show the sections headers (works for

 genounzip too)

 --show-index Show the content of the random access index

 --show-gheader Show the content of the genozip header

 (which also includes the list of all

 sections in the file)

 --show-threads Show thread dispatcher activity

 --debug-memory Buffer allocations and destructions

2. Implementation

genozip operates by segmenting the VCF file into separate sections defined by data type
and appropriately processing each section, before applying a general purpose data
compressor, bzip2 (Seward, 1996), to each section. genozip executes a number of data
transformations that take advantage of data covariance due to linkage disequilibrium,
population structure, and potential lab biases, as well as non-textual relationships between
numeric values in the file.

First, the VCF file is divided into variant blocks of up to 128 MB each (configurable with
--vblock), and the samples within each variant block are further divided into sample
blocks of up to 4,096 samples each (configurable with --sblock), from which the
genotypes are extracted and transposed to create a haplotype matrix. Prior to compression,
each haplotype matrix is further transformed by padding the ploidy to the maximal ploidy
represented in the matrix, substituting 2-digit allele values with a single ascii character, and
clustering the rows of haplotypes so that similar haplotypes are adjacent to one other. If the
--gtshark option is used, clustering is skipped, and GTShark (Deorowicz and Danek,
2019) is used as the final-stage compressor of the haplotype matrix, instead of bzip2 .

Second, the phase state data (i.e. | or /) are compressed – in the common case where the
entire variant block has the same phase state, we drop the phase data entirely and just note
the phase state in the variant block header.

Third, the data from each field (CHROM to FORMAT) and subfields of INFO and the sample
data (as defined in the FORMAT field) are extracted into separate dictionaries, and their data
areis replaced with a dictionary index. An exception is the correlated REF and ALT fields that
are combined into one field. For each field, a global dictionary is created for the entire file (or
multiple files in case of concatenation), with new values added incrementally as each variant
block is parsed, so that only a single pass is needed over the file, and crucially, the
compressed file size grows sub-linearly with the number of VCF rows. For the first variant
block, the dictionary entries are sorted by frequency, so that the highest frequency entries
are efficiently encoded. The dictionaries for each field and the associated index data are
then compressed separately. Index data from FORMAT subfields are compressed together
as they are often correlated (for example, the DP and AD subfields). Dictionary search is
implemented efficiently using hash tables, and an algorithm is run after the analysis of the
first variant block to predict their size of the hash table for each field. This algorithm
estimates the expected number of unique words of a particular field in the entire file from the
gradient of the rate of appearance of new unique words within the first variant block.
Extrapolating from the second derivative is obviously error prone, so an algorithm is in place
for growing a hash table in run time, if its size was underestimated, while not affecting
threads that are concurrently operating on it.

For the non-genotype indexed sample data we apply an additional optimization step of
transposing the matrix prior to compressing it, to take advantage of experimental lab bias. In
files with a large number of individuals, such as a File1 here, we have observed data
differences between individuals that likely result from subtle differences in analysis tools

https://paperpile.com/c/K0FCjf/wVsbF
https://paperpile.com/c/K0FCjf/nwUb
https://paperpile.com/c/K0FCjf/nwUb

used – for example, different floating point truncation conventions.

The POS field is often a large contributor to the overall entropy in single or small-sample
files. To improve the compression of this field, we compress the difference between
successive POS values rather than the POS value itself, thereby reducing the range of
values and increasing compressibility.

3. Compression ratio and speed benchmarks in more detail
To benchmark genozip’s compression ratio compared to other popular and state-of-the-art
compression tools, we used two different files from the 1000 Genome Project (The 1000
Genomes Project Consortium, 2012; Sudmant et al., 2015) that we refer to here as ‘File1’
and ‘File2’. We chose the two files for their substantial difference in their content
characteristics (Table S1):

Table S1: Data content of File1 and File2

 File 1 VCF File 2 VCF

Allele values 6.1GB 7.1% 30.2GB 49.2%

Other sample data 80.1GB 92.3% 30.2GB 49.2%

Header and columns 1-9 0.5GB 0.6% 0.95GB 1.5%

File1: 1000 Genome Project phase 1 (The 1000 Genomes Project Consortium, 2012; chr1
ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/release/20110521/ALL.chr1.phase1_release_v3
.20101123.snps_indels_svs.genotypes.vcf.gz). The file contains 1,092 individuals, 3,007,196
variants, and “Other sample data” consisting mostly of the sample fields other than GT, and
is the dominant data component in this file.

File2: 1000 Genome Project phase 3 ((Sudmant et al., 2015); chr1
ftp://ftp.ncbi.nlm.nih.gov/1000genomes/ftp/release/20130502/ALL.chr1.phase3_shapeit2_mv
ncall_integrated_v5a.20130502.genotypes.vcf.gz). The file contains 2,504 individuals,
6,468,347 variants, and Allele values (i.e. the GT subfield) representing ~50% of this file. In
this case, “Other sample data” is comprised of the phase state (/ or |) and the tab character
that separates the samples – both of which are trivial in terms of compression. Therefore the
allele values are about 97% of the remaining data content.

The differences in data content between these two files result in dramatically different
compression ratios in all tools. In both cases, though, genozip achieves the best
compression ratios (Table S2, Figure S1, Figure S2). genozip achieves the highest
compression ratio amongst the all lossless compression tools, and offers competitive
compression even compared to lossy tools such as GTshark .

genozip was tested in three ways - the first, is its default mode. The second, is with the
--optimize option which modifies some data in the FORMAT and INFO subfields of VCF
file in ways that are typically not significant for analytical purposes, but are quite significant
for compression - namely, rounding some floating point numbers to two significant digits and
capping some Phred values (see genozip --help for a detailed list). This compression by
definition is not lossless. As can be seen in Table S2 --optimize significantly improves
the compression of File1 that consists mainly for FORMAT subfield data, but no has no
impact on File2 that has no FORMAT subfield data, The third, is using the --gtshark
which utilizes GTShark for the final stage of compression of the genotype component of the

https://paperpile.com/c/K0FCjf/cxQp+Of6T
https://paperpile.com/c/K0FCjf/cxQp+Of6T
https://paperpile.com/c/K0FCjf/cxQp+Of6T
https://paperpile.com/c/K0FCjf/cxQp+Of6T
http://ftp-trace.ncbi.nih.gov/1000genomes/ftp/release/20110521/ALL.chr1.phase1_release_v3.20101123.snps_indels_svs.genotypes.vcf.gz
http://ftp-trace.ncbi.nih.gov/1000genomes/ftp/release/20110521/ALL.chr1.phase1_release_v3.20101123.snps_indels_svs.genotypes.vcf.gz
https://paperpile.com/c/K0FCjf/Of6T
https://paperpile.com/c/K0FCjf/Of6T
https://paperpile.com/c/K0FCjf/Of6T
ftp://ftp.ncbi.nlm.nih.gov/1000genomes/ftp/release/20130502/ALL.chr1.phase3_shapeit2_mvncall_integrated_v5a.20130502.genotypes.vcf.gz
ftp://ftp.ncbi.nlm.nih.gov/1000genomes/ftp/release/20130502/ALL.chr1.phase3_shapeit2_mvncall_integrated_v5a.20130502.genotypes.vcf.gz

VCF file, instead of the default bzlib . This significantly improves compression in File2
which is enriched in genotype data, but not as much in File1 that consists primarily of
FORMAT subfield data.

We faced a number of challenges with the some of other compression tools:

Hail failed to decompress because it attempted to create very large intermediate files in
the /tmp filesystem. This is a faulty software design as /tmp is typically quite small, and
hence decompression of large files is bound to fail due to space constraints as happened in
our case. To test a workaround and to allow at least partial inclusion of Hail (Hail Team) in
this benchmark despite its malfunctioning, we chose File2 and used Hail’s option to shard
the decompressed file to many smaller files with its parallel='separate_header'
option, and then concatenated the file together with the Linux cat command. The time shown is
the combined to of Hail and cat.

bcftools failed to compress File1 - likely because it is a file created in 2011 prior to the
latest versions of bcftools.

GTShark is not capable of processing FORMAT subfields, and hence is not capable of
compressing File1.

bcftools, Hail and GTShark are not lossless - the decompressed file differs from the
original.

Table S2: Compression ratio comparison
Tool File 1 (MB) vs.

VCF
 File 2

(MB)
vs.
VCF

ORIGINAL 88,775 1X 62,728
genozip 4,430 21X 257 244X
genozip --optimize 3,360 26X 257 244X
genozip --gtshark 4,298 21X 120 523X
gzip 10,282 9X 1026 61X
bcftools -Ob Incapable - 1007 62X
bgzip 10,873 8X 1187 52X
bzip2

 5,767 15X 528 119X
xz 7,014 13X 367 171X
pigz 10287 9X 1030 61X
gtshark Incapable - 128 491X
Hail 18280 4.9X 1258 50X

https://paperpile.com/c/K0FCjf/RzE7

 Figure S1: Compression factor for File1

Figure S2: Compression factor for File2

In terms of execution time, genozip is designed to fully leverage the hardware available,
unless explicitly restricted by the user. As such, it includes advanced memory and thread
management components, that allow almost linear scaling to tens of cores. In table S3, we
have the execution time of each tool on our test machine that has 56 physical cores (4 X
Intel® Xeon® Gold 6132 CPU @ 2.60GHz) and 755GB of usable memory, running an XFS
file system with its default configuration on top of an SSD storage device. While generally
multiple users have access to this computer, the benchmark was run one tool at time, and
done so at a time when no other users or significant processes were running on the
machine.

bcftools , bgzip and xz allow specification on number of threads, and were set to allow
them to maximize the utilization of the hardware - "--threads 56 " for bgzip and
bcftools and "--threads 0 " for xz .

Table S3: Execution time comparison

Tool Compress Decompress

 File 1 File 2 File 1 File 2

genozip 1’22” 1’3” 1’56” 2’23”

gzip 45’19” 10’17” 6’41” 3’47”

bcftools N/A 17’27” N/A 13’8”

bgzip 1’57” 35” 1’2” 46”

bzip2 244’30” 207’31” 39’33” 22’9”

pigz 1’19” 32” 2’58” 1’17”

xz
 21’30” 1’36” 8’26” 2”16

gtshark N/A 24’49” N/A 19’42”

Hail
 4’18” 2’32”³ N/A 3’14”

4. Benchmarking of genotype-only compression algorithms

There are a number of algorithms published in recent years focused on compressing
genotypes (allele values) within VCF files, while not being capable of compressing arbitrary
VCF files. Some are also not capable of decompressing, and all do not guarantee lossless
decompression.

Nevertheless, it is interesting to compare the performance of these algorithms on genotype
data. In this benchmark we included comparing genozip in two modes – its default mode,
and with the options --gtshark -B2048 which would result in the best genotype-data-only
compression. We compare against three genotype compression algorithms - bgt (Li, 2016),
GTC (Danek and Deorowicz, 2018) and GTShark (Deorowicz and Danek, 2019). We also
included the standard tools gzip and bgzip in this comparison, to appreciate how well all
the genotype compression algorithms perform compared to generic compressors

To compare just the genotype data component of a VCF file, we started with File2 from our
compression benchmark, and used the --strip option of genocat to strip out all data,
except genotypes, CHROM, POS, REF and ALT fields, and set the FORMAT field to “GT”:
genocat ALL.chr1.phase3_shapeit2_mvncall_integrated_v5a.20130502.genotypes.3.

vcf.genozip --strip > file2.stripped.vcf

In the results we can see that genozip in its default mode results in a better compression
ratio of the stripped file than all tools except GTShark and GTC , while genozip with
--gtshark -B2048 is better than any other tool.

Table S4: Compression comparison of a genotype-only file

 Bytes
Compression
ratio

Original: file2.stripped.vcf 64,956,779,894

genozip 201,369,011 323

genozip --gtshark -B2048 60,041,662 1082

gzip 851,248,722 76

bgzip 939,705,276 69

bgt 298,990,428 217

GTC 138,182,645 470

GTShark 60,297,201 1077

https://paperpile.com/c/K0FCjf/XDAQ
https://paperpile.com/c/K0FCjf/5nVx
https://paperpile.com/c/K0FCjf/nwUb

5. Core scalability test - raw data
To test the scalability of genozip with the number of available cores, we ran a compression
and decompression test using File1 of our benchmark. We repeated the compression and
decompression cycle scaling the number of used cores from 1 to 50 while recording the
execution time (see Table S5). We observed that genozip compression scaled
approximately linearly up about 28 cores, and then again about linearly up to 50 cores, but
with a smaller slope. Decompression, on the other hand, scaled linearly up to about 20 cores
after which adding additional cores had no benefit (see Figure 1b). A fundamental constraint
on scaling is the need to access the disk file. In the case of genozip, the compressed file is
between one and three orders of magnitude smaller than the original file, so it is the original
file that is the constraint. We speculate that at least part of the difference in scaling between
compression and decompression is the fact that SSD storage is faster in read operations
(compression in our case) than write (decompression).

Table S5: execution time in core scalability test

Cores
Compress
time (sec)

Uncompress
time (sec)

genozip
variants/sec

genounzip
variants/sec

1 1,859 1,039 1,618 2,894
2 993 551 3,028 5,458
3 687 377 4,377 7,977
4 520 292 5,783 10,299
5 430 239 6,993 12,582
6 360 201 8,353 14,961
7 320 175 9,397 17,184
8 276 159 10,896 18,913
9 252 142 11,933 21,177

10 228 130 13,189 23,132
11 210 119 14,320 25,271
12 192 114 15,662 26,379
13 179 103 16,800 29,196
14 169 98 17,794 30,686
15 157 99 19,154 30,376
16 149 96 20,183 31,325
17 142 96 21,177 31,325
18 134 98 22,442 30,686
19 130 87 23,132 34,565
20 123 93 24,449 32,335
21 121 93 24,853 32,335
22 115 96 26,150 31,325
23 112 108 26,850 27,844
24 107 95 28,105 31,655
25 104 113 28,915 26,612

Cores
Compress
time (sec)

Uncompress
time (sec)

genozip
variants/sec

genounzip
variants/sec

26 101 110 29,774 27,338
27 100 101 30,072 29,774
28 98 118 30,686 25,485
29 95 103 31,655 29,196
30 95 101 31,655 29,774
31 96 120 31,325 25,060
32 94 101 31,991 29,774
33 93 104 32,335 28,915
34 93 103 32,335 29,196
35 94 102 31,991 29,482
36 94 107 31,991 28,105
37 92 103 32,687 29,196
38 90 103 33,413 29,196
39 93 106 32,335 28,370
40 89 103 33,789 29,196
41 90 123 33,413 24,449
42 91 106 33,046 28,370
43 88 104 34,173 28,915
44 88 114 34,173 26,379
45 91 112 33,046 26,850
46 89 110 33,789 27,338
47 86 110 34,967 27,338
48 86 110 34,967 27,338
49 87 107 34,565 28,105
50 84 109 35,800 27,589

References

Danek,A. and Deorowicz,S. (2018) GTC: how to maintain huge genotype collections in a
compressed form. Bioinformatics, 34, 1834–1840.

Deorowicz,S. and Danek,A. (2019) GTShark: genotype compression in large projects.
Bioinformatics, 35, 4791–4793.

Hail Team Hail.
Li,H. (2016) BGT: efficient and flexible genotype query across many samples.

Bioinformatics, 32, 590–592.
Seward,J. (1996) bzip2 and libbzip2. avaliable at http://www. bzip. org.
Sudmant,P.H. et al. (2015) An integrated map of structural variation in 2,504 human

genomes. Nature, 526, 75–81.
The 1000 Genomes Project Consortium (2012) An integrated map of genetic variation from

1,092 human genomes. Nature, 491, 56–65.

http://paperpile.com/b/K0FCjf/5nVx
http://paperpile.com/b/K0FCjf/5nVx
http://paperpile.com/b/K0FCjf/5nVx
http://paperpile.com/b/K0FCjf/5nVx
http://paperpile.com/b/K0FCjf/nwUb
http://paperpile.com/b/K0FCjf/nwUb
http://paperpile.com/b/K0FCjf/nwUb
http://paperpile.com/b/K0FCjf/RzE7
http://paperpile.com/b/K0FCjf/XDAQ
http://paperpile.com/b/K0FCjf/XDAQ
http://paperpile.com/b/K0FCjf/XDAQ
http://paperpile.com/b/K0FCjf/wVsbF
http://paperpile.com/b/K0FCjf/wVsbF
http://paperpile.com/b/K0FCjf/wVsbF
http://paperpile.com/b/K0FCjf/Of6T
http://paperpile.com/b/K0FCjf/Of6T
http://paperpile.com/b/K0FCjf/Of6T
http://paperpile.com/b/K0FCjf/Of6T
http://paperpile.com/b/K0FCjf/Of6T
http://paperpile.com/b/K0FCjf/Of6T
http://paperpile.com/b/K0FCjf/cxQp
http://paperpile.com/b/K0FCjf/cxQp
http://paperpile.com/b/K0FCjf/cxQp
http://paperpile.com/b/K0FCjf/cxQp

