
ARTICLE

Natural Selection Shapes Codon Usage
in the Human Genome

Ryan S. Dhindsa,1,2,* Brett R. Copeland,1 Anthony M. Mustoe,3 and David B. Goldstein1,4,*

Synonymous codon usage has been identified as a determinant of translational efficiency and mRNA stability in model organisms and

human cell lines. However, whether natural selection shapes human codon content to optimize translation efficiency is unclear. Further-

more, aside from those that affect splicing, synonymous mutations are typically ignored as potential contributors to disease. Using

genetic sequencing data from nearly 200,000 individuals, we uncover clear evidence that natural selection optimizes codon content

in the human genome. In deriving intolerance metrics to quantify gene-level constraint on synonymous variation, we discover that

dosage-sensitive genes, DNA-damage-response genes, and cell-cycle-regulated genes are particularly intolerant to synonymous variation.

Notably, we illustrate that reductions in codon optimality in BRCA1 can attenuate its function. Our results reveal that synonymous mu-

tations most likely play an underappreciated role in human variation.
Introduction

A long-standing assumption in human genetics is that syn-

onymous mutations do not affect fitness because they do

not alter the resulting protein sequence. However, recent

evidence indicates that synonymous variation is not al-

ways neutral and might often have functional conse-

quences.1,2 Synonymous mutations can impact molecular

function by disrupting splicing enhancer sites,3,4 mRNA

secondary structure,5 and binding sites for regulatory

RNA-binding proteins and microRNAs.6,7 Although much

less understood, emerging evidence suggests that synony-

mous mutations can also impact gene expression and

translation accuracy. Specifically, biochemical studies indi-

cate that ‘‘optimal’’ codons matching more abundant

tRNAs in the cytoplasmic pool can support rapid transla-

tion, whereas synonymous but ‘‘non-optimal’’ codons

can slow translation.1,8–11 Importantly, synonymous

codon usage also seems to affect human mRNA stability

via coupling between mRNA degradation and transla-

tion.10,12,13 Indeed, it has long been recognized that the

human genome exhibits clear codon usage biases: certain

codons are used more frequently than others.14,15

Despite the clear presence of codon usage bias in the hu-

man genome, its significance as it relates to human physi-

ology and fitness has been under debate for decades. It is

generally accepted that natural selection impacts synony-

mous codons that impact exon splicing, but it is unclear

whether selection shapes codon optimality as it relates to

translation efficiency. Although some researchers have

argued that selective pressures optimize human codon us-

age,14,16–20 others have posited that mutational biases and

other neutral factors preclude the role of natural selection

in shaping codon optimality.21–25 These efforts have come

to conflicting conclusions because of three main chal-
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lenges. First, these synonymous mutations are expected

to be weakly deleterious because they are more likely to

affect protein abundance than function.14,26 Because of

the small effective population size of human beings, natu-

ral selection is less effective in purging weakly deleterious

mutations from the population. Second, codon usage is

posited to be functionally linked to tRNA expression.10,27

Because tRNA expression varies widely by tissue,28 each

synonymous site is most likely subjected to different

evolutionary pressures across tissues. This variation in

tRNA expression also makes it difficult to correlate codon

usage with tRNA availability. Third, the nucleotide content

at synonymous sites strongly correlates with local GC con-

tent in nearby non-coding regions. This phenomenon sug-

gests that codon bias is also influenced by evolutionarily

neutral processes, such as local variation in mutation

rate.14,15,21,29,30 Altogether, these challenges necessitate

robust statistical methods that can detect selective

constraint on variants of modest effect across a population

while controlling for confounding mutational biases.

In this study, we leveraged the unprecedented amount of

sequencing data available in two population reference co-

horts—TOPMed (62,784 genomes)31 and gnomAD

(123,136 exomes)32—to first reaffirm that natural selection

optimizes codon content in protein-coding regions in the

human genome. This unprecedented amount of

sequencing data allowed us to then devise two scores that

rank genes by their intolerance to synonymous mutations.

The first metric, synRVIS, measures human-specific

constraint specifically against changes in codon optimality.

The second metric, synGERP, reflects the average phyloge-

netic conservation at all fourfold degenerate sites across

the mammalian lineage in a given gene. These scores, in

turn, allow us to identify genes and pathways in which syn-

onymous variants are most likely to affect human fitness.
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Methods

Sequence Data
We used summary level allele frequency data from the BRAVO

TOPMed database (TOPMed Freeze 5) and gnomAD (release

2.0.2). The TOPMed database contains roughly 463 million vari-

ants derived from 62,784 whole genomes and gnomAD contains

roughly 15 million variants from 123,136 whole exomes.

We mapped TOPMed variants from hg38 to hg19 by using the

LiftoverVcf tool in Picard tools (v2.9.0). We then annotated both

the TOPMed and gnomAD VCFs by using Variant Effect Predictor

(VEP), version 84.33 To annotate each variant with its most

damaging possible effect across all transcripts, we used the VEP

‘‘–pick_allele’’ option with the following order: ‘‘rank, canonical,

appris, tsl, biotype, ccds, length.’’

We then filtered each VCF file so that it contained only variants

annotated as ‘‘PASS’’ and removed all variants occurring in repeat

regions, as identified by RepeatMasker, version 4.0.5.34 To exclude

variants that are expected to disrupt canonical splice sites, we

removed all variants occurring within ten intronic nucleotides

and three exonic nucleotides of exon-intron boundaries in all En-

sembl v75 transcripts. We additionally filtered the gnomAD VCF

so that it only retained variants with at least 10-fold coverage in

at least 85% of individuals.

Codon Usage Metrics
We used two scores for assessing codon usage: the codon stability

coefficient (CSC) and the relative synonymous codon usage

(RSCU). We obtained CSC scores derived from HEK293T cells.10

Wu et al.[10] also calculated CSC scores for other cell lines,

including HeLa and RPE cells, but these scores were very strongly

correlated with the HEK293T scores. The CSC represents the Pear-

son correlation between the frequency of the codon in each tran-

script and the associated half-life. We classified codons with CSC

values greater than 0 as ‘‘optimal’’ and codons with CSC values

less than 0 as ‘‘non-optimal.’’

As an orthogonal measure of codon usage, we calculated RSCU

scores for each codon.35 For each codon in each canonical tran-

script (as defined by Ensembl v75), we calculate the ratio of the

observed number of codons to the expected number for a given

amino acid. Specifically, for an amino acid i, the RSCU score of

its jth amino acid is defined as

RSCUi;j ¼ nixi;j
Pni

j¼1xi;j

where ni denotes the number of synonymous codons for that

amino acid. When using RSCU to assess codon optimality, we

annotate codons with a value less than 1 as ‘‘non-optimal’’ and

greater than 1 as ‘‘optimal.’’ We chose to calculate gene-specific

rather than genome-wide RSCU scores, reasoning that gene-spe-

cific scores should more adequately reflect tissue-specific sources

of constraint.

Site Frequency Spectrum Analyses
We performed all site frequency spectrum (SFS) analyses by using

the filtered allele frequency data. We adapted an approach previ-

ously employed in Drosophila studies to compare selection on

synonymous variation with putatively neutral variants.36,37 Spe-

cifically, we matched each observed synonymous variant occur-

ring at fourfold degenerate sites with intronic variants occurring

within 10,000 base pairs. We required matched variants to have
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the same ancestral allele, and in an additional analysis, we

required matched variants to also have the same neighboring 50

and 30 nucleotides. We matched variants to the direction or strand

blindly, such that synonymous mutations were allowed to pair

with forward, reverse, and reverse complement intronic se-

quences. We only considered synonymous variants occurring at

fourfold degenerate sites. In a separate analysis, we compared

the SFS of synonymous variants that alter codon optimality to

loss-of-function variants and missense variants predicted to be

‘‘probably’’ or ‘‘possibly’’ damaging by PolyPhen-238.

We folded all allele frequencies: if the alternate allele frequency

was greater than 50%, we subtracted it from 100%, meaning the

minor allele frequency is always less than or equal to 50%. We

then used a two-tailed t test to determine whether SFS distribu-

tions were significantly different.38,39 As noted by Keinan et al.,

this test is conservative because it reflects significant deviation in

the mean minor allele frequencies rather than other differences

in the shape of the distribution.38

Comparing Phylogenetic Conservation at Synonymous

and Intronic Sites
We used a custom script to annotate the TOPMed variants with

GERPþþ scores, which reflect each genomic site’s estimated evolu-

tionary constraint across the mammalian lineage.40 To assess

phylogenetic conservation on codon usage, we compared the

GERPþþ scores of the reference alleles of the synonymous and in-

tronic variants included in the SFS analyses. Because only a frac-

tion of fourfold degenerate sites actually harbor a variant in

TOPMed, we also compared the correlation between CSC and

GERPþþ at all fourfold degenerate sites in the genome. To miti-

gate confounding due to conservation at splice sites, we excluded

codons occurring at exon-intron boundaries in all Ensembl v75

transcripts.

Deriving synRVIS
Synonymous RVIS (synRVIS) is an adaptation of the residual vari-

ation intolerance score (RVIS), a previously published score that

quantifies genic intolerance for non-synonymous variation.41 Us-

ing aggregated allele frequency from gnomAD exomes,32 we

defined Y as the total number of common (MAF > 0.5%) synony-

mous ‘‘optimal-to-nonoptimal’’ (O / NO) SNVs in a gene and X

as the total number of synonymous SNVs occurring in a gene.

We then regressed Y on X and defined synRVIS as the studentized

residual for each gene. The resulting regression line accounts for

genic mutation rates, sequence context, and gene size while pre-

dicting the expected number of common synonymous variants

that result in a non-optimal change. We explored the behavior

of the score when we used alternative MAF cutoffs of 1% and

0.1% for defining common variants on the y axis and found

that these scores strongly correlated (Pearson’s r ¼ 0.89 and r ¼
0.74, respectively) (Figures S3A and S3B). We also found strong

correlation when we used RSCU instead of CSC to define codon

optimality (r ¼ 0.63) (Figure S3C).

synRVIS Permutation Test
We sought to verify that the synRVIS distribution deviates from a

null model because the resulting residuals might reflect random

noise rather than intergenic patterns of constraint. To perform a

permutation test, we randomly assigned synonymous variants to

each gene and recalculated the synRVISs. In the presence of inter-

genic constraint, the real synRVIS distribution should show



greater variance than that of the permuted scores. Specifically, we

performed 1,000 permutations in which we randomly assigned

the gnomAD synonymous variants to genes, controlling for gene

size. For each permutation, we fit a regression line and calculated

the variance of the studentized residuals. To calculate a p value, we

determined the rank of the real synRVIS variance among the var-

iances resulting from these permutations.

Calculating synGERP
We defined the synGERP score as the average GERPþþ score40 of

all fourfold degenerate sites in a given gene. We excluded all

codons immediately adjacent to exon-intron junctions in all En-

sembl v75 transcripts to mitigate confounding due to conserva-

tion at canonical splice sites.

Gene Set Enrichment Tests
We used logistic regressionmodels to determine the ability of syn-

RVIS and synGERP to predict 360 dosage-sensitive genes con-

tained in the ClinGen Genome Dosage Map and 178 DNA-dam-

age-response genes. We calculated receiver operating

characteristic (ROC) curves by using the pROC package in R.42

For the BROCA cancer risk panel genes, we opted to perform a

Mann-Whitney U test to compare the intolerance of these genes

versus all other genes in the genome rather than evaluate the

ROC, given the small sample size of the gene list (n¼ 66).We addi-

tionally performed a permuted Mann-Whitney U test for this

particular enrichment test. Specifically, we first computed the

actual Mann-Whitney U p value of the observed data. We then

randomly permuted the labels of the data and computed addi-

tional p values 1,000 times. We defined the permuted p value as

the proportion of permuted p values less than or equal to the

actual p value derived from the original, unpermuted dataset.

We also compared the distribution of synRVIS and synGERP to

LOEUF (loss-of-function observed/expected upper bound frac-

tion), a metric that assesses the observed over expected ratio for

loss-of-function variants in gnomAD. Specifically, we computed

the median LOEUF score per synRVIS and synGERP decile. We

also assessed themedian synRVIS and synGERP percentile of genes

dynamically expressed during the cell cycle, as identified by Cycle-

Base. All gene lists are available in Table S2.

Gene Ontology Enrichment
We performed gene ontology (GO) enrichment tests of genes fall-

ing below the 25th percentile in synRVIS or synGERP to identify

classes of genes most intolerant to synonymous variation. We

also performed enrichment tests of synRVIS-tolerant but LOEUF-

intolerant genes. We defined these genes as genes above the 75th

percentile in synRVIS, but below the 25th percentile of LOEUF

scores. To perform the enrichment test, we used the PANTHER

GO-slim biological process annotation set.43 p values were

computedwith Fisher’s exact test and corrected via the false discov-

ery rate.Wedefined correctedpvalues<0.05 as significant. The full

lists of significant GO enrichment results are available in Table S3.

BRCA1 Function Score Evaluation
Weused VEP to annotate the resulting codon changes from synon-

ymous variants assayed in a previous study.44 We then annotated

the reference and alternate codons of each variant with their CSC

values and removed all variants identified as splice region variants

by VEP or occurring within 3 base pairs of exon-intron junctions

(Table S4). We annotated variants with function scores less than
The
�0.748 as variants that reduced BRCA1 function. To quantify

codon usage changes, we defined DCSC as the difference between

the CSC value of the alternate codon and the CSC value of the

reference codon for each variant.

Data Visualizations
All plots were generated in R using ggplot2.45 Figure 1A was

created with BioRender. Color palettes for plots were derived

from the wesanderson R package.
Results

Site Frequency Spectra Reveal Genome-wide Signatures

of Purifying Selection on Human Codon Usage

The availability of aggregated human whole-genome allele

frequency data from roughly 60,000 individuals contained

in the TOPMed database31 provides an unprecedented

resource for investigating selective constraint on weakly

deleterious variants, such as synonymous mutations.

Focusing on synonymous sites where any of the four nu-

cleotides in the third position of the codon encode the

same amino acid (i.e., fourfold degenerate), we used this

resource to identify potential evidence of natural selection

on codon usage. The standard approach for measuring pur-

ifying selection is the examination of the allele frequency

spectrum. Allele frequency is a powerful proxy of a vari-

ant’s phenotypic impact because purifying selection tends

to eliminate deleterious variants before they reach a high

frequency in the population.46 Hence, the spectrum

should skew relative to the neutral mutation rate. The

neutral rate is typically defined as the synonymous muta-

tion rate.47 To enable robust comparisons, we generated a

neutral reference set of variants by matching each

observed synonymous variant to a nearby (<10 kilobases)

randomly sampled intronic variant (Figure S1A). This pro-

cedure matches the GC content of the neutral reference to

the synonymous test set, mitigates regional- and transcrip-

tion-associated biases in mutation rates, and normalizes

the total number of variants included in each set.36,37

Following the classical approach, we first compared the

SFS (i.e., the distribution of allele frequencies) of synony-

mous variants and matched intronic variants (n ¼
2,896,436) without accounting for changes in codon

usage. Consistent with prior studies, the two distributions

appeared nearly identical: the synonymous SFS exhibited a

very slight skew toward rarer allele frequencies (t test p ¼
0.02) (Figure S1B). Thus, in aggregate, synonymous vari-

ants do not appear to be under significantly more

constraint than putatively neutral intronic variants.

While the prior analysis suggests that synonymous sites

are not constrained in aggregate, this test treats all synon-

ymous variants as equivalent, ignoring the fact that

different variants might experience distinct selective pres-

sures. Specifically, under the codon optimality hypothesis,

a synonymous variant that increases codon optimality

should be favored, whereas mutations away from optimal

codons should be deleterious. While conceptually
American Journal of Human Genetics 107, 83–95, July 2, 2020 85



A B Figure 1. tRNA Availability and Codon
Usage Affect mRNA Decay
(A) Codon-optimized transcripts (top
panel) exhibit increased mRNA stability
compared to less optimized transcripts (bot-
tom panel). Codon optimality modestly
correlates with tRNA availability, suggesting
optimal codons are decoded bymore highly
expressed tRNAs and might therefore in-
crease translational efficiency.
(B) Distribution of previously published
codon stability coefficient (CSC) scores
derived from HEK293T cells10 for fourfold
degenerate codons. Colors correspond to
optimal and non-optimal codons.
straightforward, the codon optimality hypothesis is diffi-

cult to test because of the challenge of classifying codon

optimality. Unlike unicellular organisms, codon opti-

mality cannot be matched to tRNA gene copy number

because tRNA expression varies widely by tissue.28,48 Previ-

ous studies have relied on the RSCU in the genome as a

proxy for codon optimality,35 but these scores do not

directly reflect a codon’s effect on translational efficiency.

We thus employed the recently published CSC score,

defined as the Pearson correlation coefficient between

each codon’s frequency in a transcript and the half-life of

the transcript in human embryonic kidney 293T

(HEK293T) cells.10 CSC scores moderately correlate with

tRNA concentrations, suggesting that human codon opti-

mality is partly related to translation elongation speed

just like in yeast11 (Figure 1A).

We classified the synonymous variants that resulted in

changes from a codon with a positive CSC to a negative

CSC as ‘‘optimal-to-nonoptimal’’ (O / NO), the opposite

as ‘‘nonoptimal-to-optimal’’ (NO / O), and all others as

‘‘neutral.’’ Strikingly, O/ NO synonymous variants segre-

gated at significantly lower frequencies than matched

intronic variants (p ¼ 3.3 3 10�33), neutral synonymous

variants (p¼ 1.143 10�35), and NO/O synonymous var-

iants (p ¼ 4.2 3 10�88) (Figure 2A). This suggests that syn-

onymous variants that reduce codon optimality are under

evolutionary constraint. Furthermore, NO / O synony-

mous variants segregated at significantly higher allele fre-

quencies than their matched intronic variants (p ¼ 1.9 3

10�14) and neutral synonymous variants (p ¼ 3.0 3

10�32) (Figure 2A), implicating a role of positive selection

in optimizing codon content. Similar results were observed

when controlling for trinucleotide context (Figure S2A),

further supporting that the NO / O and O / NO allele

frequency differences cannot be explained by local muta-

tion rate differences.

The CSC scores were derived from mRNA stability mea-

surements in a single cell line and therefore might not

represent tissue-specific codon optimality patterns. We

therefore repeated our SFS analysis by using RSCU, instead

of CSC, to define codon optimality instead. Notably, RSCU

and CSC are significantly correlated (Pearson’s r¼ 0.41, p<

10�300), indicating that optimal codons appear more

frequently in the human genome. Furthermore, we
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observe similar evidence of purifying selection against O

/NO variants and positive selection on NO/O variants

when using RSCU to partition the SFS (Figure S2C). Finally,

we compared the allele frequency distributions of codon-

optimality-altering synonymous variants to damaging

missense and loss-of-function variants (Figure S2E).

Unsurprisingly, the missense and loss-of-function variants

segregated at lower allele frequencies than O/NO synon-

ymous variants. Thus, although codon-optimality-

reducing synonymous variants are subject to negative

selection, they are under weaker constraint than other

functional variants.

Combined, our results implicate a role of negative selec-

tion in purging synonymous variants that reduce codon

optimality and a role of positive selection in favoring

variants that increase codon optimality. Despite the chal-

lenges associated with assessing human codon optimality,

these findings strongly suggest that codon usage contrib-

utes to human genetic diversity and shapes human

evolution.

Optimal Synonymous Sites Are Evolutionarily Conserved

across the Mammalian Lineage

The shifts in the site frequency spectrum provide clear ev-

idence of human-specific selective pressures on codon

usage. We hypothesized that we should also observe signa-

tures of conservation on codon optimality across related

phylogenetic species. We thus assessed conservation at

fourfold degenerate sites by using GERPþþ, a method

that assigns each genomic position a score denoting its

estimated evolutionary constraint across the mammalian

lineage.40

Synonymous sites that are strongly conserved in the hu-

man genome have higher GERPþþ scores than less

conserved sites. Consistent with the hypothesis that

optimal codons experience stronger evolutionary conser-

vation, the GERPþþ scores of the reference sites of O /

NO synonymous variants were significantly higher than

the GERPþþ scores of matched intronic sites (Mann-Whit-

ney U p ¼ 1.2 3 10�31), neutral synonymous sites (p <

10�300), and NO / O synonymous sites (p < 10�300)

(Figure 2B). Moreover, the GERPþþ scores of the reference

sites of NO / O variants were significantly lower than

those of matched intronic (p < 10�300) and neutral



A

B

Figure 2. SFS and GERPþþ Distributions
Reflect Selection on Codon Usage
(A) Site frequency spectra of synonymous
variants that result in optimal-to-nonop-
timal (O / NO), neutral, and nonoptimal-
to-optimal codon (NO / O) changes (left
panel) and matched intronic variants (right
panel).
(B) Distribution of GERPþþ scores for the
reference alleles of the variants included in
(A).
synonymous sites (p < 10�300), suggesting weaker phylo-

genetic constraint at nonoptimal sites. The GERPþþ distri-

butions of trinucleotide-matched and RSCU-annotated

codon changes corroborated this observation (Figures

S2C and S2E). Whereas the prior analysis only considered

sites that were variant in the TopMED cohort, we next

considered every fourfold degenerate site in the coding

genome and found that GERPþþ significantly correlated

with both CSC (Pearson’s r ¼ 0.26, p < 10�300) and

RSCU (r ¼ 0.25, p < 10�300). These results indicate long-

term evolutionary pressures on codon usage and are in

agreement with prior orthogonal approaches that identi-

fied selection on synonymous sites.3,14,18,49–52

Human Genes Display Differences in Intolerance to

Synonymous Variation

Our observations illustrate genome-wide signatures of

constraint on codon optimality. However, we suspected

that synonymous variation might be under stronger selec-

tive constraint in some genes than in others. Therefore,

we sought to quantify the strength of selection on synony-

mous sites per gene. We previously introduced RVIS, a

scoring system that quantifies individual genes’ intolerance

to missense and loss-of-function mutations by using stand-

ing human variation.41 Here, we extended this framework

in an approach we term synRVIS. synRVIS quantifies genic

constraint against synonymous variants that reduce codon

optimality as measured by the codon stability coefficient.
The American Journal of H
synRVIS only considers variation in

the protein-coding genome. Therefore,

to increase our sample size for con-

structing synRVIS, we used sequence

data from the 123,136 exomes con-

tained in gnomAD32 rather than the

roughly 60,000 genomes contained in

TopMED. Specifically, we regressed

the number of common (MAF >

0.5%) O / NO synonymous variants

(Y) on the total number of observed

synonymous variants for each gene

(X) (Figure 3A). The resulting regres-

sion line predicts the expected number

of common O/NO variants account-

ing for genic mutation rates, sequence

context, and gene size. The deviation
of each gene from this expectation (more or less variation

than expected) is calculated as the studentized residual; a

synRVIS below 0 indicates higher intolerance to O / NO

synonymous variation. To ensure the resulting residuals

reflect intergenic patterns of constraint rather than

random noise, we performed a permutation test to verify

that these scores deviate from a null model (p ¼ 0.03; see

Methods).

Compared to a weaker constraint, the presence of a

strong purifying selection on synonymous sites could

reduce overall synonymous polymorphism rates in a

gene, which would impact the total number of observed

variants in a gene (X). We therefore re-calculated synRVIS

by replacing X with each gene’s coding sequence length

because the number of observed variants should correlate

with gene length. This alternate score strongly correlated

with the original synRVIS (Pearson’s r ¼ 0.97). Therefore,

overall reductions in polymorphism rates do not seem to

limit our power in calculating the score. Furthermore, syn-

RVIS only weakly correlated with the coding length of each

gene (Pearson’s r ¼ �0.03), suggesting it is not systemati-

cally biased by gene size.

synRVIS provides a direct, gene-specific measure of selec-

tion on codon optimality in the human lineage. However,

the dynamic range of the synRVIS metric is limited by the

comparably small number of mutations at synonymous

sites in gnomAD (median of 66 per gene). We therefore

created a complementary score, which we termed
uman Genetics 107, 83–95, July 2, 2020 87



A B Figure 3. synRVIS Derivation and Distribu-
tion of synGERP Scores
(A) synRVIS regression plot in which each
point represents a gene. Yellow points repre-
sent the bottom fifth percentile (most intol-
erant) and blue points represent the upper fifth
percentile (most tolerant). Two outlier genes
with greater than 2,000 synonymous variants
are excluded.
(B) The distribution of synGERP scores. As in
(A), color coding corresponds to the fifth
percentile extremes.
synGERP, to quantify per-gene conservation at synony-

mous sites across the mammalian lineage. In order to

create a per-gene metric, we took the mean GERPþþ score

at all fourfold degenerate synonymous sites in a given

gene’s canonical transcript, excluding all codons adjacent

to exon-intron boundaries. A higher synGERP score sig-

nifies overall stronger evolutionary conservation at four-

fold degenerate sites for that gene (Figure 3B). Whereas

synRVIS specifically considers codon optimality, synGERP

reflects evolutionary conservation at fourfold sites regard-

less of changes in codon usage. Therefore, synGERP reflects

additional sources of conservation at synonymous sites

beyond codon optimality, such as splicing enhancers,

transcription factor binding sites, and RNA secondary

structure. To facilitate interpretation of these scores, we

calculated genome-wide percentile scores, in which a lower

percentile indicates higher intolerance (synRVIS) or higher

phylogenetic conservation (synGERP), for synRVIS and

synGERP (all scores are available in Table S1).

Interestingly, synRVIS and synGERP were only weakly

correlated (Pearson’s r2 ¼ 0.013, p ¼ 2.3 3 10�51). We

have similarly observed low correlations between hu-

man-specific intolerance scores and GERP-derived scores

in prior evaluations of non-coding regulatory regions.53

One possible explanation for this low correlation is that

a fraction of codon usage might be under human-specific

selection, for example, mirroring human-specific tRNA

expression patterns, which would only be captured by syn-

RVIS. Additionally, whereas synRVIS isolates codon opti-

mality effects, synGERPmeasures the combined constraint

on synonymous sites from sources such as splicing en-

hancers and RNA-binding protein binding sites. Together,

these two scores provide a framework for identifying genes

that are most intolerant to synonymous variation.

GO enrichment tests revealed that the most synRVIS-

intolerant genes (< 25th percentile) were enriched for

ontologies related to the cell cycle and transcription;

such ontologies included cellular response to DNA dam-

age, microtubule-based processes, and positive regulation

of transcription by RNA polymerase II. Furthermore, syn-

GERP intolerant genes were enriched for ontologies such
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as regulation of proteolysis involved in

cellular protein catabolic process, regula-

tion of mRNA stability, and negative
regulation of translation (Table S3). These results mirror

observations in model organisms that the most codon

optimized genes tend to be related to stress responses,

translation, and post-transcriptional gene regulation54,55

and therefore underscore the evolutionary significance of

codon optimality.

Genes Intolerant to Synonymous Variation Are Enriched

for Dosage-Sensitive Genes

Given the impact of codon usage on mRNA stability and

protein expression, we hypothesized that well-established

dosage-sensitive genes would be more intolerant to synon-

ymous variation than other genes in the genome. To test

this hypothesis, we constructed a logistic regression model

to determine whether synRVIS and synGERP could predict

the 360 dosage-sensitive genes in ClinGen’s Genome

Dosage Map.56 We found that both synRVIS and synGERP

significantly predicted this gene set: p ¼ 8.2 3 10�9 (AUC

¼ 0.60) and p ¼ 2.2 3 10�34 (AUC ¼ 0.68), respectively

(Figure 4A). A joint model containing both scores achieved

an AUC of 0.69, in which both synRVIS and synGERP

remain predictive (p ¼ 7.6 3 10�7 and p ¼ 1.4 3 10�31,

respectively), indicating that both scores provided signifi-

cant independent information in predicting dosage-sensi-

tive genes.

The ClinGen dosage-sensitive genes included in the

prior analysis only include genes implicated in Mendelian

disease. Another way to identify dosage-sensitive genes is

to identify genes depleted of loss-of-function variants in

the human population. To verify that dosage-sensitive

genes are intolerant to synonymous variation, we

compared synRVIS and synGERP to LOEUF, a metric that

represents the ratio of observed/expected loss-of-function

variants within gnomAD.32 A lower LOEUF indicates a

higher constraint against loss-of-function variation. To

compare synonymous and loss-of-function constraint, we

plotted themedian LOEUF score per synRVIS and synGERP

decile (Figures 4B and 4C). We observed that genes more

intolerant to synonymous variation tend to be depleted

of loss-of-function variation. Furthermore, synRVIS and

synGERP both correlated with LOEUF (Pearson’s r ¼
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Figure 4. Dosage-Sensitive Genes Are Intolerant to Synonymous Variation
(A) ROC curve demonstrating the capacity for synRVIS, synGERP, and a joint model to predict ClinGen dosage-sensitive genes. AUCs for
the respective models are indicated in parentheses.
(B andC) The distribution of LOEUF scores for each synRVIS (B) and synGERP (C) decile. The black dot indicates themedian LOEUF score
per synRVIS decile, and the dotted horizontal line indicates the median LOEUF score across all genes.
0.15, p ¼ 3.2 3 10�89 and Pearson’s r ¼ 0.24, p ¼ 3.3 3

10�231, respectively). We were surprised, however, to find

that some highly synRVIS-tolerant genes were also en-

riched for low LOEUF scores (Figure 4B). This discordance

implies that certain loss-of-function-intolerant genes are

tolerant to changes in codon usage.

A GO enrichment analysis revealed that synRVIS-

tolerant (>75th percentile) but LOEUF-intolerant (<25th

percentile) genes were significantly enriched for certain

neurodevelopmental pathways, such as regulation of

dendrite morphogenesis, positive regulation of axonogen-

esis, and synaptic vesicle endocytosis (Figure S4). Notably,

neurons are subject to different translational regulation

programs than other cell types are because of mTOR

signaling57 and their unique cellular demands, such as

local translation at synapses.58 Furthermore, recent evi-

dence suggests that codon optimality may in fact be atten-

uated in the developing nervous system.54

In summary, both synRVIS and synGERP can broadly

predict dosage-sensitive genes. These results emphasize

the importance of codon usage in regulating gene expres-

sion and demonstrate that natural selection more strongly

optimizes codon content in genes where differences in

protein abundance strongly impact human physiology.

DNA Damage Genes and Periodically Expressed Cell-

Cycle Genes Are Intolerant to Changes in Codon Usage

If codon optimality is important in regulating gene expres-

sion, it is most likely to not only be under particularly

strong constraint in haploinsufficient genes, but also in

genes that are sensitive to tRNA levels. The cytoplasmic

tRNA pool changes dynamically in terms of its overall

abundance as well as its composition in response to

cellular demands.59–61 We expected that genes that need

to be highly expressed when tRNA concentrations are

low should be the most intolerant to reductions in codon

optimality.

Among classes of genes, we expected DNA-damage-

repair genes to be under particularly strong constraint. In
The
yeast, stress due to DNA-damaging compounds results in

reduced tRNA export from the nucleus as well as tRNA

modifications that enhance translation of key DNA repair

proteins.62,63 In mice, knocking out the Elongator com-

plex, which is required for translating codon-biased genes,

leads to dysregulation of codon-biased DNA-damage

genes.64 Motivated by these findings, we tested whether

a previously published list of 178 DNA-damage-response

genes were intolerant to synonymous variation.65 In a lo-

gistic regression model, synRVIS, but not synGERP, was

able to predict genes involved in the response to DNA dam-

age (AUC ¼ 0.61, p ¼ 6.02 3 10�05; AUC ¼ 0.52, p ¼ 0.6,

respectively) (Figure 5A). This result implies that codon us-

age in DNA-damage-repair genes is under human-specific

constraint and thus most likely plays a role in regulating

this pathway. Although our synGERP analysis suggests

that codon optimality is not conserved across eukaryotes,

we suspect this discordance between synRVIS and syn-

GERP is due to species-specific variation in the stress-

induced tRNA pools.

tRNA levels also oscillate throughout the cell cycle, and

genes that are expressed at different phases of the cell cycle

have different codon usage.66 In particular, tRNA expression

levels are highest in the G2/M phase and lowest at the end

of G1 phase. This coupling between tRNA expression and

codon usage allows for cell-cycle-dependent oscillations in

protein abundance by ensuring that G2 phase genes are

less efficiently translated during G1. Accordingly, we hy-

pothesized that genes expressed during the G1 phase

should be more intolerant to reductions in codon opti-

mality than G2 genes. Strikingly, the synRVIS distribution

for these periodically expressed genes closely matches the

oscillatory changes in tRNA abundances; tolerance to reduc-

tions in codon optimality is lowest for G1/S-expressed genes

and increases stepwise by cell-cycle stage, peaking for G2/M

genes (Figure 5B). This finding not only supports previous

observations about the codon usage patterns of cell-cycle-

related genes, but it provides direct evidence that these pat-

terns are under selective constraint. synGERP scores did not
American Journal of Human Genetics 107, 83–95, July 2, 2020 89
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Figure 5. Intolerance of DNA-Damage Response and Cell-Cycle-Phase Genes
(A) ROC curve illustrating the capacity of synGERP and synRVIS to predict DNA-damage-response genes. AUCs for the respective models
are indicated in parentheses.
(B) synRVIS percentiles of genes periodically expressed in each phase of the cell cycle.
(C) synRVIS distribution for genes contained in the BROCA cancer risk panel versus all other protein-coding genes.
(D) Comparison of changes in CSC scores for synonymous BRCA1 variants that result in normal protein function versus those that
reduce protein function.
display this pattern (Figure S5A), further suggesting that

synRVIS might be more sensitive in detecting human-spe-

cific selection on genes that respond to tRNA availability.

The tRNA pool can also be dysregulated in diseases,

including certain cancers. Prior studies have found that

elevated tRNA concentrations in breast cancer, ovarian can-

cer, and multiple myeloma promote expression of pro-

tumorigenic genes.27,67–70 We therefore hypothesized that

oncogenes that are sensitive to shifts in tRNA abundances

should be intolerant to changes in codon usage. To test this

hypothesis, we compared the synRVIS and synGERP scores

of hereditary breast and ovarian cancer genes included in

the BROCA Cancer Risk Panel to all other protein-coding

genes in the genome.71,72 This gene list includes 66 genes

strongly implicated inhereditary breast andovarian cancers.

Accordingly, synRVISs, but not synGERP scores, were lower

for these genes than for the rest of the genes in the genome

(synRVIS, Mann-Whitney U p ¼ 0.002, permuted p ¼
0.002; synGERP, p ¼ 0.80) (Figures 5C and S5B). Taken

together, our results demonstrate the importance of codon

optimality in mediating gene expression under different

physiological states.
Synonymous Variants that Reduce Codon Optimality in

BRCA1 Might Abrogate Protein Abundance

Collectively, our analysis suggests that synonymous muta-

tions that alter codon optimality are under evolutionary

constraint, implying that these mutations have functional

consequences. In particular, we expect that these variants

might affect protein concentration by modulating mRNA

translation and stability. To date, synonymous variants

have been largely ignored in genetic disease association

studies. However, synonymous mutations that reduce

codon optimality in genes under strong selection could

contribute to Mendelian disease. We have previously

demonstrated that non-synonymous intolerance metrics,

such as RVIS, facilitate the discovery of disease-associated
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genes.41,73 synRVIS and synGERP now provide a frame-

work for identifying and prioritizing potential genes in

which synonymous variants might also cause disease.

Notably, genes with a low synRVIS include genes such as

BRCA1 and BRCA2.

Although the functional impact of synonymous variants

for most genes is unknown, we took advantage of a unique

dataset in which CRISPR was used to perform saturation

genome editing to assess the functional consequences of

nearly all possible single nucleotide variants in the func-

tionally critical RING and BRCT domains of BRCA1.44

BRCA1 ranked among the most highly intolerant genes

(1st percentile synRVIS, 13th percentile synGERP) and loss

of this protein predisposes women to breast and ovarian

cancer.74,75 Thus, this dataset allows us to systematically

answer the question of whether synonymous single nucle-

otide variants (SNVs) that reduce codon optimality signif-

icantly reduce the BRCA1 dosage.

Findlay et al. introduced SNVs in the cell line HAP1,

which is critically dependent on BRCA1 for cell survival.44

11 days after introducing the mutations, they sequenced

the line to gauge the frequency of each variant within the

cell population. Deleterious variants result in cell death by

reducing BRCA1 expression or function and were thus less

prevalent in the population. These frequencies were con-

verted into a continuous score that reflects protein function.

The researchers also measured the expression of BRCA1 to

assign RNA scores that directly reflect each variant’s effect

on gene expression.

Of roughly 500 introduced synonymous mutations in

BRCA1, 19 received scores that signified reduced BRCA1 ac-

tivity. We hypothesized that synonymous variants that

achieved lower functional scores resulted in decreased

expression and/or translation. For each synonymous

variant, we calculated the difference between the CSC

value of the alternate and reference alleles, such that nega-

tive changes signify reductions in codon optimality.



Accordingly, the 19 synonymous mutations associated

with reduced BRCA1 activity were significantly more likely

to attenuate codon optimality (Mann-Whitney U p ¼
0.001) (Figure 5D). We also calculated the correlation be-

tween the RNA and function scores and the difference in

CSC values for all synonymous variants assayed (Figures

S5C and S5D). We found that changes in codon optimality

significantly correlated with BRCA1 function scores (Pear-

son’s r ¼ 0.27, p ¼ 3 3 10�11) and RNA scores (Pearson’s

r ¼ 0.15, p ¼ 4.8 3 10�4). Although these correlations

are modest, they suggest that at least a fraction of variants

that reduce codon optimality may have functional conse-

quences in BRCA1, presumably via the modulation of

translation and/or mRNA stability. We note that there are

other potential mechanisms by which these variants could

functionally impact BRCA1, including via the modulation

of splicing enhancers. Therefore, further molecular studies

are required to elucidate the precise functional conse-

quences of attenuated codon optimality in BRCA1.

Nonetheless, these results imply that some synonymous

variants that affect codon usage can result in large enough

effect sizes to cause Mendelian disease. synRVIS thus

provides an initial framework for identifying putatively

pathogenic synonymous mutations that reduce codon

optimality in the interpretation of human genomes,

whereby mutations in the most intolerant genes are most

likely to be pathogenic. Importantly, three of the 19 syn-

onymous variants that reduce BRCA1 function appear in

gnomAD, indicating that some individuals do in fact har-

bor potentially disease-causing synonymous variants that

might be overlooked in standard carrier screens.
Discussion

Through comprehensive analyses, we demonstrate the role

of natural selection in optimizing the codon content of the

human genome. First, we show that synonymous muta-

tions that reduce codon optimality appear at lower allele fre-

quencies in the human population than neutral variants

and variants that increase codon optimality. Supporting

this result, we find that optimal codons tend to be more

strongly phylogenetically conserved across the mammalian

lineage. We introduce two per-gene intolerance scores, syn-

RVIS and synGERP, which assess the strength of selective

constraint on synonymous variation in each protein coding

gene. synRVIS detects human-specific selection against var-

iants that reduce codon optimality, whereas synGERP re-

flects the phylogenetic constraint of fourfold degenerate

sites in a given gene. We find that these scores predict

dosage-sensitive genes, emphasizing the importance of

codon usage in mediating protein concentration.

Recent studies have revealed that synonymous codon us-

age serves as a secondary genetic code that guides translation

efficiency and mRNA stability in human cells.10,12,13 In

particular, the translation elongation rate, which is partially

a function of tRNA abundance, is posited to impact the
The
mRNA degradation rate. Despite these molecular conse-

quences, some population geneticists have argued that the

effect size of any single synonymous SNVwouldbe too small

to be selected against in the human population. Our results

cast doubt on this assumption in two ways.

First, the allele frequency distributions illustrate that

there are genome-wide signatures of selection against reduc-

tions in codon optimality. This finding shows that some

synonymous mutations exert a large enough effect to be

selected against even in the context of the small human

effective population size. Importantly, we note that the

SFS analysis only considers synonymous sites that contain

a variant in the reference cohort. Previous analyses have

demonstrated that some synonymous sites, such as those

in splicing enhancer elements, vary so infrequently that

they might not appear in the sample. Therefore, our SFS re-

sults might be conservative. In future studies, it would be of

value for researchers to complement these analyses with

overall polymorphism ratios to estimate the distribution

of selection coefficients as they relate to codon optimality.

Second, we demonstrate that some codon-optimality-

reducing SNVs in BRCA1 can significantly attenuate protein

activity, potentially via reduced mRNA stability and transla-

tion. These findings are consistent with a handful of other

studies that have implicated synonymous SNVs in human

disease.2,76,77 In fact, some synonymous variants that alter

codon bias can significantly reduce protein concentration

to the same extent as loss-of-function variants76 and most

likely represent an underappreciated source of Mendelian

disease. However, it is more likely that most synonymous

variants only modestly reduce protein output, as the selec-

tion on O / NO variants is substantially weaker than

loss-of-function mutations. Nonetheless, synonymous

SNVs that only modestly reduce protein output could play

a significant role in modifying both Mendelian diseases

and complex traits, many of which are driven by the cumu-

lative effect of many variants with small effect sizes.78,79

Our results support the functional relevance of the trans-

lational regulation of gene expression. Consistent with the

effects of translational efficiency on protein output and

mRNA stability, we find that dosage-sensitive and loss-of-

function-depleted genes tend to be more intolerant to syn-

onymous variation. However, one limitation of our study is

that the calculation of synRVIS relies on codon usage met-

rics derived from a single cell type, whereas tRNA expression

varies widely by tissue.28 synGERP, on the other hand, does

not rely on codon usage scores but is less sensitive to detect-

ing constraint on potential human-specific tRNA expression

dynamics. Indeed, synGERP most likely also detects other

sources of conservation, such as constraint on splicing

and regulatory motifs. We also note that although synRVIS

was built for the assessment of selection on codon opti-

mality, it may detect other confounding sources of

constraint that correlate with codon optimality and nucleo-

tide content, such as exonic splicing enhancers.

We found that some loss-of-function-depleted genes

involved in neurodevelopment were in fact very tolerant to
American Journal of Human Genetics 107, 83–95, July 2, 2020 91



reductions in codon optimality. Intriguingly, a recent study

foundthatcodonoptimality isattenuated ingenesexpressed

in the developingDrosophilanervous system.54 This reduced

optimality mitigates the effect of codon content on mRNA

stability, thereby allowing trans-acting factors, such as

RNA-bindingproteins andmicroRNAs, to exert greater influ-

ence overmRNA decay in the developing nervous system. If

this phenomenon exists in human beings, it could explain

our observation that some loss-of-function-depleted genes

are tolerant to changes fromoptimal-to-nonoptimal codons.

Additionally, because tRNA expression is most likely mark-

edly different in the brain,9,28,80 synRVIS might be limited

in detecting intolerance of neurodevelopmental genes

because of its reliance on HEK293T-derived codon stability

coefficients. Both of these hypotheses might explain syn-

GERP’s improved ability to predict dosage-sensitive genes

because synGERP could detect constraint on binding sites

for trans-acting factors and does not rely on CSC in its calcu-

lation. Understanding the relationship between tissue-spe-

cific codon usage, intolerance, and mRNA decay programs

stands as an important goalpost for future studies.

Strikingly, we not only found a correlation between the

strength of selection on codon optimality and disease-rele-

vant genes, but we also found a relationship with the tRNA

abundance patterns that prevail when specific genes are

expressed. Specifically, changes in tRNA abundance can

modulate protein expression in response to different

cellular states, including cell-cycle stage, disease, and

stress. Previous studies have demonstrated that cellular

tRNA concentrations are reduced in response to DNA dam-

age and during the G1 phase of the cell cycle.66 Accord-

ingly, we illustrate that intolerant synRVIS genes are en-

riched for genes involved in these cellular pathways.

synGERP is unable to predict these genes, perhaps impli-

cating a role of human-specific selection on codon opti-

mality in these pathways. We note that tRNA dysregula-

tion also underpins the pathogenesis of other non-

cancerous conditions, including some immunodeficiency

and neurological disorders.81–83 Therefore, future work

focused on determining potential interspecies variation

in dynamic tRNA expression will be crucial in determining

whether non-human disease models accurately represent

diseases characterized by translational deregulation.

Collectively, our results suggest that codon usage can

significantly impact biological traits and might play an

underappreciated role in human disease. Just as previ-

ously developed intolerance scores have improved our

ability to identify disease-associated genes,41,73 synRVIS

will aid in prioritizing potential genes in which synony-

mous variants that reduce codon optimality could cause

disease.

We note that synRVIS critically depends on codon usage

metrics and the number of individuals sequenced in the

reference cohort. Therefore, our resolution to detect intol-

erance to synonymous variation in the human genome

will improve with tissue-specific codon stability coeffi-

cients and increased numbers of sequenced individuals.
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Data and Code Availability

synRVISs and synGERP scores are available in Table S1. The

code for computing these scores is available on GitHub.
Supplemental Data

Supplemental Data can be found online at https://doi.org/10.

1016/j.ajhg.2020.05.011.
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Figure S1. Demonstration of variant matching scheme and baseline SFS. (A) Illustration of our 
variant matching scheme for the SFS analyses. Each observed synonymous variant was matched to an 
observed intronic variant within 10kb with the same reference and alternate allele. We excluded all 
variants occurring in the first and last codon of an exon and intronic variants within 10 basepairs of 
splice junctions. (B) Site frequency spectrum of synonymous and intronic variants without accounting 
for codon bias.  
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Figure S2. SFS of synonymous and intronic variants matched for 5’ and 3’ nucleotide content (A) 
Site frequency spectrum of variants matched for trinucleotide context. T-test p-values: Synonymous O 
à NO vs synonymous neutral (p = 3.2x10-34); synonymous O à NO versus intronic O à NO (p = 5.4x10-
27); synonymous NO à O versus intronic NO à O (p = 6.2x10-4); and synonymous NO à O vs 
synonymous neutral (p = 9.1x10-16). (B) GERP++ distributions of the reference alleles for the matched 
variants included in (A). (C) SFS of the original matched synonymous and intronic variants using RSCU-
defined codon optimality. (D) GERP++ distribution of reference alleles for the RSCU-annotated variants 
included in (C). (E) SFS of gnomAD loss-of-function, missense damaging (i.e. PolyPhen “probably” or 
“possibly” damaging), and codon optimality-altering synonymous variants.   
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Figure S3. Comparisons of alternative synRVIS derivations. (A) Comparison of synRVIS scores 
calculated using a 1% MAF cutoff rather than 0.5% MAF cutoff for defining common O à NO 
synonymous variants (Y). (B) Comparison of using a MAF cutoff of 0.1% rather than 0.5% for (Y). (C) 
Comparison of CSC-defined codon optimality versus RSCU-defined codon optimality (MAF cutoff of 
0.5% for both). 
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Figure S4: GO enrichments of genes tolerant to synonymous variation but intolerant to loss-of-
function variation. Top gene ontology categories enriched for genes that fall in the bottom 25th percentile 
of LOEUF scores but top 25th percentile of synRVIS scores.   
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Figure S5. synGERP distributions of cell cycle expressed genes and BROCA list genes. (A) 
synGERP distributions of genes periodically expressed during the cell cycle. (B) synGERP distribution of 
genes contained in the BROCA panel versus all other protein-coding genes. (C) Scatter plot of CSC scores 
versus function scores for synonymous variants in BRCA1. (D) Same as (C) with outliers removed. 
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Supplementary tables 
Table S1: List of genes with their synRVIS and synGERP scores 
Table S2: Gene lists used for enrichment tests 

Table S3: GO enrichment results 

Table S4: Annotated BRCA1 variants from Findlay et al. (2018)74. 5 
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