The American Journal of Human Genetics, Volume 107

Supplemental Data

Genome-wide Enrichment of *De Novo* Coding Mutations

in Orofacial Cleft Trios

Madison R. Bishop, Kimberly K. Diaz Perez, Miranda Sun, Samantha Ho, Pankaj Chopra, Nandita Mukhopadhyay, Jacqueline B. Hetmanski, Margaret A. Taub, Lina M. Moreno-Uribe, Luz Consuelo Valencia-Ramirez, Claudia P. Restrepo Muñeton, George Wehby, Jacqueline T. Hecht, Frederic Deleyiannis, Seth M. Weinberg, Yah Huei Wu-Chou, Philip K. Chen, Harrison Brand, Michael P. Epstein, Ingo Ruczinski, Jeffrey C. Murray, Terri H. Beaty, Eleanor Feingold, Robert J. Lipinski, David J. Cutler, Mary L. Marazita, and Elizabeth J. Leslie

Figure S1. Distribution of DNMs by variant class by cleft subtype. (A) Distribution of rare, coding DNMs by variant class for CL/P trios. **(B)** Distribution of rare, coding DNMs by variant class for CP only trios.

DNMs were subcategorized by MPC score (missense) or pLI score (LoF).

Figure S2. **Distribution of DNMs by variant class by sex. (A)** Distribution of rare, coding DNMs by variant class for male probands with any OFC. **(B)** Distribution of rare, coding DNMs by variant class for female probands with any OFC. DNMs were subcategorized by MPC score (missense) or pLI score (LoF)

Figure S3. Liability of DNMs by variant class by sex. Comparison of the number of DNMs by variant type between males and females on the liability scale.

Figure S4. Gene set enrichment analysis for DNMs by variant class in all OFCs. Gene set enrichment analysis for all OFC for genes with protein-altering (purple) or synonymous (grey) DNMs. The dashed line represents a significance threshold of p-value=0.05. **(A)** P-values for genes with synonymous DNMs and protein-altering DNMs for the top ten most significant biological process terms (top) and mouse phenotype terms (bottom) for genes with protein-altering DNMs for the top ten most significant disease terms (top) and molecular function terms (bottom) for genes with protein-altering DNMs for the top ten most significant disease terms (top) and molecular function terms (bottom) for genes with protein-altering DNMs.

Figure S5. Gene set enrichment analysis for protein-altering DNMs by cleft subtype. Gene set enrichment analysis for genes with protein-altering DNMs in the CL/P trios (dark purple) and the CP only trios (light purple). (A) P-values for the top ten most significant biological process terms (top) and mouse phenotype terms (bottom) for genes with protein-altering DNMs in CL/P and CP only trios. (B) P-values for the top ten most significant disease terms (top) and molecular function terms (bottom) for genes with protein-altering DNMs in CL/P and CP only trios.

Figure S6. Gene list summaries for clinically-relevant OFC genes. Venn diagram showing the number of genes in each clinically relevant gene set list.

Figure S7. Number of DNMs per trio by ethnicity. (A) Genome-wide DNMs per trio for European, Colombian, Taiwanese, and All trios. (B) Exome-wide DNMs per trio for European, Colombian, Taiwanese, and All trios.

Figure S8. Sensitivity analysis for *IRF6* and *TFAP2A*. (A) Enrichment of DNMs \pm two standard errors for marker genes with and without *IRF6* and/or *TFAP2A* for each significant cell subclusters. (B) Enrichment of DNMs Enrichment of DNMs \pm two standard errors for all OFC trios in clinically relevant gene set related to OFC conditions \pm two standard errors for all OFC trios in clinically relevant gene set related to OFC conditions with and without *IRF6* and/or *TFAP2A*

					Offspring cleft status								
Sample	Total Trios	Trios with no affected parents	Trios with 1 affected parent	Trios with 2 affected parents		CL/P)		CP only				
					Total	Male	Female	Total	Male	Female			
European	373	331	38	4	315	209	106	58	32	26			
Colombian	267	267	0	0	267	156	111	0	0	0			
Taiwanese	116	108	8	0	116	79	37	0	0	0			
Total	756	706	46	4	698	444	254	58	32	26			

 Table S1. Summary of the GMKF sample of case-parent trios with OFCs.

		Colombian CL/P (N)			European CL/P (N)			Euro. CP (N)	Taiwanese CL/P (N)			All CL/P (N)			All OFC (N)		
Variant Class	Variant Class Subclassification	All (267)	M (156)	F (111)	All (315)	M (210)	F (105)	All (58)	All (116)	M (79)	F (37)	All (698)	M (445)	F (253)	All (756)	M (477)	F (279)
	Total	41	25	16	42	25	17	7	12	10	2	95	60	35	102	62	40
	Stopgain	15	8	7	17	10	7	4	2	2	0	34	20	14	38	21	17
	Frameshifting indel	18	10	8	18	10	8	1	9	7	2	45	27	18	46	27	19
Loss of	Splice	8	7	1	7	5	2	2	1	1	0	16	13	3	18	14	4
Function	Loss of Function pLI:0.995-1	10	9	1	8	3	5	4	3	3	0	21	15	6	25	17	8
	Loss of Function pLI: 0.5-0.995	11	4	7	5	3	2	0	2	2	0	18	9	9	18	9	9
	Loss of Function pLI: 0-0.5	20	12	8	29	19	10	3	7	5	2	56	36	20	59	36	23
Non-frameshifting indels		12	9	3	12	8	4	0	9	4	5	33	21	12	33	21	12
	Total	201	118	83	194	133	61	51	76	55	21	471	306	165	522	333	189
	MPC>2	15	8	7	12	9	3	5	9	6	3	36	23	13	41	27	14
Missense	MPC: 1-2	20	13	7	36	23	13	5	10	7	3	66	43	23	71	47	24
	MPC:0-1	148	88	60	129	90	39	38	50	38	12	327	216	111	365	233	132
	Unknown	18	9	9	17	11	6	3	7	4	3	42	24	18	45	26	19
Synonymous		76	49	27	75	56	19	16	38	26	12	189	131	58	205	135	70
Protein-altering		254	152	102	248	166	82	58	97	69	28	599	387	212	657	416	241
Total		330	201	129	323	222	101	74	135	95	40	788	518	270	862	551	311

 Table S2.
 Summary of DNMs identified the GMKF sample of case-parent trios with OFCs.

Species	Primer	Sequence
Mouse	Irf2bp1 F	GCTTCAAGTACCTCGAGTATG
Mouse	Irf2bp1 R	CGATGTTAATACGACTCACTATAGGG TGATGTCACCAGCAAGAATAG
Mouse	Macf1 F	CTTACAACAGGAGACAGAGAAG
Mouse	Macf1 R	CGATGTTAATACGACTCACTATAGGG TAGAGTGGAGAGTGGTGTATC
Mouse	Rbm15 F	AACGCTTCGGTGATGTAAG
Mouse	Rbm15 R	CGATGTTAATACGACTCACTATAGGG GGCCTCTTAATGTCCACTTC
Mouse	Setd2 F	AGTCCTCCGTCAGGAATAAG
Mouse	Setd2 R	CGATGTTAATACGACTCACTATAGGG GGAGTCGGTTTCTTGGAATAC
Mouse	Sox2 F	GAAGGATAAGTACACGCTTCC
Mouse	Sox2 R	CGATGTTAATACGACTCACTATAGGG GCGTTAATTTGGATGGGATTG
Mouse	Zfhx3 F	ACAGCGCAACAGGAATAG
Mouse	Zfhx3 R	CGATGTTAATACGACTCACTATAGGG GATACGTGGTAGGAAGGTTAAG
Mouse	Zfhx4 F	CTTGACCGGGAGAAAGATTAC
Mouse	Zfhx4 R	CGATGTTAATACGACTCACTATAGGG GTTTGATAGCCTCCGATTCC

 Table S5.
 Summary of gene-specific ISH riboprobe primers used for in situ hybridization.