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Non-parametric Polygenic Risk Prediction
via Partitioned GWAS Summary Statistics

Sung Chun,1,2,3,4,12,13 Maxim Imakaev,1,2,3,4,12 Daniel Hui,1,3,5 Nikolaos A. Patsopoulos,1,3,5

Benjamin M. Neale,3,6,7 Sekar Kathiresan,3,7,8,14 Nathan O. Stitziel,9,10,11,* and Shamil R. Sunyaev1,2,3,4,*

In complex trait genetics, the ability to predict phenotype from genotype is the ultimate measure of our understanding of genetic archi-

tecture underlying the heritability of a trait. A complete understanding of the genetic basis of a trait should allow for predictive methods

with accuracies approaching the trait’s heritability. The highly polygenic nature of quantitative traits andmost common phenotypes has

motivated the development of statistical strategies focused on combining myriad individually non-significant genetic effects. Now that

predictive accuracies are improving, there is a growing interest in the practical utility of such methods for predicting risk of common

diseases responsive to early therapeutic intervention. However, existing methods require individual-level genotypes or depend on accu-

rately specifying the genetic architecture underlying each disease to be predicted. Here, we propose a polygenic risk prediction method

that does not require explicitly modeling any underlying genetic architecture. We start with summary statistics in the form of SNP effect

sizes from a large GWAS cohort.We then remove the correlation structure across summary statistics arising due to linkage disequilibrium

and apply a piecewise linear interpolation on conditional mean effects. In both simulated and real datasets, this new non-parametric

shrinkage (NPS) method can reliably allow for linkage disequilibrium in summary statistics of 5 million dense genome-wide markers

and consistently improves prediction accuracy. We show that NPS improves the identification of groups at high risk for breast cancer,

type 2 diabetes, inflammatory bowel disease, and coronary heart disease, all of which have available early intervention or prevention

treatments.
Introduction

In addition to improving our fundamental understanding

of basic genetics, phenotypic prediction has obvious prac-

tical utility, ranging from crop and livestock applications

in agriculture to estimating the genetic component of

risk for common human diseases in medicine. For

example, a portion of the current guideline on the treat-

ment of blood cholesterol to reduce atherosclerotic cardio-

vascular risk focuses on estimating a patient’s risk of devel-

oping disease;1 in theory, genetic predictors have the

potential to reveal a substantial proportion of this risk early

in life (even before clinical risk factors are evident),

enabling prophylactic intervention for high-risk individ-

uals. The same logic applies to many other disease areas

with available prophylactic interventions including can-

cers and diabetes.

The field of phenotypic prediction was conceived in

plant and animal genetics (reviewed in Goddard and

Hayes2 and Falke et al.3). The first approaches relied on

‘‘major genes’’—allelic variants of large effect sizes readily

detectable by genetic linkage or association. These efforts

were quickly followed by strategies adopting polygenic
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models, most notably the genomic version of the Best

Linear Unbiased Predictor (BLUP).4

Similarly, after the early results of human genome-wide

association studies (GWASs) became available, the first

risk predictors in humans were based on combining the ef-

fects of markers significantly and reproducibly associated

with the trait, typically those with association statistics

exceeding a genome-wide level of significance.5–7 Almost

immediately, after realization that a multitude of small ef-

fect alleles play an important role in complex trait ge-

netics,2,3,8 these methods were extended to accommodate

very large (or even all) genetic markers.9–15 These methods

include extensions of BLUP,9,10,16 or Bayesian approaches

that extend both shrinkage techniques and random effect

models.11 Newermethods benefited from allowing for clas-

ses of alleles with vastly different effect size distributions.

However, these methods require individual-level genotype

data that do not exist for large meta-analyses and are

computationally expensive.

To leverage summary-level data from large-scale GWAS

projects, an alternative approach to construct polygenic

risk scores based on summary statistics has been intro-

duced.3,12,14,17–21 The originally proposed version is
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additive over genotypes weighted by apparent effect sizes

exceeding a given p value threshold. In theory, the risk pre-

dictor based on expected true genetic effects given the ge-

netic effects observed in GWAS (conditional mean effects)

can achieve the optimal accuracy of linear risk models

regardless of underlying genetic architecture by properly

down-weighting noise introduced by non-causal vari-

ants.22 In practice, however, implementing the condi-

tional mean predictor poses a dilemma. The GWAS-esti-

mated effect sizes capture genetic effects of all SNPs in

linkage disequilibrium (LD), so these marginal estimates

have to be first deconvoluted into genetic contribution of

individual causal SNPs. Furthermore, in order to estimate

the conditional mean effects, we need to know the under-

lying genetic architecture first, but the true architecture is

unknown and difficult to model accurately. The current

methods circumvent this issue by extensively sampling

likely combinations of causal genetic effects under a

simplified model of genetic architecture. However, these

methods often ignore the correlation of sampling errors

of estimated effects between SNPs in LD for the sake of

computational efficiency.18,20 Such approximation can

lead to a suboptimal prediction model due to double-

counting of correlated sampling errors. In case of dense

high-resolution GWAS data, this effect can be severe due

to extensive and rank-deficient LD structures. Recent ap-

proaches account for correlated sampling errors by

applying a Metropolis-Hastings technique to reject pro-

posed states based on a full multivariate likelihood or by

assuming a continuous shrinkage prior for the allelic archi-

tecture, but their prediction accuracy still depend on the

convergence of high-dimensional combinatorial sampling

processes, and it remains challenging to extend these

models to incorporate additional complexity of true

architecture.19,21

In spite of this methodological complexity, polygenic

scores trained on large-scale datasets show some promise

for practical applications in medical genetics. Polygenic

scores have been used to analyze the UK Biobank, the

largest epidemiological cohort that includes genetic

data.23 Individuals with extreme values of polygenic score

were shown to have a substantially elevated risk for corre-

sponding diseases, generating enthusiasm for clinical ap-

plications of the method.

Here, we propose a novel risk prediction approach called

partitioning-based non-parametric shrinkage (NPS).

Without specifying a parametric model of underlying ge-

netic architecture, we aim to estimate the conditional

mean effects directly from the data. Our method accounts

for both types of correlations induced by LD in GWAS sum-

mary statistics, namely the correlations of true genetic ef-

fects as well as sampling errors, by using eigenvalue decom-

position of LD matrix instead of relying on a high-

dimensional sampling technique. Despite growing interest

in non-parametric prediction models, thus far there has

been no non-parametric polygenic score that can fully

allow for LD under the conditional mean effect frame-
The
work.24–29 We evaluate the performance of this new

approach under a simulated genetic architecture of 5

million dense SNPs across the genome. We also test the

method using real data in four disease areas: breast cancer,

type 2 diabetes, inflammatory bowel disease, and coronary

heart disease.
Material and Methods

Overview
Our approach is to partition SNPs into groups and determine the

relative weights based on predictive value of each partition esti-

mated in the training data (Figure 1A). Intuitively, when there is

no LDbetween SNPs, a partition dominated by non-causal variants

will have low power to distinguish case subjects from control sub-

jects, whereas the partition enriched with strong signals will be

more informative for predicting the phenotype. This is equivalent

to approximating the conditional mean effect curve by piecewise

linear interpolation. Because of LD, however, we cannot apply

the partitioningmethod directly to GWAS effect sizes. True genetic

effects as well as sampling noise are correlated between adjacent

SNPs. To prevent estimated genetic signals smearing across parti-

tions, we first transform GWAS data into an orthogonal domain,

whichwe call ‘‘eigenlocus’’ (Figure 1B). Specifically, we use a decor-

relating linear transformation obtained by eigenvalue decomposi-

tion of the local LD matrix. Both genotypes and sampling errors

are uncorrelated in the eigenlocus representation. In this represen-

tation, however, true genetic effects do not follow analytically trac-

table distributions except under infinitesimal and extremely poly-

genic architectures. Therefore, we apply our partitioning-based

non-parametric shrinkage to the estimated effect sizes in the eigen-

locus, and then restore them back to the original per-SNP effects.

Decorrelating Projection
We split the genome into L non-overlapping windows of m SNPs

each. By default, m was set to 4,000 SNPs (�2.5 Mb on average).

The window size was chosen to be large enough to capture thema-

jority of LD patterns except near the edge. For the sake of

simplicity, we assume that LD is confined to each window and

there exists no LD across windows. In each genomic window

l˛f1;.; Lg, let Xl be an N3m genotype matrix of N individuals

and m SNPs in the window. We assume that the genotypes are

standardized to the mean of 0 and variance of 1. Let bbl be an

m-dimensional vector of observed effect sizes from a GWAS and

bl be an m-dimensional vector of true underlying genetic effects

in window l. The scales of bbl and bl are defined with respect to

the standardized genotypes. Then, the LD matrix Dl is given by

Dl ¼ 1=ð NÞXT
l Xl and can be factorized by eigenvalue decomposi-

tion intoDl ¼ Q l Ll Q
T
l , whereQ l is an orthonormal matrix of ei-

genvectors and Ll is a diagonal matrix of eigenvalues.

Now we introduce a linear decorrelating transformation Pl,

which projects summary statistics bbl and genotypes Xl into a de-

correlated space which we call ‘‘eigenlocus space.’’ We call the

projection Pl an ‘‘eigenlocus projection.’’ Pl is defined as the

following:

Pl :¼ L
�1

2

l QT
l

By applying the eigenlocus projection on bbl and Xl, we obtain

the estimated effect sizes bhl and projected genotypes XP
l in this ei-

genlocus space as follows:
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Figure 1. Overview of Non-Parametric Shrinkage (NPS)
(A) For unlinkedmarkers, NPS partitions SNPs into K subgroups splitting the GWAS effect sizes (bbj) at cut-offs of b0; b1;.; bK. Partitioned
risk scoresGik are calculated for each partition k and individual i using an independent genotype-level training cohort. The per-partition
shrinkage weights uk are determined by the separation of Gik between training case subjects and control subjects. Estimating the per-
partition shrinkage weights is a far easier problem than estimating per-SNP effects. The training sample size is small but still larger
than the number of partitions, whereas for per-SNP effects, the GWAS sample size is considerably smaller than the number of markers
in the genome. This procedure ‘‘shrinks’’ the estimated effect sizes not relying on any specific assumption about the distribution of true
effect sizes.
(B) For markers in LD, genotypes and estimated effects are decorrelated first by a linear projection P in non-overlapping windows of
�2.5 Mb in length, and then NPS is applied to the data. The size of black dots indicates genotype frequencies in population. Before pro-
jection, genotypes at SNP 1 and 2 are correlated due to LD (D), and thus sampling errors of estimated effects (bbj

�� bj) are also correlated
between adjacent SNPs. The projection P neutralizes both correlation structures. The axes of projection are marked by red dashed lines.
bj denotes the true genetic effect at SNP j. Ng is the sample size of GWAS cohort.
bhl :¼ Pl
bbl

XP
l :¼ XlPT

l

(Equation 1)

This projection will remove the correlation structure induced by

LD in the genotypes XP
l and in the sampling error of estimated ef-

fects bhl. Specifically, in the eigenlocus space, bhl and XP
l follow the

followingmultivariate normal distributions (see Appendices A and

B for the derivation):

XP
l � N 0; Ið Þ

bhl j bl � N hl;
1

Ng

I

� �
where Ng is the sample size of GWAS from which summary statis-

tics bbl was obtained and hl is the true underlying genetic effect

defined by hl ¼ L
1=2
l QT

l bl.

Due to the rank-deficiency of LD matrix Dl and application of

regularization on Dl (described below), the dimension of eigenlo-

cus space ml can be lower than the total number of SNPs m in a

given window l. Specifically, we set the LD between SNPs to 0 un-

less the absolute value of estimated LD was greater than 5=
ffiffiffiffi
N

p
.

This is to suppress sampling noises in off-diagonal entries of LD
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matrix. Since the standard error of pairwise LD is approximately

1=
ffiffiffiffi
N

p
under no correlation, we expect that on average, only 1.7

uncorrelated SNP pairs escape the above regularization threshold

in each window. In addition, projections corresponding to eigen-

values less than 0.5 were truncated for the computational effi-

ciency since they were dominated by noises. Although we chose

the window size to be large enough to capture themajority of local

LD patterns, some LD structures, particularly near the edge, span

across windows, which in turn yield cross-window correlations.

To eliminate such correlations, we applied LD pruning in the ei-

genlocus space between adjacent windows. Specifically, we calcu-

lated Pearson correlations between projected genotypes belonging

to neighboring windows. For the pairs with the absolute Pearson

correlation > 0.3, we kept the one yielding a larger absolute effect

size and eliminated the other.

By applying the above processing steps in each genomic win-

dow l, we obtainedml-dimensional vector of estimated effect sizesbhl ¼ bhlj

n o
andN3ml matrix of genotypesXP

l ¼ xPlij

n o
in the eigen-

locus space. Here, the index j˛f1;.; mlg indicates an individual

genetic variation yielded by applying an eigenlocus projection

(Equation 1) with eigenvalues Ll ¼ llj
� �

. In this representation,

we can operate on each genetic variation independently from

each other since they are decorrelated.



Partitioning Strategy
Since the SNPs with largest effect sizes span a wide range of values

but are sampled only sparsely, we cannot reliably estimate the con-

ditionalmean effect for this large-effect tail without assuming a pri-

ori parametric assumption on its distribution. This issue is particu-

larly the case for genome-wide significant SNPs. To solve this

problem, we handled the genome-wide significant SNPs as a sepa-

rate partition from the rest of SNPs and treat them as fixed effect es-

timates. Specifically, the genome-wide significant SNPs were set

aside to a special partition S0, for which the decorrelating projec-

tion was set to the identity matrix Iwith eigenvalues of 1. To avoid

LD across SNPs in S0, genome-wide significant SNPs were selected

into S0 only if the LD between them is low (r2 < 0.3). Then, we re-

sidualized the effects of SNPs inS0 fromestimated effects of the rest

of SNPs in order to avoid double-counting their genetic effects.

The genetic variants which were not selected to S0 were pro-

jected into the eigenlocus space and then grouped into 10 3 10

double-partitions on intervals of eigenvalues llj and absolute esti-

mated effect sizes
��bhlj

�� . This is because in the eigenlocus space,

conditional mean effect E½hlj
��bhlj� depends not only on the absolute

value of estimated genetic effect
��bhlj

�� but also on eigenvalue of

projection llj. The eigenvalue of projection tracks the scale of

true genetic effect in the eigenlocus space (Appendix C). In total,

we used 101 partitions in this study including the partition of

genome-wide significant SNPs S0.

While fully optimizing the partitioning cut-offs can potentially

improve the accuracy of prediction model, this becomes rapidly

impractical as the number of partitions increases. NPS requires a

large enough number of partitions to closely approximate condi-

tional mean effects, thus the combinatorial search for optimal

cut-offs is computationally intractable. Therefore, we applied the

following general heuristic, which worked well across our simula-

tion datasets. First, the partitioning cut-offs were selected on the

intervals of eigenvalues, equally distributing
P
l

Pml

j¼1

llj across parti-

tions. This partition scheme evenly distributes the tagged herita-

bility across partitions. The partitions on eigenvalues are denoted

here by S1,., S10 from the lowest to the highest. Then, each parti-

tion of eigenvalues Sk was further partitioned on intervals of
��bhlj

�� ,
equally distributing

P
l

Pml

j¼1

bh2
lj across partitions. This second parti-

tioning scheme is intended to evenly distribute the overall vari-

ance in polygenic scores, namely, var

 P
l

Pml

j¼1

bhljx
P
lij

!
, across the par-

titions. This second partitions of Sk are denoted by Sk;1, ., Sk;10

from the lowest to the highest
��bhlj

�� .
Estimation of Conditional Mean Effect
The predicted genetic risk scores of individual i˛f1; .; Ng can be

represented by the sum of conditional mean effects E½ hlj
�� bhlj�

multiplied by genetic dosages xPlij across all genomic windows l˛
f1;.; Lg and genetic variations j˛f1;.; mlg in each window.

Instead of deriving conditional mean effects under a genetic archi-

tecture prior, we interpolate the conditionalmean effects by fitting

a linear function f ðbhljÞ ¼ ukbhlj for each partition k ¼ 0;.; K � 1 as

follows:

byi ¼
XL
l¼l

Xml

j¼1

E
�
hlj j bhlj

	
xPlijz

XL
l¼l

Xml

j¼1

 XK�1

k¼0

ukbhljI



llj; j bhlj j

�
˛Sk

�!
xPlij

(Equation 2)
The
where Ið ,Þ is an indicator function for the membership of genetic

variations to partition k, Sk is the set of all genetic variations as-

signed to partition k, and K is the total number of partitions, set

to 101 by default. The equation (Equation 2) can be further simpli-

fied by changing the order of summation as below:

byiz
XK�1

k¼0

uk

 XL
l¼l

Xml

j¼1

bhljI



llj; j bhlj j

�
˛Sk

�
xPlij

!

¼
XK�1

k¼0

uk

0B@ X
ðllj ; jbh lj j Þ ˛Sk

bhljx
P
lij

1CA ¼
XK�1

k¼0

ukGik (Equation 3)

whereGik is a partitioned polygenic score of individual i calculated

using only genetic variations belonging to the partition k. Then,

uk becomes equivalent to the per-partition shrinkage weight.

Based on Equation 3, we can estimate uk by fitting known pheno-

types yi with partitioned scores Gik across individuals i in a small

genotype-level training cohort.

For dichotomous phenotypes without covariates, we used a

linear discriminant analysis (LDA) to estimate uk. The partitioned

scores Gik calculated in a training cohort form K-dimensional

feature space, and LDA guarantees the optimal accuracy of the

classifier when case and control subgroups follow multivariate

normal distributions in the feature space. Since each partition

consists of a sufficient number of projected genetic variations,

partitioned scores of case and control subjects, namely Gik j yi,
follow approximately normal distributions.30 The variance of par-

titioned scores is approximately equal between case and control

subjects since Gik of an individual partition explains only a small

fraction of phenotypic variation on the observed scale in typical

GWAS data.31 Furthermore, due to the decorrelating property of

eigenlocus projection, the covariance of Gik and Gik0 can be

assumed to be approximately 0 between different partitions k

and k
0
. Although in theory, the liability thresholding effect in-

duces slight non-zero covariance between partitions, this effect

is typical small and negligible. Thus, LDA-derived shrinkage

weights can be independently estimated for each partition and

simplify to:

ukz2
E
�
Gik j yi ¼ 1

	� E
�
Gik j yi ¼ 0

	
var
�
Gik j yi ¼ 1

	þ var
�
Gik j yi ¼ 0

	
Similarly, for continuous phenotypes or the case of dichotomous

traits with covariates, we can estimate per-partition shrinkage

weights uk by applying the following linear regression model to

the training data:

yi ¼ukGik þ covariates

independently for each partition.

In the special case of infinitesimal genetic architecture, in which

all SNPs are causal with normally distributed effect sizes, the con-

ditional mean effects have been analytically derived and are pre-

dicted to depend only on eigenvalues llj;
18 therefore, we can

cross-check the accuracy of our shrinkage weights uk estimated

by NPS in simulations (Appendix D). To apply NPS, we first parti-

tioned genetic variations in the eigenlocus space into ten sub-

groups on intervals of their eigenvalues llj as described above

but without separating out the genome-wide significant SNPs

(Figure 2A). The per-partition shrinkage weights uk trained by

NPS closely tracked the theoretical optimum in most of the bins.

Interestingly, in the lowest and highest partitions of eigenvalues,
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Figure 2. Per-Partition Shrinkage
Weights Estimated by Non-Parametric
Shrinkage (NPS) Approximate the Condi-
tional Mean Effects in the Decorrelated
Space
(A) NPS shrinkage weights uk (red line)
compared to the theoretical optimum

(black line), llj=

�
llj þ M

Ngh2

�
, under infinites-

imal architecture. The partition of largest
eigenvalues S10 is marked by gray box.
(B) Conditional mean effects estimated by
NPS (red line) in sub-partitions of S10 by��bhlj

�� under infinitesimal architecture. The

theoretical line (black) is the average over
all llj in S10.

(C and D) Conditional mean effects esti-
mated by NPS (red line) in sub-partitions

of S10 (C) and S2 (D) on intervals of
��bhlj

��
under non-infinitesimal architecture with
the causal SNP fraction of 1%. The true
conditional means (black) were estimated
over 40 simulation runs.
The mean NPS shrinkage weights (red line)
and their 95% CIs (red shade) were esti-
mated from five replicates. Grey vertical
lines indicate partitioning cut-offs. No
shrinkage line (green) indicates uk ¼ 1.
The number of markers M is 101,296.
The discovery GWAS size Ng equals to M.

The heritability h2 is 0.5.
S1 and S10, the estimated shrinkage was significantly biased away

from the optimal curve. The smallest eigenvalues are too noisy to

estimate with the reference LD panel. Therefore, it is correct to

down-weight u1 almost to 0. In case of partition S10, it spans

the widest interval of eigenvalues but consists of the fewest num-

ber of SNPs. While it is ideal to apply a finer partitioning in this in-

terval so as to better interpolate the theoretical curve, the total

numbers of SNPs and independent projection vectors in the

genome are the fundamental limiting factor.

In the case of infinitesimal architecture, theory predicts that per-

partition shrinkage weights are independent of estimated effect

sizes bhlj. To examine the robustness of NPS, we applied the general

10-by-10 double partitioning on llj and
��bhlj

�� collected under infin-

itesimal simulations. In overall, the shrinkage weights estimated

by double partitioning agree with the theoretical expectation.

The estimated conditional mean effects, interpolated with ukbhlj,

follow the linear trajectory (Figures 2B and S1).

For non-infinitesimal genetic architecture, we do not have an

analytic derivation of conditional mean effects; therefore, we

empirically estimated the conditional means using the true un-

derlying effects hlj and true LD structure of the population.

Here, 1% of SNPs were simulated to be causal with normally

distributed effect sizes. As expected, the true conditional mean

dips for the lowest values of
��bhlj

�� but approaches no shrinkage

ðuk ¼ 1Þ with increasing values of
��bhlj

�� (Figures 2C and 2D). A

notable difference between the partitions of largest eigenvalues

and second smallest eigenvalues is that the true conditional

mean is very close to no shrinkage for large
��bhlj

�� in the former.

This is because eigenvalues are proportional to the scale of true

effects hlj; therefore, with large enough eigenvalues, the sam-
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pling error becomes relatively small and the estimated effect sizes

more accurate. In all partitions, conditional mean effects esti-

mated by NPS stayed very close to the true conditional means

(Figure S2).
Back-Conversion from the Eigenlocus Space to Per-SNP

Effects
Rewriting Equation 2 using matrix operations, we can reformulate

the N-dimensional vector of predicted genetic risk scores by using

the original SNP genotypes Xl instead of eigenlocus genotypes

XP
l as follows:

by ¼
XL
l¼1

XP
l E hl j bhl½ � ¼

XL
l¼1

Xl L
�1

2

l QT
l

� 
T
E hl j bhl½ �

¼
XL
l¼1

Xl Q lL
�1

2
l E hl j bhl½ �

� 

from the definition of XP

l (Equation 1). We obtain the conditional

mean effects by non-parametric shrinkage in the following form:

E hl j bhl½ �zWl bhl

whereWl is an ml3ml diagonal matrix with diagonal entries fwjjg
defined as:

wjj ¼ uk with with the k such that ðllj;
��bhlj

�� Þ ˛Sk

where k is the partition to which the jth projected genetic varia-

tion belong in the eigenlocus space. Therefore, the reweighted ef-

fects in the original per-SNP scale can be retrieved back by

computing Q lL
�1

2

l Wl bhl.



Application of NPS to Genome-wide Datasets
The estimated effect size at each SNP is available as summary sta-

tistics from a large discovery GWAS. As these estimated effects

were represented as per-allele effects, we converted them relative

to standardized genotypes by multiplying by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2f ð1� f Þp

, where

f is the allele frequency of each SNP in the discovery GWAS

cohort.

Because the accuracy of eigenlocus projection declines near the

edge of windows, the overall performance of NPS is affected by the

placement of window boundaries relative to locations of strong as-

sociation peaks. To alleviate such dependency, we repeated the

same NPS procedure shifting by 1,000, 2,000, and 3,000 SNPs

and took the average reweighted effect sizes across four NPS

runs. When NPS was run in parallel on up to 88 processors (22

chromosomes 3 4 window shifts), it took total computation

time of 3 to 6 h for each dataset.

Simulation of Genetic Architecture with Dense Genome-

wide Markers
For simulated benchmarks, we generated genetic architecture with

5 million dense genome-wide markers from the 1000 Genomes

Project. We kept only SNPs with MAF > 5% and Hardy-Weinberg

equilibrium test p value > 0.001. We used non-Finnish EUR panel

(n ¼ 404) to populate LD structures in simulated genetic data. Due

to the limited sample size of the LD panel, we regularized the LD

matrix by applying Schur product with a tapered banding matrix

so that the LD smoothly tapered off to 0 starting from 150 kb up

to 300 kb.32

Next, we generated genotypes across the entire genome, simu-

lating the genome-wide patterns of LD. We assume that the stan-

dardized genotypes follow a multivariate normal distribution.

Since we assume that LD travels no farther than 300 kb, as long

as we simulate genotypes in blocks of length greater than 300

kb, we can simulate the entire chromosome without losing any

LD patterns by utilizing a conditional multivariate normal distri-

bution as the following. The genotypes for the first block of

1,250 SNPs (average 750 kb in length) were sampled directly out

of multivariate normal distribution Nðm¼ 0; S¼ D1Þ. From the

next block, we sampled the genotypes of 1,250 SNPs each, condi-

tional on the genotypes of previous 1,250 SNPs. When the geno-

type of block l is xl and the LD matrix spanning block l and lþ 1

is split into submatrices as the following:�
Dl Dl;lþ1

Dlþ1;l Dlþ1

�
then, the genotype of next block lþ 1 follows a conditional

MVN as:

Xlþ1 j Xl ¼xl � N


m¼Dlþ1;lD

�1
l xl; S¼Dlþ1 �Dlþ1;lD

�1
l Dl;lþ1

�
After the genotype of entire chromosome was generated in this

way, the standardized genotype values were converted to allelic ge-

notypes by taking the highest nf and lowest nð1� f Þ2 genotypes

as homozygotes and the rest as heterozygotes under Hardy-Wein-

berg equilibrium. n is the number of simulated samples and f is the

allele frequency of each SNP. This MVN-based simulator can effi-

ciently generate a very large cohort with realistic LD structure

across the genome and is guaranteed to produce homogeneous

population without stratification.

We simulated three different sets of genetic architecture: point-

normal mixture, MAF dependency, and DNase I hypersensitive

sites (DHS). The point-normal mixture is a spike-and-slab architec-
The
ture in which a fraction of SNPs have normally distributed causal

effects bj for SNP j as below:

bj � pNð0;1Þ þ ð1� pÞd0

where p is the fraction of causal SNPs being 1%, 0.1%, or 0.01%

and d0 is a point mass at the effect size of 0. For the MAF-depen-

dent model, we allowed the scale of causal effect sizes to vary

across SNPs in proportion to ðfjð1� fjÞÞa with a ¼ �0:2533 as

follows:

bj � p N
�
0;
�
fj
�
1� fj



a

þ ð1� pÞd0

Finally, for the DHSmodel, we further extended theMAF-depen-

dent point-normal architecture to exhibit clumping of causal SNPs

within DHS peaks. Fifteen percent of simulated SNPs were located

in the master DHS sites that we downloaded from the ENCODE

project. We assumed a five-fold higher causal fraction in DHS

(pDHS) compared to the rest of the genome in order to simulate

the enrichment of per-SNP heritability in DHS reported in the pre-

vious study.34 Specifically, bj was sampled from the following

distribution:

bj �

8>><>>:
pDHS N

�
0;
�
fj
�
1� fj



a

þ 
1� pDHS

�
d0 if SNP j is in DHS

1

5
pDHSN

�
0;
�
fj
�
1� fj



a

þ
�
1� 1

5
pDHS

�
d0 otherwise

In each genetic architecture, we simulated phenotypes for dis-

covery, training, and validation populations of 100,000, 50,000,

and 50,000 samples, respectively, using a liability threshold model

of heritability of 0.5 and prevalence of 0.05. In the discovery pop-

ulation, we obtained GWAS summary statistics with Plink by

testing for the association with the total liability instead of case/

control status; this is computationally easier than to generate a

large case/control GWAS cohort directly, and the estimated effect

sizes are approximately equivalent by a common scaling factor.

With the prevalence of 0.05, statistical power of quantitative trait

association studies using the total liability is roughly similar to

those of dichotomized case/control GWASs of same sample

sizes.35 For the training dataset, we assembled a cohort of 2,500

case subjects and 2,500 control subjects by down-sampling con-

trol subjects out of the simulated population of 50,000 samples.

The validation population was used to evaluate the accuracy of

prediction model in terms of R2 of the liability explained and Na-

gelkerke’s R2 to explain case/control outcomes.

GWAS Summary Statistics
GWAS summary statistics are publicly available for phenotypes of

breast cancer,36,37 inflammatory bowel disease (IBD),38 type 2 dia-

betes (T2D),39 and coronary artery disease (CAD).40 These GWAS

summary statistics were based only on white (European) samples

with an exception of CAD, for which 13% of discovery cohort

comprised of non-European ancestry.

UK Biobank
UK Biobank samples were used for training and validation pur-

poses. Case and control samples were defined as follows. Breast

cancer cases were identified by ICD10 codes of diagnosis. Control

subjects were selected from females who were not diagnosed with

or did not self-report history of breast cancer.We excluded individ-

uals with history of any other cancers, in situ neoplasm, or

neoplasm of unknown nature or behavior from both case and
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control subjects. For IBD, we identified case individuals by ICD10

or self-reported disease codes of Crohn disease, ulcerative colitis,

or IBD. Control subjects were randomly selected excluding partic-

ipants with history of any auto-immune disorders. For T2D, case

subjects were identified by ICD10 diagnosis codes or by question-

naire on history of diabetes combined with the age of diagnosis

over 30. However, our T2D case subjects may include a small frac-

tion of type 1 diabetic case subjects misdiagnosed as T2D (3.7%) as

previously reported.41 For early-onset CAD, case individuals were

identified by ICD10 codes of diagnosis or cause of death. The early

onset was determined by the age of heart attack on the question-

naire (%55 formen and%65 for women). Individuals with history

of CAD were excluded from controls regardless of the age of onset.

The latest CAD summary statistics include UK Biobank samples in

the interim release; thus, to avoid sample overlap, we used only

post-interim samples, which were identified by genotyping batch

IDs. For all phenotypes, our case definition includes both preva-

lent and incident cases.

For genotype QC, we filtered out SNPs with MAF below 5% or

INFO score less than 0.4. We also excluded tri-allelic SNPs and in-

dels. For all phenotypes, we filtered out participants who were re-

tracted, were not from white British ancestry, or had indication of

any QC issue in UK Biobank. We included only samples that were

genotyped with Axiom array. Related samples were excluded to

avoid potential confounding. The samples were randomly split

to training and validation cohorts. Controls were down-sampled

to the case to control ratio of 1:1 to assemble training cohorts,

but no down-sampling was applied to validation cohorts to keep

the original case prevalence.
Partners Biobank
We used Partners Biobank42 to evaluate the accuracy of predic-

tion models in an independent validation cohort. These genotyp-

ing data were previously generated using the MEGA-Ex array.

Markers with monomorphic allele frequency, complementary al-

leles, less than 99.5% genotyping rate, or deviation from Hardy-

Weinberg equilibrium (p < 0.05) were removed. Then, statistical

imputation was conducted to infer genotypes at missing markers

using Eagle v.2.4 and IMPUTE v.4 on the reference panel (1000

Genomes Phase 3). Excluding samples of non-European ancestry,

a total of 16,839 samples from US white population were avail-

able for use. Participants with breast cancer, IBD, T2D, and

CAD were identified using a phenotype query algorithm with

the PPV parameter of 0.90.43 To obtain early-onset CAD, both

case and control subjects were restricted to men with age % 55

and women with age % 65. Since the prevalence of early-onset

CAD and T2D are sex dependent, we included the sex covariate

in the genetic risk model for CAD and T2D. For all methods,

the coefficient of sex covariate was estimated in the training

cohort of UK Biobank.
LDPred
The accuracy of LDPred was evaluated in simulated and real data-

sets using the default parameter setting. The underlying causal

fraction parameter was optimized using the training cohort,

which is available as individual-level genotype data. Specifically,

the causal SNP fractions of 1, 0.3, 0.1, 0.03, 0.01, 0.003, 0.001,

0.0003, and 0.0001 were tested in the training data, and the pre-

diction model yielding the highest prediction R2 was selected for

validation. The training genotypes were also used as a reference

LD panel.
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LDPred accepts only hard genotype calls as inputs at the

training step. Thus, for real data we converted imputed allelic dos-

ages to most likely genotypes after filtering out SNPs with geno-

type probability < 0.9. SNPs with the missing rate > 1% or devia-

tion from Hardy-Weinberg equilibrium (p < 10�5) were also

excluded. Prediction models were trained using only SNPs that

passed all QC filters in both training and validation datasets, as

recommended by the authors. SNPs with complementary alleles

were excluded automatically by LDPred. In simulations, all geno-

types were generated as hard calls, and complementary alleles

were avoided; thus, the exactly same set of SNPs were used for

both LDPred and NPS. In a subset of datasets, we further examined

the accuracy of LDPred when it was run only with directly geno-

typed SNPs. In simulated datasets, we assumed that both training

and validation cohorts were genotyped with Illumina Human-

Hap550v3 array, restricting the genotype data to 490,504 common

SNPs. For UK Biobank datasets, prediction models were con-

strained to up to 354,110 common SNPs in UK Biobank Axiom

array. In the case of validation in Partners Biobank, we did not

consider running LDPred only with genotyped SNPs since too

few SNPs were directly genotyped in both UK Biobank and Part-

ners Biobank; thus, we validated LDPred only using overlapping

markers in imputed data of two cohorts.
LD Pruning and Thresholding
LD Pruning and Thresholding (PþT) algorithm was evaluated us-

ing PRSice software in the default setting.44 In real data, imputed

allelic dosages were converted to hard-called genotypes similarly

as for LDPred. A training cohort was used as a reference LD panel

and to optimize pruning and thresholding parameters. The best

prediction model suggested by PRSice was evaluated in validation

cohorts.
PRS-CS
PRS-CS algorithm was benchmarked using the default parameter

setting.21 The optimal f parameter values were optimized in

training cohorts, and the highest performingmodel was evaluated

in validation cohorts. For the reference LD panel, we used a set of

simulated genotypes produced by our MVN simulator in order to

accurately capture the underlying LD structure of our simulated

datasets; in real data, we used the ‘‘EUR’’ reference LD panel pro-

vided in the software. Imputed allelic dosages were converted to

hard-called genotypes similarly as recommended by the authors.
Results

Application to Simulated Data

To benchmark the accuracy of NPS, we simulated the ge-

netic architecture using the real LD structure of 5 million

dense common SNPs from the 1000 Genomes Project (Ma-

terial and Methods). We considered the causal fraction of

SNPs from 1% to 0.01%, dependency of heritability on mi-

nor allele frequency (MAF), and enrichment of heritability

in DNase I hypersensitive sites (DHS) based on the previ-

ous literature.33,34,45 The prediction accuracy of NPS re-

mained robust across the simulated genetic architectures

(Tables 1 and S1). We measured prediction accuracy using

Nagelkerke R2 and odds ratio at the highest 5% tail of the

polygenic score distribution. The latter measure has been



Table 1. Comparison of Prediction Accuracy in Simulated Genetic Architecture

5% NPS R2
Nag Compared to

% Causal SNPs Method R2
Nagelkerke % h2 Explained Tail OR PþT LDPred PRS-CS

1% PþT 0.050 14.8 3.18

LDPred 0.068 20.6 3.66

PRS-CS 0.075 22.0 4.02

NPS 0.085 24.6 4.27 1.68* 1.25* 1.13*

0.1% PþT 0.136 40.8 6.32

LDPred 0.080 23.0 4.08

PRS-CS 0.156 44.8 7.03

NPS 0.179 51.2 8.09 1.31* 2.22* 1.14*

0.01% PþT 0.213 61.4 9.92

LDPred 0.153 (0.268)a 43.8 (74.6)a 7.66 (13.37)a

PRS-CS 0.228 65.3 10.35

NPS 0.328 92.6 17.19 1.54* 2.14* 1.44*

Non-parametric shrinkage (NPS) is more robust and accurate compared to other methods in simulated datasets. The simulations incorporate the dependency of
heritability on minor allele frequency and clumping of causal SNPs in known DHS elements. The heritability was 0.5, and the prevalence was 5%. The number of
markers was 5,012,500. The GWAS sample size was 100,000. Prediction models were optimized in the training cohort of 2,500 case subjects and 2,500 control
subjects. R2 of prediction was measured in the validation cohort of 50,000 samples. The h2 explained stands for the proportion of heritability on the liability scale
explained by polygenic scores. The asterisk (*) indicates a significant improvement in Nagelkerke’s R2 (paired t test; p < 0.05).
aThe accuracy of LDPred varies widely depending on the convergence of prediction model; thus, we report the maximum R2 in parentheses as well as the average
performance.
popularized by a recent study that reported that the tails of

the polygenic score distribution are associated with risk

that is similar to monogenic mutations.23

We evaluated the performance of NPS vis-à-vis two

popular methods, LDPred and PþT, as well as the

newest method PRS-CS with the superior reported accu-

racy13,18,21 (Tables S1–S5). LDPred is the state-of-the-art

Bayesian parametric method, which is similarly based on

summary statistics estimated in large GWAS datasets and

an independent training set with individual-level data.

PRS-CS is a new sophisticated extension of the Bayesian

strategy. We found that our method resulted in more accu-

rate predictions than all three methods across a range of

genome-wide simulations. PRS-CS was shown to be more

accurate than PþT and LDPred on simulated data,

although less accurate than NPS. The improvement over

LDPred is seemingly surprising given that some of the

simulated allelic architectures are the spike-and-slab allelic

architecture for which LDPred is expected to be optimal as

a Bayesian method. However, we found that in most simu-

lations, LDPred adopted the infinitesimal or extremely

polygenic model irrespective of the true simulated regime,

pointing to the challenge of computational optimization

in the parametric case (Table S3). The simulations suggest

that the well-optimized parametric models are capable of

generating good predictions, but NPS is much more robust

and does not suffer from optimization issues. Overall, NPS

improves accuracy consistently for all simulated allelic ar-

chitectures for both Negelkerke R2 and odds ratios at 5%

tail (Table 1).
The
Application to Real Data

We benchmarked the accuracy of NPS and other methods

using publicly available GWAS summary statistics and

training and validation cohorts assembled with UK Bio-

bank samples (Material and Methods).36–40,46 For all three

phenotypes except coronary artery disease, NPS showed

significantly higher accuracy than LDPred or PþT (Tables

2 and S6–S9 and Figures S3–S7) and highly similar (statisti-

cally indistinguishable) accuracy compared to PRS-CS. In

particular, our method and PRS-CS outperformed the

other two methods by greater magnitudes with more

recent GWAS summary statistics with finer resolution.

For example, the latest breast cancer GWAS has twice as

large sample size as the previous study and used a custom

genotyping array to densely genotype known cancer sus-

ceptibility loci. The R2 of our method increased by 1.5-

fold with the latest breast cancer data whereas the accuracy

of LDPred did not improve at all. The R2 of PþT increased

by 1.25-fold, but the gain is mainly due to the inferior ac-

curacy with older GWAS data.

Since our method estimates a large number of parame-

ters from the training data, it might be particularly vulner-

able to overfitting cryptic genetic features common to both

training and testing data which may result in inflated pre-

diction accuracy. To eliminate this possibility, we bench-

marked the prediction models in Partners Biobank, as an

independent validation cohort (Material and Methods).42

For all phenotypes, NPS outperformed both PþT and

LDPred and showed similar accuracy as PRS-CS (Tables 3

and S10–S13). NPS also has a higher odds ratio at 5%
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Table 2. Accuracy of Polygenic Prediction in Real Data

Discovery GWAS Training (UK Biobank) Validation (UK Biobank) Method R2
Nag 5% Tail OR

Breast cancer 2015 (n ¼ �120,000) n ¼ 3,956/3,956 n ¼ 3,957/73,652 PþT 0.021 2.28

LDPred 0.026 2.42

PRS-CS 0.030 2.60

NPS 0.030 2.53

Breast cancer 2017 (n ¼ �230,000) PþT 0.027 2.37

LDPred 0.026 2.33

PRS-CS 0.043 2.96

NPS 0.045 3.01

Inflammatory bowel disease (n ¼ �35,000) n ¼ 2,483/2,483 n ¼ 2,482/157,272 PþT 0.028 3.00

LDPred 0.027 2.77

PRS-CS 0.040 3.67

NPS 0.035 3.60

Type 2 diabetes (n ¼ �160,000) n ¼ 7,298/7,298 n ¼ 7,298/144,020 PþT 0.046 3.04

LDPred 0.059 3.51

PRS-CS 0.066 3.99

NPS 0.065 3.81

Coronary artery disease (n ¼ �330,000) n ¼ 2,000/2,000 n ¼ 773/62,512 PþT 0.063 5.17

LDPred 0.078 5.65

PRS-CS 0.075 4.92

NPS 0.073 5.21

Non-parametric shrinkage (NPS) and PRS-CS outperform both pruning and thresholding (PþT) and LDPred in real data. Both training and validation cohorts were
sampled from UK Biobank. The tail odds ratio (OR) stands for the odds ratios of case subjects over control subjects at the 5% tail in polygenic score distribution
compared to the rest. For CAD and T2D, all prediction models were trained and validated with the sex covariate to account for the difference of disease prevalence
by sex.
distribution tail than PRS-CS consistently for all pheno-

types, although this improvement is not statistically signif-

icant (Table 3).
Discussion

Understanding how phenotype maps to genotype has al-

ways been a central question of basic genetics. With the

explosive growth in the amount of training data, there is

also a clear prospect and enthusiasm for clinical applica-

tions of polygenic risk prediction.23,47 The current reality

is, however, that most large-scale GWAS datasets are avail-

able in the form of summary statistics only. Nonetheless,

data on a limited number of cases are frequently available

from epidemiological cohorts such as UK Biobank or from

public repositories with a secured access such as dbGaP.

This motivated us to develop a method that is primarily

based on summary statistics but also benefits from smaller

training data at the raw genotype resolution. Although we

heavily rely on the training data to construct a prediction

model, the requirement for out-of-sample training data is

not unique for our method. Widely used thresholding-
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based polygenic scores and Bayesian parametric methods

also need genotype-level data to optimize their model pa-

rameters.18,48 Also, our method assumes—similar to other

methods—that all datasets come from a homogeneous

population. It has been shown that polygenic risk models

are not transferrable between populations due to differ-

ences in allele frequencies and patterns of linkage disequi-

librium,49 which is a problem that should be addressed by

future work in this field.

Human phenotypes vary in the degree of polygenicity,50

in the fraction of heritability attributable to low-frequency

variants33 and in other aspects of allelic architecture.45,51

The optimality of a Bayesian risk predictor is not guaran-

teed when the true underlying genetic architecture devi-

ates from the assumed prior. In particular, recent studies

have revealed complex dependencies of heritability on mi-

nor allele frequency (MAF) and local genomic features such

as regulatory landscape and intensity of background selec-

tions.33,34,45,50,51 Several studies have proposed to extend

polygenic scores by incorporating additional complexity

into the parametric Bayesian models, yet these methods

were not applied to genome-wide sets of markers due to

computational challenges.52,53 Recently, there has been a



Table 3. Accuracy of Polygenic Prediction in Independent Validation Cohorts

Discovery GWAS Training (UK Biobank) Validation (Partners) Method R2
Nag 5% Tail OR

Breast cancer 2017 (n ¼ ~230,000) n ¼ 3,956/3,956 n ¼ 754/8,324 PþT 0.016 1.56

LDPred 0.015 1.78

PRS-CS 0.034 2.23

NPS 0.034 2.32

Inflammatory bowel disease (n ¼ ~35,000) n ¼ 2,483/2,483 n ¼ 839/16,000 PþT 0.050 3.57

LDPred 0.038 3.07

PRS-CS 0.065 4.11

NPS 0.069 4.32

Type 2 diabetes (n ¼ ~160,000) n ¼ 7,298/7,298 n ¼ 2,026/14,813 PþT 0.038 2.10

LDPred 0.046 2.51

PRS-CS 0.058 2.80

NPS 0.054 2.97

Coronary artery disease (n ¼ ~330,000) n ¼ 2,000/2,000 n ¼ 268/7,107 PþT 0.018 2.72

LDPred 0.016 2.31

PRS-CS 0.027 3.16

NPS 0.025 4.10

Non-parametric shrinkage (NPS) and PRS-CS outperform both pruning and thresholding (PþT) and LDPred in completely independent validation cohorts from US
white population (Partners Biobank). The same cohorts from UK Biobank was used for training prediction models (Table 2). The tail odds ratios (OR) stand for the
odds ratios of cases over controls at the 5% tail in polygenic score distribution compared to the rest. For CAD and T2D, all prediction models were trained and
validated with the sex covariate to account for the difference of disease prevalence by sex.
growing interest in non-parametric or semi-parametric ap-

proaches, such as those based on modeling of latent vari-

ables or kernel-based estimation of prior or marginal distri-

butions; however, thus far they cannot leverage summary

statistics or directly account for the linkage disequilibrium

structure in the data.24–27 To address these issues, we devel-

oped NPS, a non-parametric method that is agnostic to

allelic architecture. In simulations, we show that this

approach should be advantageous across a wide range of

phenotypes and traits with differing underlying architec-

tures and find that it outperforms existing prediction

methods in UK Biobank for four different traits of medical

interest. NPS is flexible to incorporate additional

complexity of true genetic architecture. Our non-para-

metric approach has been recently adopted by LDPred-

funct, an extension of LDPred to incorporate functional

annotations.54 Finally, as demonstrated in the prediction

accuracy using two different breast cancer GWAS summary

statistics, with increasing size and marker density in case-

control association studies across a range of diseases, our

NPS method should outperform traditional parametric ap-

proaches for identifying individuals at increased risk.
Appendix A. Distribution of Projected Genotypes

in the Eigenlocus Space

Let Xi be an m-dimensional genotype vector of all SNPs in

genomic window l and individual i. We drop the subscript
The
for genomicwindowfor the sakeof simplicitywhen it is clear

from the context. The standardized genotype Xi is approxi-

mated by the following multivariate normal distribution:

Xi � Nð0;DÞ

where D is a LD matrix of the window. Since the projected

genotype XP
i is derived by applying eigenlocus projection

P on Xi by definition (Equation 1), XP
i also follows a multi-

variate normal distribution. Specifically, the distribution of

XP
i is:

XP
i � N L�1

2 QT0; L�1
2 QT

� �
D L�1

2 QT

� �T
 !

¼ N 0; L�1
2 QTQLQTQL�1

2

� �
¼ N 0; Ið Þ

since D ¼ QLQT and QTQ ¼ I. The projected genotypes

in the eigenlocus space are decorrelated with the covari-

ance of I.
Appendix B. Distribution of Effect Size Estimates in

the Eigenlocus Space

In the discovery GWAS, the estimated effect sizes bb are

calculated by linear regression as below:

bb¼ 1

Ng

XTy
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where y is an Ng -dimensional phenotype vector and Ng is

the sample size of GWAS cohort. For convenience, we as-

sume that y is standardized to the mean of 0 and variance

of 1. At this time, we treat genotypes as fixed variables and

model the true underlying genetic effects b and residuals ε

as random. Since y ¼ Xbþ ε,

bb ¼ 1

Ng

XT Xbþ εð Þ ¼ Dbþ 1

Ng

XT
ε

where the residual ε follows an Ng -dimensional multivar-

iate normal distribution Nð0; s2e IÞ. In an individual win-

dow, the genetic effects explain only a small fraction of

phenotypic variation, so we can assume that s2ez
varðyÞ ¼ 1. The distribution of sampling noise in bb,
namely the distribution of bb given b, follows:

bb j b � N Dbþ 1

Ng

XT0;
s2
e

N2
g

XTIX

 !

zN

�
Db;

1

Ng

D

�
since D ¼ ð1 =NgÞXTX. Since the estimated effect size bh in

the eigenlocus space is obtained by applying P on bb by

definition (Equation 1), the distribution of bh given b also

follows a multivariate normal distribution:

bh j b � N L�1
2 QTDb;

1

Ng

L�1
2 QTD L�1

2 QT

� �T
 !

¼ N L�1
2QTQLQT

b;
1

Ng

L�1
2 QTQLQTQL�1

2

� �

¼ N L
1
2QT

b;
1

Ng

I

� �
since D ¼ QLQT and QTQ ¼ I. The sampling noise in bh
is now decorrelated with the covariance of 1

Ng
I. Hence, the

eigenlocus projection P removes correlations in both ge-

notypes and sampling noise of effect size estimates.
Appendix C. Interpretation of Eigenvalues

Let b be the m-dimensional vector of true genetic effect at

m SNPs in a genomic window. We assume that b is sym-

metric at 0 and independent at each SNP. Then, the distri-

bution of true genetic effects h ¼ fhjg in the eigenlocus

space will follow:

E
�
hj

	¼E
h ffiffiffiffi

lj
p

qT
j b
i
¼ ffiffiffiffi

lj
p

qT
j E½b� ¼ 0

where lj and qj are the eigenvalue and eigenvector, respec-

tively, projecting b to hj by Equation 1. If we put that eigen-

vector qj is ðq1j.qmjÞT and b is ðb1.bmÞT , the variance of

true genetic effects for an eigenlocus is:
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var
�
hj

	¼E

�� ffiffiffiffi
lj

p
qT

j b

2�

� E
�
hj

	2

¼ lj
Xm
s¼1

q2sjE
�
b2
s

	
Therefore, in general, var½hj�, is directly proportional to

eigenvalue lj. In particular, when all SNPs have the same

variance of per-SNP effect sizes s2g ,

var
�
hj

	¼ ljs
2
g

since
Pm

q2sj ¼ 1.

s¼1

Appendix D. Conditional Mean Effects under

Infinitesimal Genetic Architecture in the

Eigenlocus Space

Under infinitesimal genetic architecture, the conditional

mean effect has been analytically derived by Vilhjalmsson

et al.:18

E
h
b j bbi¼� M

Ngh2
IþD

��1bb (Equation S1)

where Ng is the sample size of GWAS cohort, h2 is the her-

itability of trait,M is the total number of SNPs, andD is the

LD matrix of full rank. Then, D can be factorized into

D ¼ QLQT with eigenvalues L and eigenvectors Q. Since

M

Ngh2
IþD

� �
¼ Q

M

Ngh2
IþL

� �
QT

and

M

Ngh2
IþD

� ��1

¼ Q
M

Ngh2
IþL

� ��1

QT

we can reformulate Equation S1 as follows:

E b j bbh i
¼ Q

M

Ngh2
IþL

� ��1

QT bb

¼ Q
M

Ngh2
IþL

� ��1

L
1
2 L�1

2QT bb� �

¼ Q

�
M
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IþL

��1

L
1
2 bh

by the definition of bh (Equation 1). Hence,

E h j bh½ � ¼ L
1
2QTE b j bh½ � ¼ L

1
2QTE b j bbh i

¼ L
1
2QTQ

M

Ngh2
IþL
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¼
�

M

Ngh2
IþL

��1

L bh
by the definition of h. Therefore, for the jth eigenlocus pro-

jection defined by eigenvalue lj and eigenvector qj, the

conditional mean effect is given as the following:

E
�
hj j bh j

	¼ lj

lj þ M

Ngh2

bhj

Thus, under infinitesimal architecture, the conditional

mean effect E½hj
�� bhj� simplifies to u bhj, where u is the theo-

retically optimal shrinkage weight and depends only on ei-

genvalues as follow:

u¼ lj

lj þ M

Ngh2

Supplemental Data

Supplemental Data can be found online at https://doi.org/10.

1016/j.ajhg.2020.05.004.
Acknowledgments

N.O.S. was supported in part by NIH grants K08HL114642,

R01HL131961, and UM1HG008853 and by The Foundation for

Barnes-Jewish Hospital. S.K. was supported by a Research Scholar

award from the Massachusetts General Hospital, the Donovan

Family Foundation, NIH R01HL107816, a grant from Fondation

Leducq, and an investigator-initiated grant from Merck. S.R.S.

was supported by NIH R35GM127131, R01MH101244, and

U01HG006500. S.C., M.I., and S.R.S. were supported by a grant

from the Altius Institute for Biomedical Sciences. This research

has been conducted using the UK Biobank Resource under Appli-

cation Number 31063.
Declaration of Interests

S.K. is a co-founder, chief executive officer, and a board

member of Verve Therapeutics.

Received: June 15, 2019

Accepted: May 1, 2020

Published: May 28, 2020
Web Resources

NPS software, https://github.com/sgchun/nps/
References

1. Grundy, S.M., Stone, N.J., Bailey, A.L., Beam, C., Birtcher, K.K.,

Blumenthal, R.S., Braun, L.T., de Ferranti, S., Faiella-Tomma-

sino, J., Forman, D.E., et al. (2018). 2018 AHA/ACC/

AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/

PCNA Guideline on the Management of Blood Cholesterol: A
The
Report of the American College of Cardiology/American Heart

Association Task Force on Clinical Practice Guidelines. Circu-

lation 139, e1082–e1143.

2. Goddard, M.E., and Hayes, B.J. (2009). Mapping genes for

complex traits in domestic animals and their use in breeding

programmes. Nat. Rev. Genet. 10, 381–391.

3. Falke, K.C., Glander, S., He, F., Hu, J., de Meaux, J., and

Schmitz, G. (2013). The spectrum of mutations controlling

complex traits and the genetics of fitness in plants. Curr.

Opin. Genet. Dev. 23, 665–671.

4. Meuwissen, T.H., Hayes, B.J., and Goddard, M.E. (2001). Pre-

diction of total genetic value using genome-wide densemarker

maps. Genetics 157, 1819–1829.

5. Ripatti, S., Tikkanen, E., Orho-Melander, M., Havulinna, A.S.,

Silander, K., Sharma, A., Guiducci, C., Perola, M., Jula, A., Sin-

isalo, J., et al. (2010). A multilocus genetic risk score for coro-

nary heart disease: case-control and prospective cohort ana-

lyses. Lancet 376, 1393–1400.

6. Wacholder, S., Hartge, P., Prentice, R., Garcia-Closas, M., Fei-

gelson, H.S., Diver, W.R., Thun, M.J., Cox, D.G., Hankinson,

S.E., Kraft, P., et al. (2010). Performance of common genetic

variants in breast-cancer risk models. N. Engl. J. Med. 362,

986–993.

7. Wray, N.R., Goddard, M.E., and Visscher, P.M. (2007). Predic-

tion of individual genetic risk to disease from genome-wide as-

sociation studies. Genome Res. 17, 1520–1528.

8. Yang, J., Benyamin, B., McEvoy, B.P., Gordon, S., Henders,

A.K., Nyholt, D.R., Madden, P.A., Heath, A.C., Martin, N.G.,

Montgomery, G.W., et al. (2010). Common SNPs explain a

large proportion of the heritability for human height. Nat.

Genet. 42, 565–569.

9. Golan, D., and Rosset, S. (2014). Effective genetic-risk predic-

tion using mixed models. Am. J. Hum. Genet. 95, 383–393.

10. Speed, D., and Balding, D.J. (2014). MultiBLUP: improved

SNP-based prediction for complex traits. Genome Res. 24,

1550–1557.

11. Zhou, X., Carbonetto, P., and Stephens, M. (2013). Polygenic

modeling with bayesian sparse linear mixed models. PLoS

Genet. 9, e1003264.

12. Chatterjee, N., Wheeler, B., Sampson, J., Hartge, P., Chanock,

S.J., and Park, J.-H. (2013). Projecting the performance of risk

prediction based on polygenic analyses of genome-wide asso-

ciation studies. Nat. Genet. 45, 400–405, e1–e3.

13. Purcell, S.M., Wray, N.R., Stone, J.L., Visscher, P.M., O’Dono-

van, M.C., Sullivan, P.F., Sklar, P.; and International Schizo-

phrenia Consortium (2009). Common polygenic variation

contributes to risk of schizophrenia and bipolar disorder. Na-

ture 460, 748–752.

14. Stahl, E.A., Wegmann, D., Trynka, G., Gutierrez-Achury, J.,

Do, R., Voight, B.F., Kraft, P., Chen, R., Kallberg, H.J., Kurree-

man, F.A., et al.; Diabetes Genetics Replication andMeta-anal-

ysis Consortium; and Myocardial Infarction Genetics Con-

sortium (2012). Bayesian inference analyses of the polygenic

architecture of rheumatoid arthritis. Nat. Genet. 44, 483–489.

15. Abraham, G., Tye-Din, J.A., Bhalala, O.G., Kowalczyk, A., Zo-

bel, J., and Inouye, M. (2014). Accurate and robust genomic

prediction of celiac disease using statistical learning. PLoS

Genet. 10, e1004137.

16. Moser, G., Lee, S.H., Hayes, B.J., Goddard, M.E., Wray, N.R.,

and Visscher, P.M. (2015). Simultaneous discovery, estimation

and prediction analysis of complex traits using a bayesian

mixture model. PLoS Genet. 11, e1004969.
American Journal of Human Genetics 107, 46–59, July 2, 2020 57

https://doi.org/10.1016/j.ajhg.2020.05.004
https://doi.org/10.1016/j.ajhg.2020.05.004
https://github.com/sgchun/nps/
http://refhub.elsevier.com/S0002-9297(20)30151-8/sref1
http://refhub.elsevier.com/S0002-9297(20)30151-8/sref1
http://refhub.elsevier.com/S0002-9297(20)30151-8/sref1
http://refhub.elsevier.com/S0002-9297(20)30151-8/sref1
http://refhub.elsevier.com/S0002-9297(20)30151-8/sref1
http://refhub.elsevier.com/S0002-9297(20)30151-8/sref1
http://refhub.elsevier.com/S0002-9297(20)30151-8/sref1
http://refhub.elsevier.com/S0002-9297(20)30151-8/sref1
http://refhub.elsevier.com/S0002-9297(20)30151-8/sref2
http://refhub.elsevier.com/S0002-9297(20)30151-8/sref2
http://refhub.elsevier.com/S0002-9297(20)30151-8/sref2
http://refhub.elsevier.com/S0002-9297(20)30151-8/sref3
http://refhub.elsevier.com/S0002-9297(20)30151-8/sref3
http://refhub.elsevier.com/S0002-9297(20)30151-8/sref3
http://refhub.elsevier.com/S0002-9297(20)30151-8/sref3
http://refhub.elsevier.com/S0002-9297(20)30151-8/sref4
http://refhub.elsevier.com/S0002-9297(20)30151-8/sref4
http://refhub.elsevier.com/S0002-9297(20)30151-8/sref4
http://refhub.elsevier.com/S0002-9297(20)30151-8/sref5
http://refhub.elsevier.com/S0002-9297(20)30151-8/sref5
http://refhub.elsevier.com/S0002-9297(20)30151-8/sref5
http://refhub.elsevier.com/S0002-9297(20)30151-8/sref5
http://refhub.elsevier.com/S0002-9297(20)30151-8/sref5
http://refhub.elsevier.com/S0002-9297(20)30151-8/sref6
http://refhub.elsevier.com/S0002-9297(20)30151-8/sref6
http://refhub.elsevier.com/S0002-9297(20)30151-8/sref6
http://refhub.elsevier.com/S0002-9297(20)30151-8/sref6
http://refhub.elsevier.com/S0002-9297(20)30151-8/sref6
http://refhub.elsevier.com/S0002-9297(20)30151-8/sref7
http://refhub.elsevier.com/S0002-9297(20)30151-8/sref7
http://refhub.elsevier.com/S0002-9297(20)30151-8/sref7
http://refhub.elsevier.com/S0002-9297(20)30151-8/sref8
http://refhub.elsevier.com/S0002-9297(20)30151-8/sref8
http://refhub.elsevier.com/S0002-9297(20)30151-8/sref8
http://refhub.elsevier.com/S0002-9297(20)30151-8/sref8
http://refhub.elsevier.com/S0002-9297(20)30151-8/sref8
http://refhub.elsevier.com/S0002-9297(20)30151-8/sref9
http://refhub.elsevier.com/S0002-9297(20)30151-8/sref9
http://refhub.elsevier.com/S0002-9297(20)30151-8/sref10
http://refhub.elsevier.com/S0002-9297(20)30151-8/sref10
http://refhub.elsevier.com/S0002-9297(20)30151-8/sref10
http://refhub.elsevier.com/S0002-9297(20)30151-8/sref11
http://refhub.elsevier.com/S0002-9297(20)30151-8/sref11
http://refhub.elsevier.com/S0002-9297(20)30151-8/sref11
http://refhub.elsevier.com/S0002-9297(20)30151-8/sref12
http://refhub.elsevier.com/S0002-9297(20)30151-8/sref12
http://refhub.elsevier.com/S0002-9297(20)30151-8/sref12
http://refhub.elsevier.com/S0002-9297(20)30151-8/sref12
http://refhub.elsevier.com/S0002-9297(20)30151-8/sref13
http://refhub.elsevier.com/S0002-9297(20)30151-8/sref13
http://refhub.elsevier.com/S0002-9297(20)30151-8/sref13
http://refhub.elsevier.com/S0002-9297(20)30151-8/sref13
http://refhub.elsevier.com/S0002-9297(20)30151-8/sref13
http://refhub.elsevier.com/S0002-9297(20)30151-8/sref14
http://refhub.elsevier.com/S0002-9297(20)30151-8/sref14
http://refhub.elsevier.com/S0002-9297(20)30151-8/sref14
http://refhub.elsevier.com/S0002-9297(20)30151-8/sref14
http://refhub.elsevier.com/S0002-9297(20)30151-8/sref14
http://refhub.elsevier.com/S0002-9297(20)30151-8/sref14
http://refhub.elsevier.com/S0002-9297(20)30151-8/sref15
http://refhub.elsevier.com/S0002-9297(20)30151-8/sref15
http://refhub.elsevier.com/S0002-9297(20)30151-8/sref15
http://refhub.elsevier.com/S0002-9297(20)30151-8/sref15
http://refhub.elsevier.com/S0002-9297(20)30151-8/sref16
http://refhub.elsevier.com/S0002-9297(20)30151-8/sref16
http://refhub.elsevier.com/S0002-9297(20)30151-8/sref16
http://refhub.elsevier.com/S0002-9297(20)30151-8/sref16


17. Shi, J., Park, J.H., Duan, J., Berndt, S.T., Moy, W., Yu, K., Song,

L., Wheeler, W., Hua, X., Silverman, D., et al.; MGS (Molecular

Genetics of Schizophrenia) GWAS Consortium; GECCO (The

Genetics and Epidemiology of Colorectal Cancer Con-

sortium); GAME-ON/TRICL (Transdisciplinary Research in

Cancer of the Lung) GWAS Consortium; PRACTICAL (PRos-

tate cancer AssoCiation group To Investigate Cancer Associ-

ated aLterations) Consortium; PanScan Consortium; and

GAME-ON/ELLIPSE Consortium (2016). Winner’s Curse

Correction and Variable Thresholding Improve Performance

of Polygenic Risk Modeling Based on Genome-Wide Associa-

tion Study Summary-Level Data. PLoS Genet. 12, e1006493.
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Figure S1. NPS approximates the conditional mean effects: infinitesimal genetic architecture (𝒮!, … , 𝒮"). NPS 
shrinkage weights 𝜔# (red line) are compared to the theoretical optimum (black line), 𝜆$/(𝜆$ +

%
&!'"

), under the 

infinitesimal architecture. 𝒮!, … , 𝒮!( indicate the partitions of lowest to highest eigenvalues of projection. The mean 
NPS shrinkage weights (red line) and their 95% CIs (red shade) were estimated from 5 replicates. No shrinkage 
line (green) indicates 𝜔# = 1. The number of markers M is 101,296. The discovery GWAS size N equals to M. The 
heritability h2 is 0.5. See Figure 2B for 𝒮!(. 
 



 

 
Figure S2. NPS approximates the conditional mean effects: non-infinitesimal genetic architecture 
(𝒮!, 𝒮), … , 𝒮"). NPS shrinkage weights 𝜔# (red line) are compared to the true conditional means (black line), which 
were estimated empirically from 40 simulation runs. 𝒮!, … , 𝒮!( indicate the partitions of lowest to highest 
eigenvalues of projection. The mean NPS shrinkage weights (red line) and their 95% CIs (red shade) were 
estimated from 5 replicates. No shrinkage line (green) indicates 𝜔# = 1. The number of markers M is 101,296. The 
discovery GWAS size N equals to M. The heritability h2 is 0.5. The fraction of causal SNPs is 1%. See Figure 2C-D 
for  𝒮* and 𝒮!(, respectively. 
  



 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
Figure S3. Conditional mean effects estimated by NPS in breast 
cancer dataset (Michailidou et al. 2017). Conditional mean effects 
were averaged over the four NPS runs of which windows were shifted 
by 0, 1,000, 2,000 and 3,000. 𝒮!, … , 𝒮!( denote the partitions of lowest 
to highest eigenvalues of eigenlocus projection. The weights 𝜔# were 
re-scaled so that the weight 𝜔( of genome-wide significant partition 𝒮( 
becomes 1. GWAS summary statistics are from Michailidou et al. 
2017.  

  



 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Figure S4. Conditional mean effects estimated by NPS in breast 
cancer dataset (Michailidou et al. 2015). Conditional mean effects 
were averaged over the four NPS runs of which windows were shifted 
by 0, 1,000, 2,000 and 3,000. 𝒮!, … , 𝒮!( denote the partitions of lowest 
to highest eigenvalues of eigenlocus projection. The weights 𝜔# were 
re-scaled so that the weight 𝜔( of genome-wide significant partition 𝒮( 
becomes 1. GWAS summary statistics are from Michailidou et al. 
2015. 

  



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Figure S5. Conditional mean effects estimated by NPS in 
inflammatory bowel disease (IBD) dataset. Conditional mean 
effects were averaged over the four NPS runs of which windows were 
shifted by 0, 1,000, 2,000 and 3,000. 𝒮!, … , 𝒮!( denote the partitions of 
lowest to highest eigenvalues of eigenlocus projection. The weights 𝜔# 
were re-scaled so that the weight 𝜔( of genome-wide significant 
partition 𝒮( becomes 1. GWAS summary statistics are from Liu et al. 
2015. 

  



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
Figure S6. Conditional mean effects estimated by NPS in type 2 
diabetes dataset. Conditional mean effects were averaged over the 
four NPS runs of which windows were shifted by 0, 1,000, 2,000 and 
3,000. 𝒮!, … , 𝒮!( denote the partitions of lowest to highest eigenvalues 
of eigenlocus projection. The weights 𝜔# were re-scaled so that the 
weight 𝜔( of genome-wide significant partition 𝒮( becomes 1. GWAS 
summary statistics are from Scott et al. 2017. 

 
  



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
Figure S7. Conditional mean effects estimated by NPS in cardio-
vascular disease dataset. Conditional mean effects were averaged 
over the four NPS runs of which windows were shifted by 0, 1,000, 
2,000 and 3,000. 𝒮!, … , 𝒮!( denote the partitions of lowest to highest 
eigenvalues of eigenlocus projection. The weights 𝜔# were re-scaled 
so that the weight 𝜔( of genome-wide significant partition 𝒮( becomes 
1. GWAS summary statistics are from Nelson et al. 2017. 

 
  



 

Table S1. Comparison of prediction accuracy in genetic architectures simulating uniformly distributed causal SNPs.  
 

Genetic   Validation  NPS R2
Nag compared to 

Architecture % causal SNPs Method R2
Nagelkerke R2

Liability  P+T LDPred PRS-CS 

(a) 
Point-Normal 

(GCTA) 

1% 

P+T 0.049 0.072     

LDPred 0.071 0.103     

PRS-CS 0.072 0.105     
NPS 0.082 0.120  1.66 * 1.15 * 1.14 * 

0.1% 

P+T  0.141 0.205     

LDPred 0.071 0.102     

PRS-CS 0.140 0.199     

NPS 0.169 0.241  1.20 * 2.37 * 1.21 * 

0.01% 

P+T  0.189 0.273     

LDPred 0.076 0.110     
PRS-CS 0.224 0.325     

NPS 0.329 0.465  1.74 * 4.36 * 1.47 * 

(b) 
Point-Normal 

with  
MAF dependency 

(𝛼 = −0.25) 

1% 

P+T  0.050 0.071     
LDPred 0.073 0.101     

PRS-CS 0.081 0.115     

NPS 0.093 0.131  1.87 * 1.27 * 1.16 * 

0.1% 

P+T  0.142 0.206     
LDPred 0.076 0.112     

PRS-CS 0.152 0.220     

NPS 0.175 0.253  1.24 * 2.31 * 1.15 * 

0.01% 

P+T  0.199 0.293     

LDPred 0.087 0.126     

PRS-CS 0.230 0.330     
NPS 0.329 0.471  1.66 * 3.78 * 1.43 * 

 
NPS is more accurate than Pruning and Thresholding (P+T), LDPred and PRS-CS in simulated datasets. Here, two 
sets of Point-Normal architectures were simulated: (a) a spike-and-slab GCTA model which assumes the 
independence of heritability on minor allele frequency (MAF) and (b) an architecture incorporating the dependency 
of heritability on MAF (𝛼 = −0.25). Under each model and for each causal fraction, three instances of genetic 
architecture were generated. Recent studies have found that low frequency SNPs contribute less heritability than 
previously expected under no dependency (Speed et al. 2017, Zeng et al. 2018). Low-frequency SNPs tend to be 
captured by eigenvectors of small eigenvalues and are challenging to handle with spectral decomposition. More 
realistic simulations (b) lowering the overall heritability contribution of low-frequency SNPs made NPS slightly more 
accurate than under (a) GCTA models. Binary phenotypes were simulated with the heritability of 0.5 on the liability 
scale and prevalence of 5%. The number of markers was 5,012,500. The GWAS sample size was 100,000. 
Prediction models were optimized in the training cohort of 2,500 cases and 2,500 controls. The prediction 
accuracies were measured in the validation cohort of 50,000 samples and averaged over three simulations. The 
star (*) indicates that Nagelkerke’s R2 is significantly different (paired t-test; P < 0.05).	  



 

Table S2. Accuracy of NPS in genetic architectures simulating the enrichment of causal SNPs within DNase I 
Hypersensitive Sites (DHS). 
 

Fraction of 
causal SNPs 

 Training   Validation  
 AUC  R2

Nagelkerke R2
Liability AUC 

1% 

 0.746  0.082 0.126 0.708 
 0.737  0.083 0.125 0.708 
 0.725  0.089 0.118 0.716 

0.1% 

 0.800  0.174 0.249 0.793 
 0.811  0.188 0.262 0.808 
 0.802  0.179 0.261 0.798 
 0.810  0.176 0.254 0.798 
 0.810  0.176 0.250 0.798 
 0.813  0.178 0.259 0.799 

0.01% 

 0.891  0.325 0.463 0.887 
 0.894  0.323 0.462 0.885 
 0.887  0.336 0.463 0.889 

 
Each row represents the prediction accuracy of NPS in an individual simulation run. The prediction accuracy of 
NPS decreased slightly compared to simulations of uniformly distributed causal SNPs (Table S1) but still remained 
robust. We did not train NPS prediction models using functional annotations. The causal fractions of 1% and 0.01% 
were replicated three times each, and the causal fraction of 0.1% was replicated six times. The simulation 
incorporates the dependency of heritability on minor allele frequency (𝛼 = −0.25) and five-fold enrichment of causal 
SNPs in DHS elements. Binary phenotypes were simulated with the heritability of 0.5 on the liability scale and 
prevalence of 5%. The number of markers was 5,012,500. The GWAS sample size was 100,000. Prediction models 
were optimized in the training cohort of 2,500 cases and 2,500 controls. The prediction accuracies were measured 
in validation cohorts of 50,000 samples. AUC – Area Under the Curve. 
	 	



 

Table S3. Accuracy of LDPred in genetic architectures simulating the enrichment of causal SNPs within DNase I 
Hypersensitive Sites (DHS). 
 

Fraction of  
causal SNPs (p)  

Input Training  Validation 

SNPs Estimated p AUC  R2
Nagelkerke R2

Liability AUC 

1% 

All  
SNPs 

(M=5,012,500) 

1.0 0.706  0.065 0.100 0.684 

1.0 0.695  0.068 0.102 0.689 
1.0 0.686  0.071 0.105 0.693 

0.1% 

0.3 0.695  0.080 0.108 0.705 

1.0 0.690  0.083 0.116 0.711 

1.0 0.686  0.075 0.107 0.699 

0.3 0.698  0.078 0.118 0.704 

1.0 0.693  0.069 0.103 0.694 

0.1 0.644  0.098 0.140 0.727 

0.01% 
0.3 0.726  0.093 0.141 0.721 
0.3 0.723  0.098 0.143 0.729 

0.01 0.840  0.268 0.373 0.854 

1% 

Genotyped 
SNPs 
Only 

(M=490,504) 

1.0 0.699  0.062 0.094 0.680 

1.0 0.683  0.062 0.095 0.680 
1.0 0.674  0.066 0.095 0.687 

0.1% 

0.003 0.756  0.149 0.210 0.773 

1.0 0.679  0.079 0.106 0.707 
0.0001 0.729  0.116 0.165 0.715 

0.001 0.765  0.138 0.197 0.764 

0.3 0.718  0.100 0.144 0.730 
0.0003 0.753  0.123 0.183 0.753 

0.01% 

0.0003 0.786  0.150 0.222 0.780 

0.001 0.749  0.115 0.166 0.743 
0.001 0.816  0.222 0.317 0.827 

 
Each row represents the prediction accuracy of LDPred in an individual simulation run. The causal fractions of 1% 
and 0.01% were replicated three times each, and 0.1% was replicated six times. The simulation incorporates the 
dependency of heritability on MAF (𝛼 = −0.25) and five-fold enrichment of causal SNPs in DHS. Binary phenotypes 
were simulated with the heritability of 0.5 on the liability scale and prevalence of 5%. LDPred was run using all 
5,012,500 SNPs (top) as well as a sparse set of 490,504 SNPs taken from HumanHap550v3 genotyping array 
(bottom). With sparse SNPs, LDPred converged to closer-to-truth simulated causal fractions and resulted a higher 
average but lower maximum accuracy than using all markers. The prediction model reaching the highest accuracy 
in a training cohort was selected for validation. The estimated causal fraction (p) represents the causal fraction of 
best performing prediction model in training. p=1.0 denotes the infinitesimal model in which all SNPs are causal. 
The GWAS sample size was 100,000. Prediction models were optimized in the training cohort of 2,500 cases and 
2,500 controls. The prediction accuracies were measured in validation cohorts of 50,000 samples. AUC – Area 
Under the Curve.	  



 

Table S4. Accuracy of pruning and thresholding in genetic architectures simulating the enrichment of causal SNPs 
within DNase I Hypersensitive Sites (DHS). 
 

Fraction of  Training  Validation 

causal SNPs  P cutoff # SNPs AUC  R2
Nagelkerke R2

Liability AUC 

1% 

 0.046 57,816 0.680  0.047 0.072 0.662 

 0.097 92,163 0.661  0.050 0.076 0.664 
 0.153 121,820 0.664  0.054 0.075 0.670 

0.1% 

 0.0001 2,082 0.783  0.174 0.244 0.793 

 0.00015 2,562 0.751  0.133 0.186 0.761 

 0.0002 2,765 0.735  0.119 0.164 0.747 

 0.0001 2,147 0.795  0.160 0.247 0.787 

 0.0001 2,296 0.736  0.105 0.163 0.738 

 0.00015 2,529 0.759  0.128 0.190 0.757 

0.01% 
 0.0001 1,662 0.827  0.209 0.305 0.823 
 0.0001 1,631 0.807  0.176 0.263 0.797 

 0.0001 1,553 0.833  0.252 0.352 0.848 
 
Each row represents the prediction accuracy of pruning and thresholding (P+T) algorithm in an individual simulation 
run. The causal fractions of 1% and 0.01% were replicated three times each, and the causal fraction of 0.1% were 
replicated six times. The simulation incorporates the dependency of heritability on minor allele frequency (𝛼 =
−0.25) and five-fold enrichment of causal SNPs in DHS elements. Binary phenotypes were simulated with the 
heritability of 0.5 on the liability scale and prevalence of 5%. The prediction model reaching the highest accuracy in 
a training cohort was selected for validation. The P-value cutoff of best-performing model is reported here along 
with the number of SNPs after pruning and thresholding. The GWAS sample size was 100,000. Prediction models 
were optimized in the training cohort of 2,500 cases and 2,500 controls. The prediction R2 was measured in 
validation cohorts of 50,000 samples. AUC – Area Under the Curve.  



 

Table S5. Accuracy of PRS-CS in genetic architectures simulating the enrichment of causal SNPs within DNase I 
Hypersensitive Sites (DHS). 
 

Fraction of  
causal SNPs  

Training  Validation 

𝝓3  AUC  R2
Nag R2

Liability AUC 

1% 

0.01 0.720  0.072 0.110 0.693 

0.0001 0.696  0.074 0.107 0.697 
0.01 0.700  0.079 0.113 0.705 

0.1% 

0.0001 0.771  0.157 0.221 0.780 

0.0001 0.773  0.164 0.227 0.789 

0.0001 0.769  0.155 0.224 0.781 
0.0001 0.782  0.156 0.226 0.781 

0.0001 0.768  0.148 0.217 0.777 

0.0001 0.777  0.157 0.229 0.781 

0.01% 

0.000001 0.835  0.230 0.332 0.835 

0.000001 0.835  0.222 0.322 0.830 

0.000001 0.819  0.232 0.326 0.833 
 
Each row represents the prediction accuracy of PRS-CS in an individual simulation run. The causal fractions of 1% 
and 0.01% were replicated three times each, and the causal fraction of 0.1% were replicated six times. The 
simulation incorporates the dependency of heritability on minor allele frequency (𝛼 = −0.25) and five-fold 
enrichment of causal SNPs in DHS elements. Binary phenotypes were simulated with the heritability of 0.5 on the 
liability scale and prevalence of 5%. The prediction model reaching the highest accuracy in a training cohort was 
selected for validation. 𝜙5 denotes the model parameter 𝜙 of best-performing model in training. The reference LD 
panel was derived from a cohort sampled under the same LD structure. The GWAS sample size was 100,000. 
Prediction models were optimized in the training cohort of 2,500 cases and 2,500 controls. The prediction R2 was 
measured in validation cohorts of 50,000 samples. AUC – Area Under the Curve.  
 
	 	



 

Table S6. Accuracy of NPS applied to real GWAS summary statistics and UK Biobank datasets. 
 

  Training  Validation (UK Biobank) 

GWAS  # Projections AUC  AUC Tail OR (5%) 

Breast Cancer 2015  120,886 0.656  0.627 [0.62-0.64] 2.53 [2.3-2.8] 

Breast Cancer 2017  124,061 0.678  0.654 [0.65-0.66] 3.01 [2.7-3.3] 

IBD  110,157 0.686  0.659 [0.65-0.67] 3.60 [3.2-4.0] 
Type 2 Diabetes  139,106 0.697  0.686 [0.68-0.69] 3.81 [3.6-4.1] 

CAD  105,162 0.778  0.738 [0.72-0.76] 5.21 [4.3-6.2] 
 
GWAS summary statistics for breast cancer, inflammatory bowel disease (IBD), type 2 diabetes, coronary artery 
disease (CAD) were obtained from Michailidou et al. 2015, Michailidou et al. 2017, Liu et al. 2015, Scott et al. 2017, 
and Nelson et al. 2017, respectively. The training and validation cohorts were both assembled using UK Biobank 
samples (see Table 2). The number of projections represents the total number of independent projection 
eigenvectors used for NPS training across the genome. The 5% tail OR denotes the odds ratio at the 5% highest 
risk tail compared to the rest of cohort. The numbers in brackets are the 95% confidence intervals for AUCs (Area 
Under the Curve) and tail ORs, which were estimated by DeLong’s method and bootstrapping, respectively. T2D 
and CAD models were trained and validated with the sex covariate.  
 
	 	



 

Table S7. Accuracy of LDPred applied to real GWAS summary statistics and UK Biobank datasets. 
 

  Training  Validation (UK Biobank) 

GWAS  # SNPs Estimated causal 
fraction AUC  AUC Tail OR (5%) 

Breast Cancer 2015  3,417,759 0.01 0.630  0.618 [0.61-0.63] 2.42 [2.2-2.7] 

Breast Cancer 2017  3,478,993 0.1 0.621  0.615 [0.61-0.62] 2.33 [2.1-2.6] 

IBD  3,396,783 0.03 0.640  0.641 [0.63-0.65] 2.77 [2.4-3.1] 
Type 2 Diabetes  3,451,818 0.01 0.680  0.679 [0.67-0.68] 3.51 [3.3-3.8] 

CAD  3,405,299 0.003 0.753  0.738 [0.72-0.76] 5.17 [4.3-6.1] 

Breast Cancer 2015  351,917 0.3 0.605  0.597 [0.59-0.61] 2.25 [2.0-2.5] 
Breast Cancer 2017  353,627 1.0 0.606  0.604 [0.60-0.61] 2.03 [1.8-2.3] 

IBD  353,325 1.0 0.618  0.622 [0.61-0.63] 2.76 [2.4-3.1] 

Type 2 Diabetes  354,110 0.1 0.679  0.680 [0.67-0.69] 3.63 [3.4-3.9] 
CAD  329,644 0.03 0.757  0.742 [0.72-0.76] 5.65 [4.7-6.7] 

 
GWAS summary statistics for breast cancer, inflammatory bowel disease (IBD), type 2 diabetes, coronary artery 
disease (CAD) were obtained from Michailidou et al. 2015, Michailidou et al. 2017, Liu et al. 2015, Scott et al. 2017, 
and Nelson et al. 2017, respectively. The training and validation cohorts were both assembled using UK Biobank 
samples (see Table 2). LDPred was ran using all hard-called common SNPs (top) as well as directly genotyped 
SNPs (bottom). The prediction models producing a higher AUCs in training cohorts, indicated in bold, were chosen 
for Table 2. LDPred runs only with hard-called genotypes and automatically excludes complementary alleles; 
therefore, the number of input SNPs are fewer than the number of all available imputed SNPs across the genome. 
The estimated causal fraction represents the causal fraction parameter of best performing prediction model in 
training cohort. The estimated causal fraction of 1.0 denotes the infinitesimal model in which all SNPs are causal. 
The tail OR denotes the odds ratio at the 5% highest risk tail compared to the rest of cohort. The numbers in 
brackets are the 95% confidence intervals for AUCs (Area Under the Curve) and tail ORs, which were estimated by 
DeLong’s method and bootstrapping, respectively. T2D and CAD models were trained and validated with the sex 
covariate. 
 
	 	



 

Table S8. Accuracy of pruning and thresholding applied to real GWAS summary statistics and UK Biobank 
datasets. 
 

  Training  Validation (UK Biobank) 
GWAS  P cutoff # SNPs AUC  AUC Tail OR (5%) 

Breast Cancer 2015  0.0001 427 0.615  0.607 [0.60-0.62] 2.07 [1.9-2.3] 
Breast Cancer 2017  0.0003 1,521 0.627  0.621 [0.61-0.63] 2.37 [2.1-2.6] 

IBD  0.0002 621 0.648  0.644 [0.63-0.65] 3.00 [2.7-3.4] 
Type 2 Diabetes  0.0004 691 0.661  0.659 [0.65-0.67] 3.04 [2.8-3.3]  

CAD  0.025 8,915 0.739  0.719 [0.70-0.74] 5.17 [4.3-6.1] 
 
GWAS summary statistics for breast cancer, inflammatory bowel disease (IBD), type 2 diabetes, coronary artery 
disease (CAD) were obtained from Michailidou et al. 2015, Michailidou et al. 2017, Liu et al. 2015, Scott et al. 2017, 
and Nelson et al. 2017, respectively. The training and validation cohorts were both assembled using UK Biobank 
samples (see Table 2). The prediction model reaching the highest accuracy in a training cohort was selected for 
validation. The P-value cutoff of best-performing model is reported here along with the number of SNPs after 
pruning and thresholding. The tail OR denotes the odds ratio at the 5% highest risk tail compared to the rest of 
cohort. The numbers in brackets are the 95% confidence intervals for AUC (Area Under the Curve) and tail OR, 
which were estimated by DeLong’s method and bootstrapping, respectively. T2D and CAD models were trained 
and validated with the sex covariate. 



 

Table S9. Accuracy of PRS-CS applied to real GWAS summary statistics and UK Biobank datasets. 
 

GWAS  
Training  Validation (UK Biobank) 

# SNPs 𝝓3  AUC  AUC Tail OR (5%) 
Breast Cancer 2015 712,303 0.0001 0.635  0.626 [0.62-0.63] 2.60 [2.3-2.9] 
Breast Cancer 2017 711,549 0.0001 0.657  0.651 [0.64-0.66] 2.96 [2.7-3.3] 

IBD 707,371 0.0001 0.665  0.668 [0.66-0.68] 3.67 [3.3-4.1] 
Type 2 Diabetes 715,952 0.0001 0.686  0.688 [0.68-0.69] 3.99 [3.7-4.3] 

CAD 708,976 0.0001 0.763  0.739 [0.72-0.76] 4.92 [4.1-5.8] 

	
GWAS summary statistics for breast cancer, inflammatory bowel disease (IBD), type 2 diabetes, coronary artery 
disease (CAD) were obtained from Michailidou et al. 2015, Michailidou et al. 2017, Liu et al. 2015, Scott et al. 2017, 
and Nelson et al. 2017, respectively. The training and validation cohorts were both assembled using UK Biobank 
samples (see Table 2). The prediction model reaching the highest accuracy in a training cohort was selected for 
validation. 𝜙5 denotes the model parameter 𝜙 of best-performing model in training. The European reference LD 
panel provided with the software was used for training. PRS-CS uses only HapMap 3 SNPs. The tail OR denotes 
the odds ratio at the 5% highest risk tail compared to the rest of cohort. The numbers in brackets are the 95% 
confidence intervals for AUC (Area Under the Curve) and tail OR, which were estimated by DeLong’s method and 
bootstrapping, respectively. T2D and CAD models were trained and validated with the sex covariate. 
. 
	
	 	



 

	
Table S10. Accuracy of NPS in independent validation cohorts. 
 

  Training  Validation (Partners Biobank) 

GWAS  # Projections AUC  AUC Tail OR (5%) 

Breast Cancer 2017  124,061 0.678  0.624 [0.60-0.64] 2.32 [1.7-3.0] 
IBD  110,157 0.686  0.686 [0.67-0.70] 4.32 [3.5-5.2] 

Type 2 Diabetes  139,106 0.697  0.647 [0.63-0.66] 2.97 [2.6-3.5] 

CAD  105,162 0.778  0.615 [0.58-0.65] 4.10 [2.8-5.8] 
 
The polygenic risk models trained in UK Biobank (Table 2) were validated in US white population (Table 3; Partners 
Biobank). The identical polygenic risk prediction models reported in Tables 2 and S6 were validated in Partners 
Biobank without re-training or model adjustment. The tail OR denotes the odds ratio at the 5% highest risk tail 
compared to the rest of cohort. The numbers in brackets are the 95% confidence intervals for AUC (Area Under the 
Curve) and tail OR, which were estimated by DeLong’s method and bootstrapping, respectively. T2D and CAD 
models were trained and validated with the sex covariate. 
 

	 	



 

Table S11. Accuracy of LDPred in independent validation cohorts. 
 

  Training (UK Biobank)  Validation (Partners Biobank) 

GWAS  # SNPs Estimated 
causal fraction AUC  AUC Tail OR (5%) 

Breast Cancer 2017  1,261,292 0.1 0.600  0.580 [0.56-0.60] 1.78 [1.3-2.3] 

IBD  1,238,654 0.03 0.609  0.639 [0.62-0.66] 3.07 [2.5-3.8] 

Type 2 Diabetes  1,243,787 0.01 0.665  0.635 [0.62-0.65] 2.51 [2.1-2.9] 
CAD  1,224,034 0.003 0.724  0.595 [0.56-0.63] 2.31 [1.4-3.5] 

 
The polygenic risk models were trained with LDPred in UK Biobank cohorts and validated in US white population 
(Table 3; Partners Biobank). The training cohorts are identical to those in Tables 2 and S7, however, the prediction 
models were reconstructed by re-running LDPred on the SNPs found in both training and validation cohorts as 
recommended by the authors. LDPred runs only with hard genotypes and automatically excludes complementary 
alleles; therefore, the number of hard-called input SNPs are fewer than the number of all available imputed SNPs. 
The estimated causal fraction represents the causal fraction parameter of best performing prediction model in 
training cohort. The estimated causal fraction of 1.0 denotes the infinitesimal model in which all SNPs are causal. 
See Table 3 for case/control sample sizes of validation cohorts. The tail OR denotes the odds ratio at the 5% 
highest risk tail compared to the rest of cohort. The numbers in brackets are the 95% confidence intervals for AUC 
(Area Under the Curve) and tail OR, which were estimated by DeLong’s method and bootstrapping, respectively. 
T2D and CAD models were trained and validated with the sex covariate. 
 

	 	



 

Table S12. Accuracy of pruning and thresholding in independent validation cohorts. 
 

  Training (UK Biobank)  Validation (Partners Biobank) 
GWAS  P cutoff # SNPs AUC  AUC Tail OR (5%) 

Breast Cancer 2017  0.00035 801 0.613  0.589 [0.57-0.61] 1.56 [1.2-2.1] 

IBD  0.0002 331 0.629  0.659 [0.64-0.68] 3.57 [2.9-4.4] 

Type 2 Diabetes  0.0001 165 0.656  0.623 [0.61-0.64] 2.10 [1.8-2.5] 
CAD  0.15 15,908 0.739  0.611 [0.58-0.65] 2.72 [1.8-3.9] 

 
The polygenic risk models were trained with pruning and thresholding algorithm in UK Biobank cohorts and 
validated in US white population (Table 3; Partners Biobank). The training cohorts are identical to those in Tables 2 
and S8, however, the prediction models were reconstructed by re-running P+T on the SNPs found in both training 
and validation cohorts. However, the prediction models were reconstructed by re-running pruning and thresholding 
algorithm on the SNPs found in both training and validation cohorts. The prediction model reaching the highest 
accuracy in a training cohort was selected for validation. The P-value cutoff of best-performing model is reported 
here along with the number of SNPs after pruning and thresholding. See Table 3 for case/control sample sizes of 
validation cohorts. The tail OR denotes the odds ratio at the 5% highest risk tail compared to the rest of cohort. The 
numbers in brackets are the 95% confidence intervals for AUC (Area Under the Curve) and tail OR, which were 
estimated by DeLong’s method and bootstrapping, respectively. T2D and CAD models were trained and validated 
with the sex covariate. 
  



 

Table S13. Accuracy of PRS-CS in independent validation cohorts. 
 

GWAS  
Training  Validation (Partners Biobank) 

# SNPs Estimated 𝝓 AUC  AUC Tail OR (5%) 
Breast Cancer 2017 512,117 0.0001 0.647  0.624 [0.60-0.64] 2.23 [1.7-2.9] 

IBD 509,143 0.0001 0.663  0.682 [0.66-0.70] 4.11 [3.3-5.0] 
Type 2 Diabetes 515,164 0.0001 0.685  0.649 [0.64-0.66] 2.80 [2.4-3.3] 

CAD 510,103 0.0001 0.751  0.621 [0.58-0.66] 3.16 [2.1-4.4] 
 
The polygenic risk models were trained with PRS-CS in UK Biobank cohorts and validated in US white population 
(Table 3; Partners Biobank). The training cohorts are identical to those in Tables 2 and S9, however, the prediction 
models were reconstructed by re-running PRS-CS on the SNPs found in both training and validation cohorts as 
recommended by the authors. PRS-CS uses only HapMap 3 SNPs. The prediction model reaching the highest 
accuracy in a training cohort was selected for validation. 𝜙5 denotes the model parameter 𝜙 of best-performing 
model in training. The European reference LD panel provided with the software was used for training. See Table 3 
for case/control sample sizes of validation cohorts. The tail OR denotes the odds ratio at the 5% highest risk tail 
compared to the rest of cohort. The numbers in brackets are the 95% confidence intervals for AUC (Area Under the 
Curve) and tail OR, which were estimated by DeLong’s method and bootstrapping, respectively. T2D and CAD 
models were trained and validated with the sex covariate. 
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