Supplementary Table 1: Demographic table in all MSKCC patients, cGVHD cases, and controls

	All patients	cGVHD cases	controls
n	1081 ¹	54	171
sex = M(%)	652 (60.3)	28 (51.9)	119 (69.6)
age (mean (SD))	53.63 (+/-12.86)	54.5 (+/-11.03)	57.2 (+/-13.68)
Disease (%)			
Leukemia	550 (50.9)	26 (48.1)	72 (42.1)
Non-Hodgkin's Lymphoma	187 (17.3)	17 (31.5)	44 (25.7)
Myelodysplastic Syndrome	162 (15.0)	7 (13.0)	23 (13.5)
Myeloproliferative Disorder	40 (3.7)	2 (3.7)	12 (7.0)
Multiple Myeloma	100 (9.3)	2 (3.7)	6 (3.5)
Aplastic Anemia	5 (0.5)	0 (0.0)	2 (1.2)
Hodgkin's Disease	26 (2.4)	0 (0.0)	10 (5.8)
Non-Malignant Disorders	11 (1.0)	-	2 (1.2)
CIBMTR Disease Risk (%)			
High	254 (23.5)	12 (22.2)	38 (22.2)
Intermediate	250 (23.1)	18 (33.3)	51 (29.8)
Low	498 (46.1)	20 (37.0)	60 (35.1)
Not Applicable	79 (7.3)	4 (7.4)	22 (12.9)
Conditioning Intensity (%)			
Myeloablative	602 (55.7)	23 (42.6)	67 (39.2)
Non-myeloablative	112 (10.4)	7 (13.0)	25 (14.6)
Reduced intensity	367 (34.0)	24 (44.5)	79 (46.2)
Donor (%)			
Related	375 (34.6)	18 (33.3)	72 (42.1)
Unrelated	706 (65.4)	36 (66.7)	99 (57.9)
HLA matching (%)			
Related Haploidentical	34 (3.1)	2 (3.7)	18(10.5)
Related Identical Non-Sibling	2 (0.2)	-	1 (0.6)
Related Identical Sibling	291 (26.9)	16 (29.6)	49 (28.7)
Related Non-Identical	7 (0.6)	-	4 (2.3)
Unrelated Identical	450 (41.6)	32 (59.3)	82 (48.0)
Unrelated Non-identical ²	297 (27.5)	4 (7.4)	17 (9.9)
Graft type (%)			
CD34-selected	438 (40.5)	6 (11.1)	20 (11.7)
Unmodified PBSC	375 (34.7)	39 (72.2)	117 (68.4)
Unmodified marrow	92 (8.6)	9 (16.7)	33 (19.3)
Cord blood	176 (16.3)	-	-

¹ Two patients with available stool samples did not have any samples which reached appropriate threshold for inclusion in the alphadiversity plot in Figure 1A (due to low counts) thus only 1079 patients are shown in 1A.

² Includes umbilical cord blood as graft source

Supplementary Table 2: Acute GVHD subtyping

	cGVHD cases	Controls
	(n = 54)	(n = 171)
Prior acute GVHD Grade		
0	31 (57%)	86 (50.2%)
1	4 (7.4%)	14 (8.2%)
2	15 (27%)	51 (29.8%)
3	2 (3.7%)	16 (9.4%)
4	2 (3.7%)	0 (0%)
Prior acute lower GI GVHD (Stage)		
0	47 (87%)	143 (83.6%)
1	3 (5.5%)	11 (6.4%)
2	2 (3.7%)	8 (4.6%)
3	0	5 (2.9%)
4	2 (3.7%)	4 (2.3%)

Neither grade 3-4 GVHD, or severe (stage 3-4) lower GI GVHD were different among cases and controls (Fishers exact text, p = 0.78 for Grade 3-4, p > 0.99 for stage 3-4 GI only).

Supplementary Table 3: Antibiotic exposure

Early and peri-engraftment exposure to broad spectrum antibiotics (d-7 to 21)

	cGVHD cohort n = 54 patients	Control cohort N=171 patients
Piperacillin/tazobactam	27 (50%)	94 (54%)
Cefepime	9 (16.6%)	37 (21.6%)
Meropenem	11 (20.3)	20 (11.6%)
None	21 (38.8%)	54 (31.5%)

Supplementary Table 4: Alpha-diversity comparison between cGVHD cases and controls in each time window

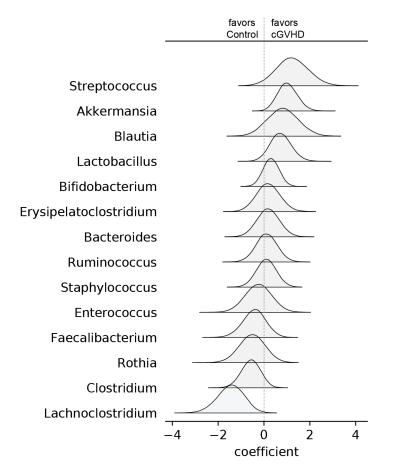
	cGVHD	Control	
	Median alpha-div (n)	Median alpha-div (n)	P value
Pre-transplant (single sample d-30 to d0)	13.09 (n = 43)	15.54 (n = 168)	0.62
Peri-engraftment (single sample closest to d14, in the d7-21 window)	3.71 (n= 42)	3.45 (n = 144)	0.90
Peri-d100 (d70-130)	6.39 (n = 9)	7.4 (n = 37)	0.6

Supplementary Table 5: ADONIS test of beta-diversity between cases and controls in each time window

	Samples available for analysis (n)		
	cGVHD	Control	P (ADONIS)
Pre-transplant (single first sample d-30 to 0)	43	168	0.160
Peri-engraftment (single sample closest to d14, in the d9-19 window)	42	144	0.738
Peri-d100 (d70-130)	9	36	0.958

Supplementary Table 6: Duke and Regensburg patient demographics

	Duke cross-section	Regensburg cross-section
Patients (n)	37	89
sex = M(%)	25 (67.6)	56 (62.9)
age (mean (SD))	53.7 (+/- 11.87)	54.0 (+/- 11.55)
Disease (%)		
Leukemia	17 (45.9)	53 (59.6)
Non-Hodgkin's Lymphoma	4 (10.8)	12 (13.5)
Myelodysplastic Syndrome	11 (29.7)	11 (12.3)
Myeloproliferative Disorder	1 (2.7)	6 (6.7)
Multiple Myeloma	3 (8.1)	1 (1.1)
Aplastic Anemia	-	4 (4.5)
Hodgkin's Disease	1 (2.7)	-
Non-Malignant Disorders	-	2 (2.2)
Conditioning Intensity (%)		
Myeloablative	31 (83.8)	12 (13.4)
Non-myeloablative	5 (13.5)	1 (1.1)
Reduced intensity	1 (2.7)	76 (85.3)
Donor (%)		
Related	12 (32.4)	34 (38.2)
Unrelated*	25 (67.6)	55 (61.8)
HLA matching (%)		
Related Identical	12 (32.4)	31 (34.8)
Unrelated Identical	20 (54.1)	31 (34.8)
Unrelated Non-identical	5 (13.5)	24 (26.9)
Related Haploidentical	-	3 (3.3)
Graft type (%)		
Unmodified PBSC	28 (75.7)	71 (79.8)
Unmodified marrow	4 (10.8)	18 (20.2)
Cord blood	5 (13.5)	-


Supplementary Figure 1 and additional methods:

Legend and additional methods: All patients included in this analysis received unmodified grafts (9 cases, 36 control). We ran four independent MCMC chains to convergence (shown in Fig S2) using 10,000 No-U-turn sampling steps (plus 2,000 burn-in steps). We assigned mildly regularizing priors for coefficients (β) of all predictors and restricted the intercept term to the interval close to the true case:control ratio. This resulted in our model of the probability of cGVHD given the log family (*Taxon*) relative abundances:

```
Intercept ~ Uniform([inverse_logistic(0.19), inverse_logistic(0.21)])
\beta Akkermansia ~ \mathcal{N}(\mu = 0, \sigma = 1.0)
\beta Bacteroides ~ \mathcal{N}(\mu = 0, \sigma = 1.0)
\beta Bifidobacterium ~ \mathcal{N}(\mu = 0, \sigma = 1.0)
\beta Blautia ~ \mathcal{N}(\mu = 0, \sigma = 1.0)
\beta Clostridium ~ \mathcal{N}(\mu = 0, \sigma = 1.0)
\beta Enterococcus ~ \mathcal{N}(\mu = 0, \sigma = 1.0)
\beta Erysipelatoclostridium ~ \mathcal{N}(\mu = 0, \sigma = 1.0)
\beta Faecalibacterium ~ \mathcal{N}(\mu = 0, \sigma = 10)
\beta Lachnoclostridium ~ \mathcal{N}(\mu = 0, \sigma = 10)
\beta Lactobacillus ~ \mathcal{N}(\mu = 0, \sigma = 10)
\beta Rothia ~ \mathcal{N}(\mu = 0, \sigma = 10)
\beta Ruminococcus ~ \mathcal{N}(\mu = 0, \sigma = 10)
\beta Staphylococcus ~ \mathcal{N}(\mu = 0, \sigma = 10)
\beta Streptococcus ~ \mathcal{N}(\mu = 0, \sigma = 10)
p = invlogit(Intercept + \sum_{x}^{Taxa} \beta_x Taxon)
cGVHD \sim Binomial(p)
```

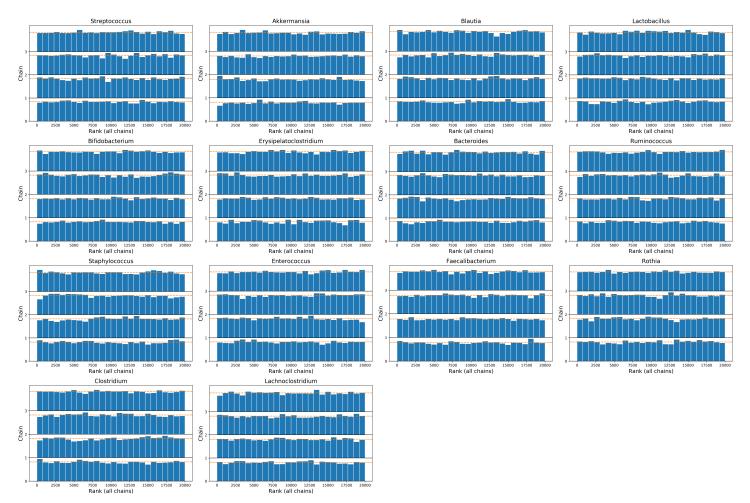
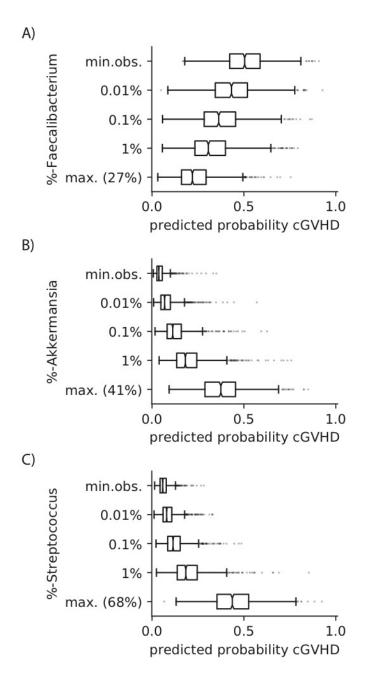

Posteriors were used to jointly sample 10,000 coefficient sets for the 14 genera and the intercept term to make predictions of the likelihood of cGVHD for different gut microbiota compositions. As our case-control design fixes the intercept, we converted[1] the inferred intercept term, I_0^* , as so: $I = I_0^* - \ln[(1 - \tau)/\tau *(\ddot{y}/(1 - \ddot{y}))]$ using 0.4 as the known population rate, τ , of cGVHD among our cohort [2] and $\ddot{y}=0.2$, i.e. the sampled probability of cGVHD. For each set of coefficients, we sampled 1,000 randomly assembled communities of microbes, fixing the focal taxon at the specified relative abundance.

Fig S1. Full posterior distributions of coefficients from a logistic regression



Supplementary Figure 2:

Rank plot [3] coefficient value ranks across 4 independent Markov chain Monte Carlo (MCMC) chains with 10,000 No-U-turn sampling steps each. Similar rank distributions across the 4 chains indicate convergence.

Supplementary Figure 3:

Supplementary Figure 4:

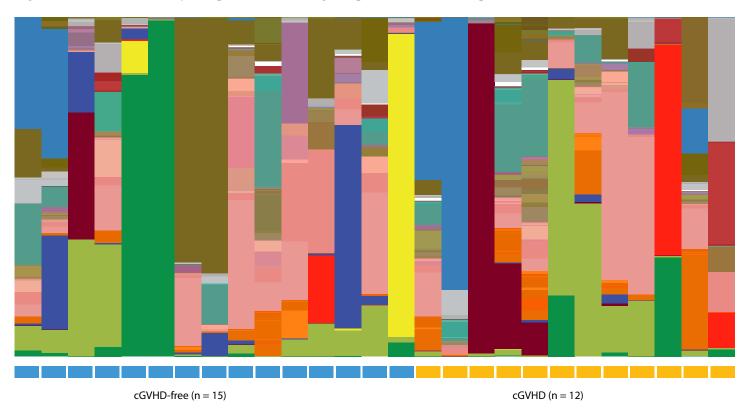
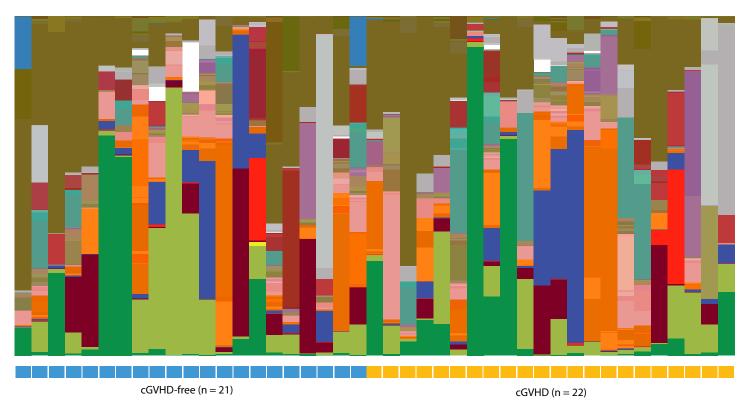
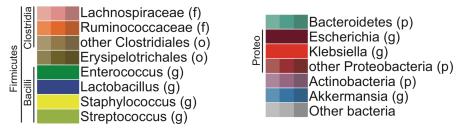
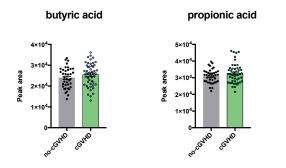




Figure S4A: Duke University, bar plot demonstrating composition of stool samples

Figure S4B: Regensburg University Medical Center, bar plot demonstrating composition of stool samples

Legend for Figure S4A and S4B:


Summary table: Alpha diversity in the additional cross-sectional cohorts

cGVHD	No-cGVHD	
Median alpha-div (n)	Median alpha-div (n)	P value
5.56 (n = 12)	6.64 (n = 15)	0.76
6.48 (n=31)	5.92 (n =25)	0.52
	<i>Median alpha-div (n)</i> 5.56 (n = 12)	Median alpha-div (n) Median alpha-div (n) 5.56 (n = 12) 6.64 (n = 15)

Summary table: Beta diversity in the additional cross-sectional cohorts

	Samples available for analysis (n)		
	cGVHD	No-cGVHD	P (ADONIS)
Duke peri d100 samples	12	15	0.344
Regensburg peri d100 samples	23	21	0.078

Supplementary Figure 5: Regensburg Serum SCFA data

Regensburg University serum samples from cross-sectional cohort (as serum was the available banked sample type, rather than plasma as in the other centers). N = 50 patients who developed cGVHD, 38 patients who did not.

References

- 1. King, G. and L. Zeng, *Inference in Case-control studies*, in *Encyclopedia of Biopharmaceutical Statistics*, S.-C. Chow, Editor. 2004, Marcel Dekker: New York.
- 2. Anasetti, C., et al., *Peripheral-blood stem cells versus bone marrow from unrelated donors*. N Engl J Med, 2012. **367**(16): p. 1487-96.
- 3. Aki Vehtari, et al., *Rank-normalization, folding, and localization: An improved R for assessing convergence of MCMC.* arXiv.org, 2019. arXiv:1903.08008.