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Supplementary Figure 1. Epigenetic library screening to bypass KRAS* dependency. A,
KRAS*-independent escaper tumor numbers generated from 10 mice with orthotopically
transplanted iKPC cells for each pool. Fifteen red color highlighted pools promoted the generation
of more than 5 escapers and were further validated for enriched ORF expression. B, Validation of
OREF enrichment in escaper tumors. Gene expression in escapers from 15 highlighted pools in (A)
were analyzed by qRT-PCR. ORFs with gene expression levels higher in escapers than in “input”
iKPC cells were considered “enriched”. The top 10 ORFs enriched in more than 5 escaper tumors
are highlighted. C, Validation of the overexpressed top 10 gene candidates in iKPC-1 cells by
western blot analysis. D, Distribution of the top 10 ORFs in screening sub-pools. E, BLI imaging
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of nude mice orthotopically transplanted with GFP-, HDACS5- or HDAC5D-overexpressed (OE)
iKPC-3 cells with luciferase reporter. F, Mutation of HDAC5 (HDACS5D) interrupted HDACS-
HDACS3 interaction to form functional repressive complex by co-IP analysis. G, The capability of

HDAC family members to bypass KRAS* dependency extracted from ORF screening.
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Supplementary Figure 2. Characterization of HDAC5 escapers. A, Validation of gene
expression of endogenous Kras, transgenic KRAS*, Yapl, and transgenic HDACS5 (Tg-HDACS)
by qRT-PCR in HDACS escaper cells. KRAS*-reactivated escaper cells and Yap/-amplified

escaper cells were served as positive controls. Data are represented as mean + SD. B,
4



Determination of RAS activity in primary iKPC cells, HDACS escapers, KRAS* on and off iKPC-
5 cells, and iKPC-5 cells after inhibition of KRAS* downstream pathways. Active RAS was pulled
down by agarose beads crosslinked with Ras-binding domain (RBD) of Rafl, and detected by
(H+K) RAS antibody. C, Validation of KRAS* downstream signaling pathways in HDACS
escaper cells by western blot analysis. D-E, The 3-D colony formation assay of GFP-, HDACS-
or HDACS5D-OE iKPC-1 cells after KRAS* extinction in MethoCult (D) or soft agar (E) culture
under normoxia or hypoxia conditions. KRAS*-expressing cells were used as positive control. F,
Cell cycle analysis of iKPC-1 cells with or without KRAS* expression in Matrigel culture in vitro.
The iKPC-1 cells overexpressing GFP, HDACS5 or HDACS5D were seeded in Matrigel with or
without DOX treatment, and collected after 4 days for propidium iodide staining. Three
independent experiments were performed for statistical analysis. Two-tailed unpaired t tests were

performed to calculate the p values.
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Supplementary Figure 3. Activation of the TGFp pathway promotes pancreatic cancer cells

to bypass KRAS* dependency. A, Summary of 18 candidate receptors, corresponding ligands

and small molecule activators/cytokines. B, Experimental design and summary of the screening

results of the 13 small molecule activators or cytokines to bypass KRAS* dependency in iKPC-3
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cells. Colonies were counted at Day 9 after KRAS* extinction. C, TGFf1 concentration in 5 mouse
plasma samples. D, Validation of Hdac5 knockout in iKPC-5 cells by western blot analysis. E,
TGFpI1 (0.5 ng/ml) drove KRAS*-independent colony growth after KRAS* extinction in Hdac5
wildtype and Hdac5 knockout iKPC cells. Images were taken at Day 8 after KRAS* extinction. F,
TGFB1 (0.5 ng/ml) drove KRAS*-independent colony growth after KRAS* extinction in iKPC-1
cells. Images were taken at Day 5 after KRAS* extinction. G, TGFp treatment attenuated colony
growth of KRAS*-expressing iKPC-5 cells in 3-D culture. H, Activation of pPSMAD2/3 in iKPC
cells after TGFP1 treatment at indicated concentrations by western blot analysis. I, TGFB2 and
TGFB3 drove iKPC-3 cells to bypass KRAS* dependency in Matrigel culture (n = 3). Colonies
were counted at Day 9 after KRAS* extinction. J, TGFB1 promoted MEK inhibition (Trametinib,
50 nM)-resistant iKPC-3 colony growth at Day 15 (n = 3). Representative images and colony
number quantification are shown. K, Another independent experiment showing that neutralization
of TGFP impaired KRAS*-independent tumor growth of HDAC5-OE iKPC-5 cells
subcutaneously transplanted in nude mice (n = 3). L, IHC staining of pPSMAD3 in tumors from
isotype control group and TGFp neutralizing antibody treatment group related to Fig. 2F. For I, J
and K, data are represented as mean + SEM, and two-tailed unpaired t tests were performed to

calculate the p values.
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Supplementary Figure 4. Necessity of the canonical TGFpB pathway to promote pancreatic

cancer cells to bypass KRAS* dependency. A and B, Validation of knockdown efficiency of
Smad?2, Smad3 and Smad4 shRNAs in iKPC-1 cells by qRT-PCR (A) and western blot (B) analysis.

C, Representative images of TGFB1-driven KRAS*-independent colony formation comparing

scramble control and knockdown of Smad2, Smad3 and Smad4. D, Gene signatures enriched in

iKPC cells treated with TGFB1 versus cells treated with vehicle control 5 days after KRAS*

extinction in 3-D culture by GSEA analysis of RNA-seq data (n = 3 for each group). E, TGFf

promotes MIA PaCa-2 cells to get resistant to KRASY!?C inhibitor ARS-1620 treatment in vitro.

Data are represented as mean + SD. F, Validation of SMAD4 knockout in human MIA PaCa-2

cells by western blot analysis. For A and E, data are represented as mean + SD, and two-tailed

unpaired t tests were performed to calculate the p values.
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Supplementary Figure 5. Characterization of tumor-infiltrated immune cells. A, Expression
distribution of lineage marker genes by tSNE plot analysis of CyTOF data related to Fig. 3A. B
and C, Gates of macrophages, monocytes and neutrophils in a representative iKPC tumor and a
HDACS5-driven escaper by CyTOF (B) and FACS (C) analysis. Data are displayed by FlowJo.
CD45"CDI11b'F4/80"Ly6C-  cells  represented  macrophages;  CD45°CD11b"F4/80
Ly6GhiehLy6C!oY cells represented neutrophils. CD45"CD11b"F4/80-Ly6GVLy6Chigh  cells
represented monocytes. D-E, Percentage of SI00A8* cells in myeloid cells comparing iKPC
tumors and HDACS escapers by CyTOF (D) and FACS (E) analysis. F and G, Percentage of
different SI00A8" myeloid cell types in iKPC tumors and HDACS escapers by CyTOF (F) and
FACS (G) analysis. H, Comparison of F4/80" cell numbers by IHC staining in different HDACS5
escaper tumors (left) or iKPC primary tumors (middle) generated from subcutaneous and
orthotopic allograft models; comparison of SIO0A8" cell numbers after IHC staining in different
HDACS escapers (right) generated from subcutaneous and orthotopic allograft models. Two-tailed
unpaired t tests between the orthotopic and subcutaneous (subQ) groups including all the samples
were performed to calculate the p values. I, RNA expression of Csf1 and Csf2 in iKPC cells (n =
3) and HDACYS escaper cells (n = 5) by gqRT-PCR analysis. J, Gates of the MHC II* cells in bone
marrow (BM) myeloid cells and in macrophages from an iKPC-3 tumor and a HDAC5 escaper by
FlowlJo analysis of the FACS data. K, Gates of tissue-resident and HSC-derived macrophages in
a representative iKPC-5 tumor and a HDACS5 escaper by FACS analysis. Data are displayed by
FlowJo. CXCR4°CCR2" macrophages represented tissue-resident TAMs; CXCR4 CCR2*
macrophages cells represented HSC-derived TAMs. L, Quantification of the tissue-resident, HSC-
derived and other tumor associated macrophages (TAMs) in iKPC-5 primary tumors and HDACS
escapers from orthotopic allograft mouse model in nude mice. M, Representative overlaid
histograms of TGFB1-164Dy intensity distribution in SI00A8" and S100A8  macrophages from
HDACS escapers and primary tumors, which were generated from subcutaneous allograft models
in nude mice. B cells expressed low TGFBI in our models, so we used the histogram of TGFBI1-
164Dy intensity distribution in B cells from spleen as the control for low TGFB1 expressing cells.
N, The quantification of TGFB1-164Dy median intensities in SI00A8" and S100A8" macrophages
from HDACS escapers and primary tumors, which were generated from subcutaneous allograft
models in nude mice. O, Representative overlaid histograms of TGFBI1-PE intensity distribution
in S100A8" and S100A8  macrophages from HDACS5 escapers and primary tumors, which were

generated from orthotopic allograft models in nude mice. Unstained cells were used as negative
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TGFBI control. P, The quantification of TGFB1-PE median intensities in SI00A8" and S100A8"
macrophages from HDACS escapers and primary tumors, which were generated from orthotopic
allograft models in nude mice. For D, E and L, data are represented as mean = SEM. For I, data
are represented as mean + SD. For D-G, I, N and P, two-tailed unpaired t tests were performed to

calculate the p values.
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Supplementary Figure 6
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Supplementary Figure 6. Overexpression of HDAC5 in iKPC cells promotes macrophage
infiltration via CCL2/CCR2 axis. A, Representative images of migrated macrophages in
transwell assay quantified in Fig. 4C and 4D. B, Tumor growth analysis comparing iKPC-1 cells
overexpressing GFP w/o Doxy feeding and Cc/2 w/o Doxy feeding in subcutaneous allograft
model in nude mice (n=5 for each group). Two-tailed unpaired t tests were performed to calculate
the p values. C, Validation of gene expression of endogenous Kras, transgenic KRAS*, Yap1, and
Ccl2 by qRT-PCR in Ccl2 escapers. The KRAS*-expressing iKPC-1 tumor and iKPC-1 tumor
after KRAS* extinction for 3 days were served as positive and negative controls, respectively.
Data are represented as mean = SD. D, Validation of KRAS* downstream signaling pathways in
Ccl2 escaper cells by western blot analysis. E, Related to Fig. 41, CCR2 inhibitor RS 504393 (RS)
and CCL2 neutralizing antibody (CCL2 Ab) attenuated macrophage infiltration into tumors by
IHC analysis of F4/80 compared to vehicle control (VEH); TGFBR inhibitor Galunisertib (GAL)
inhibited TGFp pathway activation in tumor cells by THC analysis of pSMAD3 compared to
vehicle control (VEH).
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Supplementary Figure 7
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Supplementary Figure 7. HDACS regulates expression of macrophage-recruiting

chemokines through Socs3. A, Exploration of HDACS targets by overlapping 3 profiling datasets

as described in Fig. SA. Seventeen candidate genes were filtered out and ranked by p-values in the

2 RNA-seq datasets from low to high. B, Gene expression of neutrophil- and macrophage-attracted

chemokines after knockdown of Zfp36 in iKPC cells. Data are represented as mean + SD, and two-

tailed unpaired t tests were performed to calculate the p values. C, Identification of potential

HDACS interactors by co-IP/MS analysis. D, Schematic model of the potential HDACS co-
repressor complex. E and F, Validation of knockdown efficiency of Nfix (E) and Mef2d (F) using
CRISPR/Cas9 in HDACS escaper cells by western blot analysis.
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Supplementary Figure 8
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Supplementary Figure 8. HDACS is upregulated after inhibition of the KRAS*/MAPK
pathway in de novo generated escapers and human PDAC lines. A, Hdac expression in iKPC
tumors, de novo generated KRAS* negative escapers and KRAS* reactivated escapers. “1”, “2”
and “3” are representing “iKPC cells”, “KRAS*-negative escapers” and “KRAS*-positive
escapers”, representatively. B, Hdac expression in KRAS*-expressing iKPC tumor samples and
samples 24 hours after KRAS* extinction. C, Hdac5 is upregulated in surviving cells. Two-tailed
unpaired t tests were performed to calculate the p values. D, Dosage titration and on-target effect
determination of MEK inhibitor Trametinib, mTOR inhibitor Rapamycin, and PI3Ka inhibitor
LY294002 in iKPC-3 cells by western blot analysis. The red- highlighted concentrations were
chosen for molecular and functional analysis in vitro. E, HDACS is upregulated in transplanted
iKPC tumors after Trametinib (TRA) treatment. F, RNA expression of chemokines and cytokines
that chemoattract macrophages and neutrophils in iKPC cells, KRAS*-negative escapers and
KRAS*-positive escapers. “17, “2” and “3” represent “iKPC cells”, “KRAS*-negative escapers”
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and “KRAS*-positive escapers”, representatively. G, Comparison of tumor growth between
vehicle control, MEK inhibitor Trametinib only and dual inhibition of MEK by Trametinib and
PI3Ka by Alpelisib in transplanted syngeneic iKPC tumors (» = 7). Tumor sizes were measured
at Day 7 and Day 11 post-treatment. Data are represented as mean = SEM. H, Western blot analysis
shows regulation of HDACS expression by KRAS* downstream signaling pathways in human
PDAC cell lines. I, Western blot analysis shows upregulation of HDACS5 expression by KRASS!2¢
inhibitor ARS-1620 in human NSCLC cell lines with KRASS!2¢ mutation. J, Related to Fig. 6J,
pharmacodynamic determination of KRAS®!2€ inhibitor ARS-1620 alone and in combination with

MEK inhibitor Trametinib in MIA PaCa-2 xenograft tumors in nude mice.
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Supplementary Figure 9
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Supplementary Figure 9. Characterization of HDACS5 escapers generated in syngeneic mouse
models. A, MRI images to examine the tumor burden of orthotopically transplanted GFP-,
HDACS5-, HDACS5D and Ccl2-OE iKPC-5 cells in C57BL/6 mice after KRAS* extinction at
indicated days. MRI images of KRAS*-expressing GFP-OE iKPC-5 tumors were used as positive
control. B, Transcriptional expression of KRAS*, endogenous Kras, endogenous Yap 1, transgenic
HDACS and total Cc/2 in HDACS and Ccl2 escapers by qRT-PCR analysis. The iKPC tumors
were used as control. C, Activation of KRAS* signaling pathway in HDAC5 and Ccl2 escapers by
western blot analysis. The iKPC tumors were used as control. D, Gates of macrophages, monocytes
and neutrophils in a representative iKPC tumor and a HDACS escaper tumor generated from

orthotopic allograft models in C57BL/6 mice by FACS analysis. Data are displayed by FlowJo. E,
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CyTOF analysis of immune cell subtypes in iKPC-5 primary tumors (n = 5) and HDACS5 escaper
tumors (n = 4) generated from orthotopic allograft models in C57BL/6 mice. Two-tailed unpaired
t tests were performed to calculate the p values. F, Validation of SMAD4 knockout in iKPC-5 cells

by western blot analysis. For B and E, data are represented as mean + SEM.
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