Supplementary Information for

The influence of feeding behaviour and temperature on the capacity of mosquitoes to transmit malaria

Eunho Suh, Marissa K. Grossman, Jessica L. Waite, Nina L. Dennington, Ellie Sherrard-Smith, Thomas S. Churcher, and Matthew B. Thomas

Eunho Suh Email: <u>eus57@psu.edu</u>

Supplementary Figure 1. Experimental design for infectious feeds. Adult mosquitoes were acclimated in separate incubators set at either constant (i.e. 27°C with a Diurnal Temperature Range [DTR] of 0°C) or fluctuating (i.e. 27°C with a DTR of 10°C) temperature regimes with a timer offset for each time-of-day treatment so that infectious blood feeding took place simultaneously using the same parasite infected blood meals, but the mosquitoes themselves were at different points in their diel cycle (18:00h [ZT12], 00:00h [ZT18], or 06:00h [ZT0]). Feeding took place in an environmental chamber set at 27°C and then blood fed mosquitoes were immediately moved back to their respective incubators. Each treatment group had 300 female mosquitoes in two containers (150 each) unless otherwise specified.

Supplementary Figure 2. Effects of time-of-day of blood meal and fluctuating temperature on vector competence of A. stephensi infected with P. falciparum and the parasite development rate. a, Mosquitoes were offered infected blood meals at a different time-of-day (18:00h [ZT12], 00:00h [ZT18], or 06:00h [ZT0]) and kept under either constant (i.e. 27° C with a Diurnal Temperature Range [DTR] of 0° C) or fluctuating (i.e. 27°C with a DTR of 10°C) temperature regimes. There is no effect of time-of-day of blood feeding under constant temperature regime (i.e. 27°C DTR 0°C) but vector competence (e.g. sporozoite prevalence) is significantly increased for 18:00h (ZT12) or reduced for 06:00h (ZT0) relative to 00:00h (ZT18) under fluctuating temperature regime (i.e. 27°C DTR 10°C). Results of model analyses to examine the effects of time-of-day and temperature regime on oocyst intensity, or oocyst or sporozoite prevalence are reported in Supplementary Table 4. Twenty mosquitoes were sampled daily for dissecting midguts on 7-9 days post infection (dpi) or salivary glands on 14-16 dpi from two replicate containers (i.e. 10 per each). b, Simplified version of time-of-day and fluctuating temperature experiment. Mosquitoes were offered infected blood meals at a different time-of-day (18:00h [ZT12] or 05:00h [ZT23]) and kept under constant or fluctuating temperature regimes. There is no effect of time-of-day of blood feeding under constant temperature regime but vector competence (e.g. sporozoite prevalence) is significantly reduced for 05:00h (ZT23) under fluctuating temperature regime. Results of model analyses to examine the effects of time-of-day and temperature regime on oocyst intensity, or oocyst or sporozoite prevalence are reported in Supplementary Table 5. Approximately 10 mosquitoes were sampled daily for dissecting midguts on 8-10 dpi or salivary glands on 13, 14, and 16 dpi. c, Daily sporozoite prevalence dynamics. Mosquitoes were offered infected blood meals at a different time-of-day (18:00h [ZT12] or 05:00h [ZT23]) and kept under constant or fluctuating temperature regimes. Extrinsic incubation period is delayed when temperature fluctuates (i.e. 27°C DTR 10°C), independent of biting time. Approximately ten mosquitoes were dissected per day. Partial sporozoite prevalence data were reported in (b). For both (a) and (b), the scatter plots show oocyst intensity, with the data points representing the number of oocysts found in individual mosquitoes, and the horizontal lines the median. The pie charts show oocyst or sporozoite prevalence calculated as the proportion of infected mosquitoes revealed by dissection of midguts and salivary glands, respectively. n indicates the number of mosquito sample per treatment group. Numbers in parentheses indicate Clopper-Pearson 95% confidence intervals. Asterisks represent statistically significant difference (* $P \le 0.05$, ** $P \le 0.01$, *** $P \le 0.001$, **** $P \le 0.0001$; P-values were Bonferroni corrected after pairwise comparisons).

Supplementary Figure 3. Effects of gametocytemia and temperature on vector competence of A. stephensi mosquitoes infected with P. falciparum malaria. a, Mosquitoes were fed on blood meals with serially diluted gametocytemia (1, 1/2, 1/4, or 1/10) and kept at 27°C or 30°C to examine the effects of high temperature interacting with gametocytemia on oocyst infections. Incubation at 30°C reduces oocyst intensity and prevalence across the board, while oocyst intensity and prevalence are also influenced by gametocytemia. Results of model analyses to examine the effects of gametocytemia and temperature treatment on oocyst intensity or oocyst prevalence are reported in Supplementary Table 8. The scatter plots show oocyst intensity, with the data points representing the number of oocysts found in individual mosquitoes, and the horizontal lines the median. The pie charts show oocyst or sporozoite prevalence calculated as the proportion of infected mosquitoes revealed by dissection of midguts and salivary glands, respectively. *n* indicates the number of mosquito sample per treatment group (dpi = days post infection). Numbers in parentheses indicate Clopper-Pearson 95% confidence intervals. b, Relationship between per cent reduction in oocyst prevalence due to exposure to 30°C and mean oocyst intensity (error bars = SEM). Per cent reduction represents reduced percentage in oocyst prevalence in the 30°C treatment relative to oocyst prevalence in the 27°C control. Oocyst prevalence and intensity data were derived from experiments reported in Fig. 3a and Supplementary Fig. 3a. The impact of temperature declines as intensity of infection increases. Dashed line indicates linear regression line ($F_{1,4} = 24.78$, P = 0.008)

Supplementary Figure 4. Effect of transferring mosquitoes between 21° C and 27° C on vector competence of *A. gambiae* mosquitoes infected with *P. falciparum* malaria. Treatment mosquitoes in two replicate containers were kept at 21° C, blood fed at 27° C, and moved back to 21° C, while control mosquitoes were kept at 27° C throughout and blood fed at 27° C. Transferring mosquitoes between two different temperatures for blood feeding does not affect vector competence. GLM was used to compare control to each replicate container of mosquitoes with pairwise post-hoc contrasts followed by Bonferroni corrections (ns, not significant at *P* = 0.05). The scatter plots show oocyst intensity, with the data points representing the number of oocysts found in individual mosquitoes, and the horizontal lines the median. The pie charts show oocyst or sporozoite prevalence calculated as the proportion of infected mosquitoes revealed by dissection of midguts and salivary glands, respectively. *n* indicates the number of mosquito sample per treatment (dpi = days post infection). Numbers in parentheses indicate Clopper-Pearson 95% confidence intervals.

Supplementary Figure 5. Effects of blood feeding mosquitoes at 27°C transferring from three times-ofday treatments under fluctuating temperature regime (27°C with a DTR of 10°C) on blood meal size of *A. gambiae* and *A. stephensi* mosquitoes. Mosquitoes kept under fluctuating temperature regimes (27°C with a DTR of 10°C) were transferred to 27°C, and offered uninfected blood meals at a different time-ofday (18:00h [ZT12], 00:00h [ZT18], or 06:00h [ZT0]). The whole body weight of blood fed mosquitoes were measured as a proxy for blood meal size. Transferring mosquitoes to 27°C from the prevailing temperature of each time-of-day does not affect blood meal size of mosquitoes. Results of model analyses to examine the effects of species and time-of-day of blood feeding on the body weight are reported in Supplementary Table 11. The scatter plots show body weight of blood fed female mosquitoes. Error bars indicate mean weight with 95% confidence intervals.

Supplementary Figure 6. Plots of temperature treatments used in the current study showing 27°C with a Diurnal Temperature Range (DTR) of 0°C or 10°C. The Parton-Logan model was used for the diurnal fluctuating temperature regime that follows a sinusoidal progression and an exponential decay for the day and night cycle, respectively. Shaded areas indicate scotophase.

Supplementary Figure 7. Experimental setup for thermal avoidance assay. Pictures of (**a**) water linked to multiple tubes and (**b**) individual assay tubes. **c**, A schematic diagram of the experimental setup. Total eight assay tubes were used (four for control and four for treatment group) in an assay run, with a total three rounds of assay. Mosquitoes fed with parasite infected (Inf) or uninfected (Uninf) blood meals were introduced into tubes, and the treatments were rotated between the assay rounds.

Supplementary Table 1. Biting activity profile for *Anopheles* mosquitoes identified to exhibit evening, midnight, or morning biting time in 42 published studies. Biting activities were categorized into 'evening', 'midnight', or 'morning' biting group with peak biting observed before 22:00h, between 22:00 and 05:00h, or after 05:00h, respectively. Studies (i.e. papers reviewed) were grouped into high or low temperature environment (divided by double line in the table).

Year ^{ref.}	Country	Mosquito species	Description on biting activity ^a	Peak biting time	Temperature (°C) ^b	
			Peak between 00:00 - 02:00 (In+Out), Garoua	Midnight [§]		
	2017	A. gambiae s.l.	Peak between 22:00 - 00:00 (In+Out), Mayo Oulo	Midnight [§]		
20171			Peak between 00:00 - 02:00 (In+Out), Pitoa	Midnight [§]	20.5	
2017	Cameroon		Peak between 20:00 - 22:00 (In+Out), Garoua	Evening	29.5	
		A. rufipes	Peak between 00:00 - 02:00 (In+Out), Mayo Oulo	Midnight		
			Peak between 00:00 - 02:00 (In+Out), Pitoa	Midnight		
2012 ²	Benin	A. funestus	Peak between 05:00 - 06:00 (In+Out), Lokohoue, 2011	Morning [§]	28.7	
		A. arabiensis	Peak between 01:00 - 02:00 (In+Out)	Midnight [§]		
20003	Charl	A. pharoensis	Peak between 21:00 - 22:00 (In+Out)	Evening	27.0	
20095	Cnad	A. funestus	Peak between 03:00 - 04:00 (In+Out)	Midnight§	27.9	
		A. ziemanni	Peak between 18:00 - 19:00 (In+Out)	Evening		
		A. vagus	Peak between 21:00 - 22:00 (In+Out)	Evening		
		A. sundaicus	Peak between 21:00 - 22:00 (In+Out)	Evening		
20174	T 1 ·	A. subpictus	Peak between 23:00 - 00:00 (In+Out)	Midnight	27.0	
2017*	Indonesia	A. indefnitus	Peak between 23:00 - 00:00 (In+Out)	Midnight	27.8	
		A. peditaeniatus	Peak between 00:00 - 01:00 (In+Out)	Midnight		
		A. nigerrimus	Peak between 20:00 - 21:00 (In+Out)	Evening		
20115	Solomon	A. (Peak between 18:00 - 19:00 (In), Pala, Dec 2010	Evening	27.1	
2011	Islands	A. Jaraun	Peak between 19:00 - 21:00 (Out), Pala, Dec 2010	Evening	27.1	
		A. gambiae s.s.	Peak between 01:00 - 02:00 (In)	Midnight§		
20076	Tonzonio	A. gambiae s.s.	Peak between 01:00 - 02:00 (Out)	Midnight§	27.0	
2007	Tanzania	A. arabiensis	Peak between 20:00 - 21:00 (In)	Evening§	27.0	
		A. arabiensis	Peak between 22:00 - 23:00 (Out)	Midnight§		
			Peak between 22:30 - 23:30 (Out), Twenké	Midnight		
20087	French Guiana	A. darlingi	Peak between 22:30 - 23:30 (Out), Taluéne	Midnight	27.0	
	Guiunu		Peak between 05:30 - 06:30 (Out), Cayodé	Morning		
			Peak between 05:00 - 06:00 (In), Drietabiki	Morning		
2012 ⁸ Suriname	Suriname	A darlingi	Peak between 04:00 - 05:00 (Out), Drietabiki	Midnight	27.0	
	Surmanie	A. auringi	Peak between 01:00 - 02:00 (In), Jamaica	Midnight	27.0	
			Peak between 01:00 - 02:00 (Out), Jamaica	Midnight		
20149	Senegal	A. funestus	Peak between 08:00 - 09:00 (In+Out)	Morning [§]	27.0	
2004^{10}	Eritrea	A. gambiae s 1	Peak between 02:00 - 03:00 (In), Gash-barka	Midnight§	26.8	
2004 ¹⁰ Eritrea		11. Sumblue 5.1.	Peak between 22:00 - 23:00 (Out), Gash-barka	Midnight [§]	20.8	

			Peak between 02:00 - 03:00 (In), Debub	Midnight [§]		
			Peak between 21:00 - 22:00 (Out), Debub	Evening§		
			Peak between 01:00 - 02:00 (In), Anseba	Midnight§		
			Peak between 21:00 - 22:00 (Out), Anseba	Evening§		
201211	Cameroon	A. gambiae s.l.	Peak between 01:00 - 02:00 (Out)	Midnight [§]	26.8	
201712	Papua New	A Course d'A	peak between 19:00 - 20:00 (Out), Kokofine, 2011	Evening	26.7	
201712	Guinea	A. Jaraun 4	peak between 20:00 - 21:00 (Out), Mauno, 2011	Evening	20.7	
200513	Bolivia	A. darlingi	Peak between 20:00 - 21:00 (Out)	Evening	26.6	
		A fanauti	Peak between 18:00 - 19:00 (In)	Evening		
201114	Solomon	A. jaraun	Peak between 19:00 - 20:00 (Out)	Evening	26.5	
2011	Islands	A	Peak between 18:00 - 19:00 (In)	Evening	20.5	
		A. solomonis	Peak between 18:00 - 19:00 (Out)	Evening		
201715	T ·	A. arabiensis	Peak between 20:00 - 21:00 (Out)	Evening§	26.5	
2017	Tanzania	A. funestus	Peak between 05:00 - 06:00 (Out)	Morning [§]	26.5	
			Peak between 02:00 - 03:00 (Out), Dzorwulu	Midnight [§]		
			Peak between 03:00 - 04:00 (Out), Kaneshie	Midnight [§]		
200016	CI	na A. gambiae s.l.	Peak between 02:00 - 03:00 (Out), Korle Bu	Midnight [§]	26.4	
200810	2008 ¹⁰ Ghana		Peak between 02:00 - 03:00 (Out), Kotobabi	Midnight [§]	26.4	
			Peak between 02:00 - 03:00 (Out), La	Midnight§		
			Peak between 03:00 - 04:00 (Out), Ushertown	Midnight§		
	A southing 1		Peak between 04:00 - 05:00 (In+Out), Bugabula	Midnight [§]		
201217	Uganda	A. gambiae s.i.	Peak between 02:00 - 03:00 (In+Out), Budiope	Midnight [§]	26.2	
2015"	Uganda	A function	Peak between 04:00 - 05:00 (In+Out), Budiope	Midnight [§]		
		A. junesius	Peak between 05:00 - 06:00 (In+Out), Bugabula	Morning [§]		
201518	Dom	A darlingi	Peak between 21:00 - 22:00 (Out), Riverine	Evening	26.1	
2015	reiu	A. aariingi	Peak between 22:00 - 23:00 (Out), Highway	Midnight	20.1	
			Peak between 18:00 - 19:00 (Out), San José de Lupuna, April 2011	Evening		
201519	Peru	A. darlingi	Peak between 23:00 - 00:00 (Out), Villa del Buen Pastor, April 2011	Midnight	26.1	
			Peak between 22:00 - 23:00 (Out), Cahuide, May 2012	Midnight		
		A. darlingi	Peak between 18:00 - 19:00 (In)	Evening		
200920	Colombia		Peak between 20:00 - 21:00 (Out)	Evening	26.0	
		A. oswaldoi	Peak between 18:00 - 19:00 (Out)	Evening		
-		11 05 / 0000	Peak between 18:00 - 19:00 (Out)	Evening		
201421	Solomon	A farauti	Peak between 19:00 - 20:00 (In)	Evening	26.0	
2014	Islands	П. јагаши	Peak between 19:00 - 20:00 (Out)	Evening	20.0	
201522	Equatorial	Anonhelesson	Peak between 03:00 - 04:00 (In)	Midnight	26.0	
2015	Guinea	Anophetes spp.	Peak between 03:00 - 04:00 (Out)	Midnight	20.0	
201623	Solomon	1 farautiss	Peak between 18:00 - 19:00 (In)	Evening	26.0	
2010	Islands	А. јагаші 5.5.	Peak between 18:00 - 19:00 (Out)	Evening	20.0	
201224	Zambia	A funacture	Peak between 04:00 - 05:00 (In), LLINs alone	Midnight [§]	25.7	
2012-	Zamula	A. junestus	Peak between 05:00 - 06:00 (Out), LLINs alone	Morning§	23.1	

			Peak between 04:00 - 05:00 (In), LLINs + IRS	Midnight [§]		
			Peak between 01:00 - 02:00 (Out), LLINs + IRS	Midnight [§]		
			Peak between 20:00 - 21:00 (In), LLINs alone	Evening		
			Peak between 19:00 - 20:00 (Out), LLINs alone	Evening		
		A. quadriannulatus	Peak between 20:00 - 21:00 (In), LLINs + IRS	Evening		
			Peak between 21:00 - 22:00 (Out), LLINs + IRS	Evening		
201125	Equatorial	4	Peak between 23:00 - 00:00 (In)	Midnight§	24.6	
2011-5	Ĝuinea	A. gambiae s.s.	Peak between 23:00 - 00:00 (Out)	Midnight [§]	24.0	
		A. aconitus	Peak between 22:00 - 23:00 (In+Out)	Midnight		
		A. vagus	Peak between 19:00 - 20:00 (In+Out), West Timor	Evening		
201126	Indonesia	A. barbirostris	Peak between 01:00 - 02:00 (In+Out)	Midnight	24.1	
		A. vagus	Peak between 02:00 - 03:00 (In+Out), Java	Midnight		
		A. subpictus	Peak between 22:00 - 23:00 (In+Out), West Timor	Midnight		
2007 ²⁷	Venezuela	A. darlingi	Peak between 01:00 - 02:00 (In)	Midnight	24.0	
		A. culcifacies	Peak between 23:00 - 00:00 (In+Out)	Midnight		
201228	Iran	A. fluviatilis	Peak between 22:00 - 23:00 (In+Out)	Midnight	23.5	
		A. stephensi	Peak between 19:00 - 20:00 (In+Out)	Evening		
		4 7 1	Peak between 00:00 - 01:00 (In), 2009	Midnight [§]		
201129	2011 ²⁹ Tanzania –	A. gambiae s.l.	Peak between 22:00 - 23:00 (Out), 2009	Midnight [§]	00.0	
201125		A Guardan	Peak between 20:00 - 21:00 (In), 2009	Evening§	23.3	
		A. funestus	Peak between 22:00 - 23:00 (Out), 2009	Midnight [§]		
200530	India	A. baimaii	Peak between 22:00 - 23:00 (In)	Midnight	23.2	
		A cambiac al	Peak between 23:00 - 00:00 (Out), bed net village	Midnight§		
200131	Kenva	A. gumblae s.i.	Peak between 23:00 - 00:00 (Out), control village	Midnight [§]	23.0	
2001	Kenya	A funestus	Peak between 22:00 - 23:00 (Out), bed net village	Midnight [§]	23.0	
		11. junesius	Peak between 23:00 - 00:00 (Out), control village	Midnight§		
		A. arabiensis	Peak between 01:00 - 02:00 (In)	Midnight§		
2000^{32}	Mozambique		Peak between 23:00 - 00:00 (Out)	Midnight [§]	22.8	
		A. funestus	Peak between 02:00 - 03:00 (In)	Midnight [§]		
			Peak between 02:00 - 03:00 (Out)	Midnight§		
			Peak between 19:00 - 20:00 (In+Out), Engari, rainy season	Evening§		
201533	Uganda	A. gambiae s.l.	Peak between 19:00 - 20:00 (In+Out), Engari, dry season	Evening§	22.3	
			Peak between 19:00 - 20:00 (In+Out), Kigorogoro, dry season	Evening§		
		A. gambiae s.l.	Peak between 22:00 - 00:00 (In)	Midnight§		
201534	Kenva		Peak between 18:00 - 20:00 (Out)	Evening [§]	22.1	
_015	ixingu	A. funestus	Peak between 18:00 - 20:00 (In)	Evening§		
		11. juitestus	Peak between 18:00 - 20:00 (Out)	Evening§		
200635	Tanzania	A. gambiae s.l.	Peak between 05:00 - 06:00 (In), Lupiro 2004	Morning [§]	21.8	

			Peak between 23:00 - 00:00 (Out), Lupiro 2004	Midnight [§]			
			Peak between 05:00 - 06:00 (In), Asembo 2011	Morning [§]			
		A. gambiae s.s.	Peak between 01:00 - 02:00 (Out), Asembo 2011	Midnight [§]			
			Peak between 01:00 - 02:00 (In), Asembo 2011	Midnight [§]			
201436	Kenya	A. arabiensis	Peak between 03:00 - 04:00 (Out), Asembo 2011	Midnight [§]	21.8		
			Peak between 01:00 - 02:00 (In), Asembo 2011	Midnight [§]			
		A. funestus	Peak between 01:00 - 02:00 (Out), Asembo 2011	Midnight [§]			
		A coustani	Peak between 22:00 - 23:00 (In)	Midnight			
		A. cousiani	Peak between 19:00 - 21:00 (Out)	Evening			
		A magagnoncia	Peak between 01:00 - 02:00 (In)	Midnight			
201537	Madagascar	A. mascurensis	Peak between 02:00 - 03:00 (Out)	Midnight	21.3		
2015	Wadagascai	1 funastus	Peak between 21:00 - 22:00 (In)	Evening§	21.5		
		A. junesius	Peak between 02:00 - 03:00 (Out)	Midnight [§]			
		1 anabionaia	Peak between 04:00 - 05:00 (In)	Midnight [§]			
	A. urublensis	Peak between 00:00 - 01:00 (Out)	Midnight [§]				
		1 anabionaia	Peak between 00:00 - 01:00 (In)	Midnight [§]			
		A. urublensis	Peak between 21:00 - 22:00 (Out)	Evening§			
		A	Peak between 19:00 - 20:00 (In)	Evening			
201638	E4 · · ·	A. pnaroensis	Peak between 19:00 - 20:00 (Out)	Evening	21.1		
2016-55	Ethiopia	A. ziemanni	Peak between 19:00 - 20:00 (In)	Evening	21.1		
			Peak between 19:00 - 20:00 (Out)	Evening			
			Peak between 23:00 - 00:00 (In)	Midnight [§]			
		A. funestus s.1.	Peak between 21:00 - 22:00 (Out)	Evening§			
			Peak between 19:00 - 20:00 (In)	Evening§			
		A. arabiensis	Peak between 18:00 - 19:00 (Out)	Evening§			
• • • • • • •			Peak between 20:00 - 21:00 (In)	Evening	••••		
201039	Ethiopia	A. pharoensis	Peak between 19:00 - 20:00 (Out)	Evening	20.0		
			Peak between 18:00 - 19:00 (In)	Evening			
		A. coustani	Peak between 18:00 - 19:00 (Out)	Evening			
201040			Peak between 24:00 - 01:00 (In)	Midnight [§]	10.0		
201040	Zambia	A. arabiensis	Peak between 01:00 - 02:00 (Out)	Midnight [§]	19.9		
			Peak between 19:00 - 20:00 (In)	Evening§			
		A. gambiae s.l.	Peak between 19:00 - 20:00 (Out)	Evening§			
			Peak between 21:00 - 22:00 (In)	Evening			
201641	Ethiopia	A. coustani s.l.	Peak between 19:00 - 20:00 (Out)	Evening	18.0		
			Peak between 19:00 - 20:00 (In)	Evening	-		
		A. pharoensis	Peak between 20:00 - 21:00 (Out)	Evening	1		
			Peak between 19:00 - 20:00 (In)	Evening [§]			
201242	Ethiopia	A. arabiensis	Peak between 19:00 - 20:00 (Out)	Evening§	17.4		
1	1						

In: peak biting observed for indoor biting. Out: peak biting observed for outdoor biting. In+Out: peak biting observed for combined data of indoor and outdoor biting.

^aIf a subset of data showed a shift in biting time in each study, the data set was described for the details such as study sites, year, and/or intervention methods (e.g., long-lasting insecticide-treated bed nets [LLINs], indoor residual spray [IRS], etc.).

^bTemperature measures represent monthly mean temperature of regional estimates for the study sites and study periods in each paper reviewed, otherwise specified in each paper.

Potential major malaria vectors in Africa (i.e., *A. gambiae* s.l., *A. gambiae* s.s., *A. coluzzii, A. arabiensis,* or *A. funestus*)

Diting time	No. cases ^a (%) by temperature measured ^b					
Bitting time	High (25°C or above)	Low (< 25°C)				
Evening	33 (21.9)	31 (20.5)				
Midnight	40 (26.5)	38 (25.2)				
Morning	7 (4.6)	2 (1.3)				

Supplementary Table 2. Summary of biting activity profile from Supplementary Table 1

^aA case was determined as a mosquito species or species complex, site, season, and biting location for which biting activity had been determined in a given paper (see Supplementary Table 1). ^bTemperature measured indicates the representative temperature data for each study reviewed in Supplementary Table 1.

Supplementary Tables 3. GLMMs examining the effects of time-of-day (18:00h [ZT12], 00:00h [ZT18], and 06:00h [ZT0]) and temperature regime (27°C DTR 0°C and 27°C DTR 10°C) on oocyst intensity, or oocyst or sporozoite prevalence in *A. gambiae* (See Fig. 1)

		Oocys	st intensity	Oocyst	prevalence	Sporozo	ite prevalence
Effect	df	F	Р	F	Р	F	Р
Time ^a	2	9.91	< 0.0001	13.42	< 0.0001	17.48	< 0.0001
DTR ^b	1	93.02	< 0.0001	74.63	< 0.0001	47.96	< 0.0001
Time × DTR	2	17.36	< 0.0001	18.64	< 0.0001	16.19	< 0.0001
Day ^c	2	0.83	0.436	0.06	0.940	2.51	0.088

 $LR-\chi^2$: Likelihood ratio chi-square value. ^aTime-of-day.

^bDiurnal temperature range.

^cDissection day (day post infection).

Supplementary Tables 4. Model analyses examining the effects of time-of-day (18:00h [ZT12], 00:00h [ZT18], and 06:00h [ZT0]) and temperature regime (27°C DTR 0°C and 27°C DTR 10°C) on oocyst intensity (GLMM), or oocyst (GLMM) or sporozoite prevalence (GLM) in A. stephensi (see Supplementary Fig. 2a)

		Oocys	st intensity	Oocyst	prevalence	Sporozoite prevalence		
Effect	df	F	Р	F	Р	$LR-\chi^2$	Р	
Time ^a	2	15.07	< 0.0001	1.20	0.318	13.00	0.002	
DTR ^b	1	158.25	< 0.0001	18.95	< 0.001	59.59	< 0.0001	
Time × DTR	2	13.23	< 0.0001	0.97	0.393	14.08	< 0.001	
Day ^c	2	0.21	0.812	0.12	0.890	1.79	0.410	

 $LR-\chi^2$: Likelihood ratio chi-square value. ^aTime-of-day.

^bDiurnal temperature range.

^cDissection day (day post infection).

Supplementary Table 5. GLMs examining the effects of time-of-day (18:00h [ZT12] and 05:00h [ZT23]) and temperature regime (27°C DTR 0°C and 27°C DTR 10°C) on oocyst intensity, or oocyst or sporozoite prevalence in *A. stephensi* (see Supplementary Fig. 2b)

		Oocys	t intensity	Oocyst	prevalence	Sporozo	te prevalence		
Effect	df	$LR-\chi^2$	Р	$LR-\chi^2$	Р	$LR-\chi^2$	Р		
Time ^a	1	9.31	0.002	8.17	0.004	16.01	< 0.0001		
DTR ^b	1	45.64	< 0.0001	4.93	0.026	33.29	< 0.0001		
Time × DTR	1	4.78	0.029	16.51	< 0.0001	7.38	0.007		
Day ^c	2	10.65	0.005	2.35	0.309	0.80	0.672		

 $LR-\chi^2$: Likelihood ratio chi-square value. ^aTime-of-day.

^bDiurnal temperature range.

^cDissection day (day post infection).

Supplementary Table 6. Outputs from a malaria transmission dynamics model illustrating the potential effect of altered or constant vector competence in mosquitoes biting in the evening (EV), at midnight (MD), or in the morning (MN) on malaria prevalence and efficacy of bed nets (LLINs). Post bed net prevalence estimates are taken 3 years after they were introduced at 50% usage and maintained annually to estimate the efficacy of LLINs (See Fig. 2)

Run Vector competence		Proportion of mosquitoes biting during different periods of the night		Prop	Proportion of bites received in bed		Prevalence (%) in 2 – 10-year old children [§]		Estimated efficacy of LLINs (% relative reduction in	
		EV	MD	MN	EV	MD	MN	Without LLINs	With LLINs	prevalence)§
1	Altered [¶]	0.15	0.7	0.15	0.85^{\dagger}	0.85^{\dagger}	0.85^{\dagger}	59.5 (54.4 – 63.7)	15.6 (11.5 – 19.8)	73.7 (69.0 - 78.9)
2	Altered [¶]	0.7	0.3	0	0.85^{\dagger}	0.85^{\dagger}	0.85^{\dagger}	68.5 (65.6 – 70.8)	25.2 (21.8 – 28.1)	63.3 (66.8 - 60.3)
3	Altered [¶]	0	0.3	0.7	0.85^{\dagger}	0.85^{\dagger}	0.85^{\dagger}	39.0 (30.4 – 48.6)	3.4 (1.4 – 7.6)	91.3 (84.3 – 95.3)
4	Altered [¶]	0.15	0.7	0.15	0.43	0.85^{\dagger}	0.43	59.5 (54.4 – 63.7)	22.6(15.6 - 28.1)	62.0 (56.8 - 67.9)
5	Altered [¶]	0.7	0.3	0	0.43	0.85^{\dagger}	0.43	68.5 (65.6 – 70.8)	44.4 (40.4 – 47.6)	35.3 (38.4 – 32.8)
6	Altered [¶]	0	0.3	0.7	0.43	0.85^{\dagger}	0.43	39.0 (30.4 – 48.6)	12.1 (6.4 - 20.7)	68.9(57.4 - 78.9)
7	Constant [‡]	0.15	0.7	0.15	0.85^{\dagger}	0.85^{\dagger}	0.85^{\dagger}	58.4 (52.2 – 63.3)	14.7 (9.9 – 19.3)	74.9 (69.5 – 81.1)
8	Constant [‡]	0.7	0.3	0	0.85^{\dagger}	0.85^{\dagger}	0.85^{\dagger}	58.4 (52.2 – 63.3)	14.7 (9.9 – 19.3)	74.9 (69.5 – 81.1)
9	Constant [‡]	0	0.3	0.7	0.85^{\dagger}	0.85^{\dagger}	0.85^{\dagger}	58.4 (52.2 – 63.3)	14.7 (9.9 – 19.3)	74.9 (81.1 – 69.5)
10	Constant [‡]	0.15	0.7	0.15	0.43	0.85^{\dagger}	0.43	58.4 (52.2 – 63.3)	21.4 (15.4 – 27.0)	63.3 (57.4 – 70.5)
11	Constant [‡]	0.7	0.3	0	0.43	0.85^{\dagger}	0.43	58.4 (52.2 – 63.3)	31.4 (24.4 – 37.4)	46.3 (53.3 - 40.9)
12	Constant [‡]	0	0.3	0.7	0.43	0.85^{\dagger}	0.43	58.4 (52.2 – 63.3)	31.4 (24.4 – 37.4)	46.3 (53.3 – 40.9)

[¶]Vector competence is assumed to be increased, intermediate, or low for mosquitoes biting in the evening, at midnight, or in the morning, respectively.

[†]Vector competence is assumed to be equal with respect to biting time.

[†]See reference *A. gambiae* s.s.⁴³.

[§]Numbers in parentheses represent 95% confidence intervals.

Supplementary Table 7. GLMs examining the effects of mosquito species (*A. gambiae* and *A. stephensi*) and/or temperature treatment (27°C and 30°C) on oocyst intensity or oocyst prevalence (see Fig. 3a). Oocyst prevalence data were pooled within each temperature treatment group after confirming no difference between two species (Fisher's exact test, two-sided, P > 0.05) to ensure model validity^{44,45}

		Oocyst	intensity	Oocyst prevalence		
Effect	df	$LR-\chi^2$	Р	$LR-\chi^2$	Р	
Species	1	0.23	0.632	NA	NA	
Temperature	1	78.7	< 0.0001	36.9	< 0.0001	
Species × Temperature	1	1.29	0.256	NA	NA	

LR- χ^2 : Likelihood ratio chi-square value.

Supplementary Table 8. GLMs examining the effects of gametocytemia dilutions (1, 1/2, 1/4, and 1/10) and temperature treatment (27°C and 30°C) on oocyst intensity or oocyst prevalence in *A. stephensi* (see Supplementary Fig. 3a)

	Oocyst	intensity	Oocyst prevalence		
Effect	df	$LR-\chi^2$	Р	$LR-\chi^2$	Р
Gametocytemia	3	2.48	0.479	20.3	< 0.0001
Temperature	1	5.96	0.015	138	< 0.0001
Gametocytemia × Temperature	1	2.72	0.438	1.33	0.724

 $LR-\chi^2$: Likelihood ratio chi-square value.

Supplementary Table 9. Blood feeding compliance of *A. gambiae* mosquitoes fed at either 27°C or 21°C. Mosquitoes were kept at either 27°C DTR 0°C or 21°C DTR 0°C and fed infectious blood meals at a different time-of-day (18:00h [ZT12], 00:00h [ZT18], or 06:00h [ZT0]) at their corresponding temperature (i.e. either 27°C or 21°C). Data for feeding compliance at 27°C were obtained from the infectious feed (2nd feed) reported in Fig. 1 (i.e. 27°C DTR 0°C treatment group), and data for feeding compliance at 21°C were obtained from a separate infectious feed. GLMM examining the effects of temperature and time-of-day on the feeding compliance is reported in Supplementary Table 10

Blood feeding temperature	Time-of-day	No. fed	No. total	% fed	
	7510	117	118	99.2	
	Z112	116	118	98.3	
2700	7T19	113	115	98.3	
27°C	Z118	114	116	% fed 99.2 98.3 98.3 96.6 95.7 94.1 91.5 97.5 92.3 100.0 96.6	
	710	112	116	96.6	
	Z10	112	117	95.7	
	7T12	112	119	94.1	
	Z1 12	108	118	91.5	
21°C	7T19	115	118	97.5	
21 C	Z110	108	117	92.3	
	710	115	115	100.0	
	210	113	117	96.6	

Supplementary Table 10. GLMM examining the effects of blood feeding temperature (27°C and 21°C) and time-of-day (18:00h [ZT12], 00:00h [ZT18], and 06:00h [ZT0]) on feeding compliance (See Supplementary Table 9)

	Feeding compliance		
Effect	df	F	Р
Temperature	1	3.05	0.131
Time-of-day	2	0.08	0.926
Temperature × Time-of-day	2	3.98	0.080

Supplementary Table 11. GLMM examining the effects of species (*A. gambiae* and *A. stephensi*) and time-of-day (18:00h [ZT12], 00:00h [ZT18], and 06:00h [ZT0]) on body weight of blood fed mosquitoes (See Supplementary Fig. 5)

	Feeding compliance		
Effect	df	F	Р
Species	1	43.09	< 0.0001
Time-of-day	2	0.46	0.635
Species × Time-of-day	2	1.56	0.213

Reference (description on experiment)	Mosquito dissection	Tı	eatment	Sample size	Dpi^\dagger	# Replicate container	# Mosquito per container	Model analysis	Dependent variables	Model structure and explanatory variables	Error structure and link for dependent variables
		2700	ZT12	120	7-9	4	150 or 120 [‡]				
		DTR	ZT18	120	7-9	4	150 or 120 [‡]				
	Midauto	00	ZT0	120	7-9	4	150 or 120 [‡]				Oocyst intensity - negative binomial distribution with log link; Oocyst and sporozoite prevalence - binomial distribution with logit link
	Midguts	2700	ZT12	120	7-9	4	150 or 120 [‡]				
Fig. 1 and Supplementary		DTR	ZT18	120	7-9	4	150 or 120 [‡]	GLMM	Oocyst intensity, or oocyst or sporozoite	Time-of-day + Temperature regime + Time-of-day ×	
Table 3 (effects of time-of-day and		10°C	ZT0	120	7-9	4	150 or 120 [‡]				
fluctuating temperature on		2700	ZT12	120	14-16	4	150 or 120 [‡]	OLIVIIVI		Temperature regime + Dissection day +	
vector competence in A. gambiae)		DTR	ZT18	120	14-16	4	150 or 120 [‡]		prevalence	Infectious feed*	
	Salivary	0.0	ZT0	120	14-16	4	150 or 120 [‡]				
	glands		ZT12	120	14-16	4	150 or 120 [‡]				
		27°C DTR	ZT18	120	14-16	4	150 or 120 [‡]				
		10°C	ZT0	120	14-16	4	150 or 120 [‡]				
			ZT12	60	7-9	2	120			Time-of-day + Temperature regime + Time-of-day × Temperature regime + Dissection day + Mosquito container*	Oocyst intensity - negative binomial distribution with log link; Oocyst prevalence - binomial distribution with logit link
		27°C DTR	ZT18	60	7-9	2	120				
		0.6	ZT0	60	7-9	2	120	Ood	Oocyst		
	Midguts		ZT12	60	7-9	2	120	GLMM	intensity or prevalence		
Supplementary Fig. 2a and		27°C DTR	ZT18	60	7-9	2	120				
Supplementary Table 4 (effects of		10°C	ZT0	60	7-9	2	120				
time-of-day and fluctuating			ZT12	60	14-16	2	120	GLM Sporozoite prevalence [¶]	Sporozoite	Time-of-day + Temperature regime + Time-of-day × Temperature regime + Dissection day	
vector competence		27°C DTR 0°C	ZT18	60	14-16	2	120				Sporozoite prevalence - binomial distribution with logit link
in <i>A. stephensi</i>) Salivar glands	Salivary		ZT0	60	14-16	2	120				
	glands	lands 27°C DTR 10°C	ZT12	60	14-16	2	120		prevalence		
			ZT18	60	14-16	2	120				
			ZT0	60	14-16	2	120				
Supplementary Fig.		27°C	ZT12	36	8-10	1	150	GLM	GLM Oocyst intensity or prevalence		Oocyst intensity - Poisson distribution [§] with log link; Oocyst prevalence - binomial distribution with logit link
Fig. 2c (daily sporozoite	2.01	0°C	ZT23	31	8-10	1	150				
prevalence; numbers in	Midguts	lidguts 27°C	ZT12	30	8-10	1	150				
numbers in parentheses indicate sample size and dpi; statistical analyses are not applied), and Supplementary Table 5 (effects of time-of-day and fluctuating glar temperature on vector competence and parasite development rate in A. stephensi)		10°C	ZT23	32	8-10	1	150				
		27°C	ZT12	31 (appr. 10/day)	13, 14, 16 (8-14, 16, 18, 22-24)	1	150	GLM Sporozoite prevalence	Time-of-day + Temperature regime + Time-of-day ×		
	Salivary	0°C	ZT23	30 (appr. 10/day)	13, 14, 16 (8-14, 16, 18, 22-24)	1	150		GLM Sporozoite prevalence	Temperature regime + Dissection day	Sporozoite prevalence - binomial distribution with logit link
	glands	27°C DTR 10°C	ZT12	28 (appr. 10/day)	13, 14, 16 (8-14, 16, 18, 22-24)	1	150				
			ZT23	30 (appr. 10/day)	13, 14, 16 (8-14, 16, 18, 22-24)	1	150				
Fig. 3a and Supplementary		27°C	A. gambiae	40	7-9	1	120	GLM Oocyst intensity or prevalence [¶]	Oocyst M intensity or	Oocyst intensity -	
			A. stephensi	30	7-9	1	120			Species + Temperature treatment + Species × Temperature	Oocyst intensity - negative binomial
Table 7 (effects of high temperatures	Midguts		A. gambiae	25	6, 7	1	120				distribution with log link; Oocyst
on parasite establishment)		30°C	A. stephensi	28	6, 7	1	120		treatment; Oocyst prevalence -	prevalence - binomial distribution with logit link	
		32°C	A. gambiae	29	5, 6	1	120			Temperature	

Supplementary Table 12. Summary of experiment design, dissection method, and/or statistical model analysis for empirical studies (additional information are available in the main text)

			A. stephensi	25	5, 6	1	120				
	27°C	Control	37	7-9	1	120				Occust intensity	
		3h	44	5-8	1	120					
Fig. 3b (thermal sensitivity of early	2.01		6h	44	5-8	1	120	GLM	Oocyst intensity or prevalence	Temperature treatment	Poisson distribution [§] with log link: Occyst prevalence - binomial distribution with logit link
parasite infection in A. stephensi)	Midguts	30°C	12h	36	6-8	1	120				
			24h	32	6-8	1	120				
			48h	30	6-8	1	120				
Fig.4 (infectious feed for thermal avoidance assay)	Midguts	27°C DT to blood 27°C afte feeding a (ZT0)	R 10°C prior feeding, and er blood at 06:00h	60	8	3	100	NA			
			1	32	8, 9	1	120		Oocyst intensity or prevalence	Gametocytemia + Temperature treatment + Gametocytemia × Temperature treatment	Oocyst intensity - negative binomial distribution with log link; Oocyst prevalence - binomial distribution with logit link
Supplementary Fig.		27%C	1/2	33	8, 9	1	120				
3a and Supplementary		27°C	1/4	31	8, 9	1	120				
Table 8 (effects of gametocytemia	Midauto		1/10	31	8, 9	1	120	CIM			
dilutions and high temperature on	Midguts	30°C	1	48	7	1	120	GLM intensity prevalence			
parasite establishment in A.			1/2	55	7	1	120				
stephensi)			1/4	54	7	1	120				
			1/10	50	7	1	120				
Supplementary Fig. 4 (effect of	Midauta	27°C		30	8,9	1	120		Oocyst intensity, or oocyst or sporozoite prevalence	Mosquito container	Oocyst intensity - negative binomial distribution with log link; Oocyst and sporozoite prevalence - binomial distribution with logit link
transferring mosquitoes	Midguts	21°C		60	14-16	2	120	GLM			
between different temperatures on	Salivary	27°C 21°C		30	14-16	1	120				
vector competence in A. gambiae)	glands			60	34-36	2	120				
		27%C	ZT12		2	120					
Supplementary		27°C DTR 10°C	ZT18			2	120	GLMM	Blood feeding success of individual mosquitoes	Time-of-day + Temperature regime + Time-of-day × Temperature regime + Mosquito container*	Blood feeding success - binomial distribution with logit link
Table 9 and 10 (effect of blood feeding at different temperature on feeding compliance in A. gambiae)	NA		ZT0	NA	NA	2	120				
	INA	2190	ZT12	INA	NA NA	2	120				
		21°C DTR 10°C	ZT18			2	120				
			ZT0			2	120				
Supplementary Fig. 5 and Supplementary Table 11 (effect of transferring mosquitoes between different temperatures on blood meal size in A gambiag)		27°C	ZT12	20		2	30	-		Species + Time-of-	Mosquito body weight
			ZT18	20		2	30				
	NA ent e in	DTR 10°C	ZT0	20	NA	2	30	GLMM	Mosquito body weight	day + Species × Time-of-day + Mosquito container*	- normal distribution with identity link

[†]Dpi: Days post infection

⁺150 or 120 mosquitoes per container for each of two biological replicate experiments

*Included as a random variable in model analysis *Prevalence data were pooled within each temperature treatment group after confirming no difference between two replicates or species (Fisher's exact test, two-sided, P > 0.05) to ensure model validity^{44,45} [§]Poisson distribution was used to ensure best model fit based on AIC value

Supplementary Table 13. Parameter values for the changes in the model used to investigate whether the magnitude of the differences in the human-to-mosquito transmission probability identified experimentally are likely to have a substantial epidemiological impact if the same result was observed in natural settings. Parameter estimates and full model structure are reported previously in Walker et al.⁴⁶ which builds on the original model presented in Griffin et al.⁴⁷.

Notation	Definition	Value		
g_0	A Fourier function is used to generate seasonality that	0.2854		
g ₁	acts by altering the ratio of mosquitoes to humans over	-0.0633		
g ₂	the course of a year.	-0.0902		
g ₃	$\frac{3}{\Sigma}$	0.06		
h_1	$R(t) = g_0 + \sum_{i} g_i \cos(2\pi t i) + h_i \sin(2\pi t i)$	0.0264		
h ₂		-0.06		
h ₃	This seasonality reflects Western Kenya, Walker et al. ⁴⁶	-0.0453		
	Entomological inoculation rate, the number of infectious	100 bites per person per year,		
EIR	bites received per person per year	at equilibrium, when $\Upsilon = 1$		
		and no LLINs are used		
1.	The force of infection to mosquitoes	Varies seasonally		
21 <u>M</u>		(0.007 - 0.008)		
ß	The time-varying emergence rate which is set according	Varies seasonally		
μ	to the level of malaria seasonality	(2.5 – 12.7)		
1/1	The mortality rate, daily hazard of death from external	7.6 days		
11µ	causes	7.0 days		
α	The rate at which mosquitoes take a bloodmeal	1 feed every 3 days		
ω	The normalizing constant for the biting rate over ages	0.757		
	parameter to describe the relative differences in human-	Changes proportionally with		
Ŷ	to-mosquito transmission probability caused by the time	the transmission probability		
1	mosquitoes' blood-feed	of all infectious people		
		(see Supplementary Table 6)		
τ	The extrinsic incubation period from blood-feeding until	11.5 dove		
ι _M	sporozoites are present in the salivary glands	11.5 days		
K	The maximum carrying capacity of the environment to	203.61 (scaled to represent		
N 0	support mosquito larvae	the endemicity of the setting)		
<u>_</u>	The mean rainfall over the year for the setting described	0.2854		
K	here (chosen arbitrarily to match Western Kenva)	0.2834		

References

- Tabue, R. N. *et al.* Role of *Anopheles* (Cellia) *rufipes* (Gough, 1910) and other local anophelines in human malaria transmission in the northern savannah of Cameroon: a cross-sectional survey.
 Parasites Vectors 10, doi:10.1186/s13071-016-1933-3 (2017).
- Moiroux, N. *et al.* Changes in *Anopheles funestus* biting behavior following universal coverage of long-lasting insecticidal nets in Benin. *J. Infect. Dis.* 206, 1622-1629, doi:10.1093/infdis/jis565 (2012).
- 3 Kerah-Hinzoumbe, C. *et al.* Malaria vectors and transmission dynamics in Goulmoun, a rural city in south-western Chad. *BMC Infect. Dis.* **9**, doi:10.1186/1471-2334-9-71 (2009).
- Sugiarto, Hadi, U. K., Soviana, S. & Hakim, L. Bionomics of *Anopheles* (Diptera: Culicidae) in a malaria endemic region of Sungai Nyamuk village, Sebatik Island North Kalimantan, Indonesia.
 Acta Trop. 171, 30-36, doi:10.1016/j.actatropica.2017.03.014 (2017).
- Bugoro, H. *et al.* Bionomics of the malaria vector *Anopheles farauti* in Temotu Province,
 Solomon Islands: issues for malaria elimination. *Malar. J.* 10, doi:10.1186/1475-2875-10-133
 (2011).
- 6 Geissbuhler, Y. *et al.* Interdependence of domestic malaria prevention measures and mosquitohuman interactions in urban Dar es Salaam, Tanzania. *Malar. J.* **6**, doi:10.1186/1475-2875-6-126 (2007).
- Girod, R., Gaborit, P., Carinci, R., Issaly, J. & Fouque, F. Anopheles darlingi bionomics and transmission of *Plasmodium falciparum*, *Plasmodium vivax* and *Plasmodium malariae* in Amerindian villages of the Upper-Maroni Amazonian forest, French Guiana. *Mem. Inst. Oswaldo Cruz* 103, 702-710, doi:10.1590/s0074-02762008000700013 (2008).
- 8 Hiwat, H. *et al.* Collapse of *Anopheles darlingi* populations in Suriname after introduction of insecticide-treated nets (ITNs); malaria down to near elimination level. *Am. J. Trop. Med. Hyg.*86, 649-655, doi:10.4269/ajtmh.2012.11-0414 (2012).

- Sougoufara, S. et al. Biting by Anopheles funestus in broad daylight after use of long-lasting 9 insecticidal nets: a new challenge to malaria elimination. Malar. J. 13, doi:10.1186/1475-2875-13-125 (2014).
- 10 Shililu, J. et al. Seasonal abundance, vector behavior, and malaria parasite transmission in Eritrea. J. Am. Mosq. Control Assoc. 20, 155-164 (2004).
- 11 Antonio-Nkondjio, C. et al. High mosquito burden and malaria transmission in a district of the city of Douala, Cameroon. BMC Infect. Dis. 12, 275, doi:10.1186/1471-2334-12-275 (2012).
- 12 Thomsen, E. K. et al. Mosquito behavior change after distribution of bednets results in decreased protection against malaria exposure. J. Infect. Dis. 215, 790-797, doi:10.1093/infdis/jiw615 (2017).
- 13 Harris, A. F., Matias-Arnez, A. & Hill, N. Biting time of Anopheles darlingi in the Bolivian Amazon and implications for control of malaria. Trans. Roy. Soc. Trop. Med. Hyg. 100, 45-47, doi:10.1016/j.trstmh.2005.07.001 (2006).
- 14 Bugoro, H. et al. Changes in vector species composition and current vector biology and behaviour will favour malaria elimination in Santa Isabel Province, Solomon Islands. Malar. J. 10, doi:10.1186/1475-2875-10-287 (2011).
- 15 Milali, M. P., Sikulu-Lord, M. T. & Govella, N. J. Bites before and after bedtime can carry a high risk of human malaria infection. Malar. J. 16, doi:10.1186/s12936-017-1740-0 (2017).
- 16 Klinkenberg, E., McCall, P. J., Wilson, M. D., Amerasinghe, F. P. & Donnelly, M. J. Impact of urban agriculture on malaria vectors in Accra, Ghana. Malar. J. 7, doi:10.1186/1475-2875-7-151 (2008).
- 17 Kabbale, F. G., Akol, A. M., Kaddu, J. B. & Onapa, A. W. Biting patterns and seasonality of anopheles gambiae sensu lato and anopheles funestus mosquitoes in Kamuli District, Uganda. Parasites Vectors 6, doi:10.1186/1756-3305-6-340 (2013).

- 18 Lainhart, W. *et al.* Evidence for temporal population replacement and the signature of ecological adaptation in a major Neotropical malaria vector in Amazonian Peru. *Malar. J.* 14, doi:10.1186/s12936-015-0863-4 (2015).
- 19 Moreno, M. *et al.* Implications for changes in *Anopheles darlingi* biting behaviour in three communities in the peri-Iquitos region of Amazonian Peru. *Malar. J.* 14, doi:10.1186/s12936-015-0804-2 (2015).
- 20 Rodriguez, M. *et al.* Composition and biting activity of *Anopheles* (Diptera: Culicidae) in the Amazon region of Colombia. *J. Med. Entomol.* **46**, 307-315, doi:10.1603/033.046.0215 (2009).
- Bugoro, H. *et al.* The bionomics of the malaria vector *Anopheles farauti* in Northern Guadalcanal,
 Solomon Islands: issues for successful vector control. *Malar. J.* 13, doi:10.1186/1475-2875-13-56
 (2014).
- 22 Bradley, J. *et al.* Outdoor biting by *Anopheles* mosquitoes on Bioko Island does not currently impact on malaria control. *Malar. J.*, 170, doi:10.1186/s12936-015-0679-2 (2015).
- Russell, T. L. *et al.* Frequent blood feeding enables insecticide-treated nets to reduce transmission by mosquitoes that bite predominately outdoors. *Malar. J.* 15, doi:10.1186/s12936-016-1195-8 (2016).
- Seyoum, A. *et al.* Human exposure to anopheline mosquitoes occurs primarily indoors, even for users of insecticide-treated nets in Luangwa Valley, South-east Zambia. *Parasites Vectors* 5, doi:10.1186/1756-3305-5-101 (2012).
- Reddy, M. R. *et al.* Outdoor host seeking behaviour of *Anopheles gambiae* mosquitoes following initiation of malaria vector control on Bioko Island, Equatorial Guinea. *Malar. J.* 10, doi:10.1186/1475-2875-10-184 (2011).
- Ndoen, E., Wild, C., Dale, P., Sipe, N. & Dale, M. Dusk to dawn activity patterns of *Anopheline* mosquitoes in West Timor and Java, Indonesia. *Southeast Asian J. Trop. Med. Public Health* 42, 550-561 (2011).

- Magris, M., Rubio-Palis, Y., Menares, C. & Villegas, L. Vector bionomics and malaria transmission in the Upper Orinoco River, southern Venezuela. *Mem. Inst. Oswaldo Cruz* 102, 303-311, doi:10.1590/s0074-02762007005000049 (2007).
- Basseri, H. R., Abai, M. R., Raeisi, A. & Shahandeh, K. Community sleeping pattern and anopheline biting in southeastern Iran: a country earmarked for malaria elimination. *Am. J. Trop. Med. Hyg.* 87, 499-503, doi:10.4269/ajtmh.2012.11-0356 (2012).
- 29 Russell, T. L. *et al.* Increased proportions of outdoor feeding among residual malaria vector populations following increased use of insecticide-treated nets in rural Tanzania. *Malar. J.* 10, doi:10.1186/1475-2875-10-80 (2011).
- 30 Prakash, A., Bhattacharyya, D. R., Mohapatra, P. K. & Mahanta, J. Malaria transmission risk by the mosquito *Anopheles baimaii* (formerly known as *An. dirus* species D) at different hours of the night in North-east India. *Med. Vet. Entomol.* **19**, 423-427, doi:10.1111/j.1365-2915.2005.00592.x (2005).
- Mathenge, E. M. *et al.* Effect of permethrin-impregnated nets on exiting behavior, blood feeding success, and time of feeding of malaria mosquitoes (Diptera : Culicidae) in western Kenya. *J. Med. Entomol.* 38, 531-536, doi:10.1603/0022-2585-38.4.531 (2001).
- 32 Mendis, C. *et al. Anopheles arabiensis* and *An. funestus* are equally important vectors of malaria in Matola coastal suburb of Maputo, southern Mozambique. *Med. Vet. Entomol.* **14**, 171-180, doi:10.1046/j.1365-2915.2000.00228.x (2000).
- Ojuka, P. *et al.* Early biting and insecticide resistance in the malaria vector *Anopheles* might compromise the effectiveness of vector control intervention in Southwestern Uganda. *Malar. J.*14, doi:10.1186/s12936-015-0653-z (2015).
- 34 Ototo, E. N. *et al.* Surveillance of malaria vector population density and biting behaviour in western Kenya. *Malar. J.* 14, doi:10.1186/s12936-015-0763-7 (2015).

- Killeen, G. F. *et al.* Quantifying behavioural interactions between humans and mosquitoes:
 evaluating the protective efficacy of insecticidal nets against malaria transmission in rural
 Tanzania. *BMC Infect. Dis.* 6, doi:10.1186/1471-2334-6-161 (2006).
- 36 Bayoh, M. N. *et al.* Persistently high estimates of late night, indoor exposure to malaria vectors despite high coverage of insecticide treated nets. *Parasites Vectors* 7, doi:10.1186/1756-3305-7-380 (2014).
- Nepomichene, T., Tata, E. & Boyer, S. Malaria case in Madagascar, probable implication of a new vector, *Anopheles coustani. Malar. J.* 14, doi:10.1186/s12936-015-1004-9 (2015).
- Kenea, O. *et al.* Human-biting activities of *Anopheles* species in south-central Ethiopia. *Parasites Vectors* 9, doi:10.1186/s13071-016-1813-x (2016).
- Kibret, S. *et al.* The impact of a small-scale irrigation scheme on malaria transmission in Ziway area, Central Ethiopia. *Trop. Med. Int. Health* 15, 41-50, doi:10.1111/j.1365-3156.2009.02423.x (2010).
- Fornadel, C. M., Norris, L. C., Glass, G. E. & Norris, D. E. Analysis of *Anopheles arabiensis* blood feeding behavior in Southern Zambia during the two years after introduction of insecticide treated bed bets. *Am. J. Trop. Med. Hyg.* 83, 848-853, doi:10.4269/ajtmh.2010.10-0242 (2010).
- Taye, B., Lelisa, K., Emana, D., Asale, A. & Yewhalaw, D. Seasonal dynamics, longevity, and biting activity of anopheline mosquitoes in southwestern Ethiopia. *J Insect Sci.* 16, doi:10.1093/jisesa/iev150 (2016).
- Yohannes, M. & Boelee, E. Early biting rhythm in the afro-tropical vector of malaria, *Anopheles arabiensis*, and challenges for its control in Ethiopia. *Med. Vet. Entomol.* 26, 103-105, doi:10.1111/j.1365-2915.2011.00955.x (2012).
- Sherrard-Smith, E. *et al.* Mosquito feeding behavior and how it influences residual malaria transmission across Africa. *Proc. Natl. Acad. Sci. U. S. A.* 116, 15086-15095, doi:10.1073/pnas.1820646116 (2019).

- 44 West, B., Welch, K. & Galecki, A. *Linear mixed models: a practical guide using statistical software*. 2nd edn, (Chapman & Hall, 2007).
- Gill, J. & King, G. What to do when your hessian is not invertible: alternatives to model respecification in nonlinear estimation. *Sociologial Methods & Research* 33, 54-87, doi:doi.org/10.1177/0049124103262681 (2004).
- Walker, P. G. T., Griffin, J. T., Ferguson, N. M. & Ghani, A. C. Estimating the most efficient allocation of interventions to achieve reductions in *Plasmodium falciparum* malaria burden and transmission in Africa: a modelling study. *Lancet Glob. Health* 4, E474-E484, doi:10.1016/s2214-109x(16)30073-0 (2016).
- Griffin, J. T. *et al.* Reducing *Plasmodium falciparum* malaria transmission in Africa: a model-based evaluation of intervention strategies. *PLos Med.* 7, doi:10.1371/journal.pmed.1000324 (2010).