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Data processing 

Laura D. Gauthier, Konrad J. Karczewski, Ryan L. Collins, Kristen M. Laricchia, Yossi Farjoun, 

Laurent C. Francioli, Eric Banks, Daniel G. MacArthur 

 
Alignment and read processing 

To create a comprehensive reference panel, we integrated whole exome and genome 

sequence data acquired from many sources, sequenced across many labs with a variety of 

library prep methods (including various exome capture platforms, and for genomes, both PCR+ 

and PCR-) over more than five years. This study was overseen by the Broad Institute’s Office of 

Research Subject Protection and the Partners Human Research Committee, and was given a 

determination of Not Human Subjects Research. Informed consent was obtained from all 

participants. 

For data sequenced externally, we first imported FASTQ- or BAM-level data from all 

sources for inclusion in our pipeline, based on the Picard suite of software tools version 1.1431, 

as described previously4, with any differences noted below. We mapped reads onto the human 

genome build 37 using bwa aln for exomes4 and bwa mem version 0.7.750 for genomes. The 

FASTA file can be found at ftp.ncbi.nlm.nih.gov/sra/reports/Assembly/GRCh37-

HG19_Broad_variant/Homo_sapiens_assembly19.fasta, which has 85 contigs including a decoy 

(NC_007605, 171823bp). 

Variant Calling 

Variants were jointly called using the Genome Analysis Toolkit (GATK) Best Practices 

for germline SNVs and indels51. Briefly, samples were called individually using local realignment 

by HaplotypeCaller (version nightly-2015-07-31-g3c929b0) in GVCF mode, such that every 

position in the genome is assigned likelihoods for discovered variants or for the reference. 

These per-sample GVCF genotype data, alleles, and sequence-based annotations were then 
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merged using GenomicsDB (https://github.com/Intel-HLS/GenomicsDB), a datastore designed 

for genomics that takes advantage of a cohort’s sparsity of variant genotypes. Samples were 

jointly genotyped for high confidence alleles using GenotypeGVCFs version 3.4-89-ge494930, 

on all autosomes and the X chromosome for genomes, and on all autosomes, as well as X and 

Y chromosomes for exomes. Variant call accuracy was estimated using Variant Quality Score 

Recalibration (VQSR) in GATK (3.6-0-g89b7209), though we have also implemented a Random 

Forest (RF) approach (see “Variant QC” below). In the process of manuscript revisions, we 

identified an issue with undercalling of homozygous variants due to low levels of 

contamination52, which does not materially affect the analyses in this paper, except as noted. 

Structural variants (SV) were called from WGS data (mean coverage: 32X) for a largely 

overlapping set of 14,891 samples. Methods for SV discovery & genotyping are covered in 

detail in a companion paper11, but are also briefly summarized here. We ran an improved 

version of our multi-algorithm ensemble approach53 that integrates information across several 

SV discovery algorithms (Manta v1.0.3, DELLY v0.7.7, MELT v2.0.5, and cn.MOPS v1.20.1) 

and queries evidence directly from the aligned WGS libraries (read depth, anomalous read 

pairs, split reads, and SNV B-allele frequencies) to maximize sensitivity for all classes of SV. 

Following initial SV discovery, we filtered predicted breakpoints with a series of semi-supervised 

machine learning methods, jointly genotyped passing breakpoints across all samples using a 

Bayesian consensus approach, and collapsed breakpoints into fully resolved SV alleles with a 

heuristic-based method. After post hoc quality control, including pruning first-degree relatives 

and low-quality samples, and restricting to samples overlapping those with this manuscript, we 

documented a total of 366,412 SV sites across 6,749 unrelated samples. 

Coverage information 

Coverage was calculated on a random subset of samples constituting approximately 

10% of the full dataset using the depth tool from samtools (v1.4, modified to cap coverage as 

previously described4 for efficiency). Metrics were generated separately for genomes and 
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exomes across their respective calling intervals with the base quality threshold set to 10 and the 

mapping quality threshold set to 20. Sites with zero depth were included and coverage was 

capped at 100x for a given sample and base-pair. 

Data processing 

To perform quality control and analysis of the sequencing data at scale, we use an open-

source, scalable software framework called Hail (https://github.com/hail-is/hail, https://hail.is), 

which leverages Apache Spark to distribute computational tasks across thousands of nodes to 

process data at the terabyte scale. We imported the SNV and indel calls into Hail 0.2 as a 

MatrixTable using hl.import_vcf, and loci were standardized using minimal representation 

(https://github.com/ericminikel/minimal_representation) using hl.min_rep 

(https://github.com/macarthur-lab/gnomad_qc/blob/master/load_data/import_vcf.py). 

Truth datasets for random forest training (see Training below), as well as gold standard 

datasets for two samples for variant QC, NA1287846 and synthetic diploid47, were loaded using 

hl.import_vcf. Additionally, we loaded a set of validated de novo variants for variant QC, as well 

as ClinVar (VCF version from 10/28/2018) for assessment of LOFTEE (see Variant annotation 

below). Methylation data from 37 tissues from the Roadmap Epigenomics Project54 was loaded 

and the mean methylation value across these tissues was computed for each base 

(https://github.com/macarthur-lab/gnomad_qc/blob/master/load_data/import_resources.py). 

Raw coverage (per-base, per-individual) files were loaded using hl.import_matrix_table, 

and summary metrics were computed for each base, including mean coverage, median 

coverage, and the percent of samples above 1X, 5X, 10X, 15X, 20X, 25X, 30X, 50X, and 100X 

(https://github.com/macarthur-lab/gnomad_qc/blob/master/load_data/load_coverage.py).  
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Sample QC 

Grace Tiao, Kristen M. Laricchia, Konrad J. Karczewski, Laurent C. Francioli, Monkol Lek, 

Daniel G. MacArthur 

 

Except for certain hard filter metrics explicitly noted below, all sample QC computations 

were performed on the Google Cloud Platform using a Python pipeline composed with the Hail 

library (https://github.com/hail-is/hail, https://hail.is/), an open-source framework for analyzing 

large-scale genomic datasets. The pipeline is available in its entirety at 

https://github.com/macarthur-lab/gnomad_qc and is summarized in Extended Data Fig. 1a, 

where numbered steps correspond to the following scripts in the code repository: 

1. Hard filtering: apply_hard_filters.py 

2. Relatedness inference: joint_sample_qc.py 

3. Ancestry inference: joint_sample_qc.py, assign_subpops.py 

4. Platform inference: exomes_platform_pca.py 

5. Population- and platform-specific outlier filtering: joint_sample_qc.py 

6. Finalizing release callset: finalize_sample_qc.py 

 

Hard filters 

Sample QC metrics were computed for each sample in the call set over a set of high-

confidence variants: bi-allelic, high-call rate (> 0.99), common SNVs (allele frequency > 0.1%). 

The chromosomal sex of samples was inferred based on the inbreeding coefficient (F) for these 

common variants on chromosome X and, for exomes, the coverage of chromosome Y 

normalized to chromosome 20 coverage (Extended Data Fig. 1b). For exomes, samples with F 

> 0.6 and normalized Y coverage > 0.1 were classified as male, and samples with F < 0.5 and 

normalized Y coverage < 0.1 were classified as female. Samples with F values falling within 
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standard female ranges that exhibited normalized Y values > 0.1 threshold were classified as 

sex aneuploid. For genomes, as no chromosome Y variants were called, samples with F > 0.8 

were classified as male and samples with F < 0.5 were classified as female. For both exomes 

and genomes, samples with intermediate F values were classified as ambiguous sex.  

Samples were flagged as failing hard filters if they exhibited high contamination (freemix 

> 0.05, computed using VerifyBamID 1.0.0), low sample level call rates (< 0.895), high rates of 

chimeric reads (> 0.05, computed using Picard 1.1431), ambiguous sex, sex aneuploidy, low 

coverage (for exomes, a mean chromosome 20 coverage equal to 0; for genomes, mean depth 

< 15), and/or low median insert sizes (genomes only, size < 250 bp).  

Hematological, somatic, and pediatric cancer samples (age of onset < 30 years) were 

flagged for removal based on sample barcodes and age metadata from The Cancer Genome 

Atlas (TCGA). One TCGA sample, TCGA-06-0178-10B-01D-1491-08, was flagged for removal 

because it is known to have been swapped with a tumor sample. Samples with known severe 

pediatric disease phenotypes and samples lacking data usage permission for public release 

were also flagged for removal (Supplementary Tables 1,2). 

At this stage, compressed (hardcalls) versions of the exome and genome datasets were 

created for most downstream analyses. High-quality genotypes were marked if they had depth 

(DP) >= 10, genotype quality (GQ) >= 20, and minor allele fraction >= 0.2 for all non-reference 

alleles of heterozygous genotypes. For non-PAR regions of sex chromosomes, all female 

genotypes and male heterozygous genotypes were set to missing, and male homozygous 

variants were converted to haploid. The multi-allelic variants in the datasets were then 

decomposed using hl.split_multi_hts. 
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Supplementary Table 1 | Sample counts before and after hard and release filters 
Description Genomes (% remaining  

from previous stage) 
Exomes (% remaining 
from previous stage) 

Before filters 20,314 164,332 

After hard filters 20,120 (99.04%) 160,064 (97.40%) 

After hard + release permission 
filters 

17,016 (84.57%) 141,748 (88.56%) 

 

Supplementary Table 2 | Counts by data type and hard filter 
Data type Hard filter Number of samples % of call set 
Exomes High contamination 3,300 2.01% 
 Ambiguous sex 896 0.55% 
 Excess chimeric reads 649 0.39% 
 Sex chromosome aneuploidy 94 0.06% 
 Low call rate 61 0.04% 
 Low coverage 19 0.01% 
    
Genomes Low median insert size 70 0.34% 
 High contamination 53 0.26% 
 Excess chimeric reads 43 0.21% 
 Ambiguous sex 34 0.17% 
 Low coverage 16 0.08% 
 Low call rate 4 0.02% 
 

Platform imputation for exomes 

Capture and sequencing platform metadata were only available for only a fraction of the 

samples in the exome call set. For the remaining exome samples, we performed platform 

imputation by compiling a list of known exome capture regions across multiple exome capture 

products and considering the set of biallelic variants that fell within these regions. For each 

sample passing hard filters, we computed the biallelic variant call rate for each exome capture 

interval on the list. We then discretized the per-sample, per-interval call rates into two 

categories, called and not-called (based on a per-interval call rate threshold of 0.25) and 

performed principal components analysis (PCA) on these thresholded values. The first two 
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principal components are plotted in Extended Data Fig. 1c. Samples were then clustered using 

the top 9 principal components using HDBSCAN with a ‘min_cluster_size’ parameter setting of 

100. Generic platform labels were assigned to each cluster discovered by the PCA-HDBSCAN 

analysis (Supplementary Table 3). For the samples with known platforms, we find that these 

imputed labels generally correspond with a single known platform, suggesting the utility of this 

approach (Supplementary Table 4). Aside from the subdivision of Illumina Nextera samples into 

two distinct sub-platforms of unknown validity, the rate of inconsistent classification using our 

platform imputation approach was 0.89% (87+89+106 samples). 

 

Supplementary Table 3 | Exome platform assignments 
Imputed platform label Count % overall 
Unassigned 4,244 2.65% 
0 1,170 0.73% 
1 7,241 4.52% 
2 3,195 2.00% 
3 152 0.09% 
4 1,279 0.80% 
5 1,906 1.19% 
6 527 0.33% 
7 5,928 3.70% 
8 158 0.10% 
9 28,655 17.90% 
10 47,251 29.52% 
11 152 0.09% 
12 415 0.26% 
13 447 0.28% 
14 574 0.36% 
15 56,772 35.47% 
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Supplementary Table 4 | Confusion matrix for exome samples with known platform labels 
Imputed 
Platform Label 

      Agilent SureSelect  Illumina 
Nextera 

NimbleGen 
SeqCap v2  v1 v2 v3  

Unassigned  0 87 0  106 0 
0  0 0 0  0 0 
1  0 0 0  0 0 
2  0 0 0  0 0 
3  114 0 0  0 0 
4  0 0 0  0 0 
5  0 0 585  0 0 
6  0 0 0  0 0 
7  0 0 0  0 509 
8  0 0 0  0 0 
9  0 0 0  8,796 0 
10  0 89 0  6,544 0 
11  0 0 0  0 0 
12  0 0 0  0 0 
13  0 0 0  0 0 
14  0 0 0  0 0 
15  0 14,937 0  0 0 

 

Relatedness filters 

We used the PC-Relate55 method as implemented in Hail 

(https://hail.is/docs/0.2/methods/genetics.html#hail.methods.pc_relate) to compute pairwise 

relatedness between all samples passing hard filters in the joint exome and genome call set. 

Variant allele frequencies were recomputed over the joint exome and genome call set, and only 

bi-allelic variants with joint allele frequencies > 0.001 and high joint call rates (> 0.99) were 

considered (n=94,177). Variants were LD-pruned (r2 = 0.1) and alternate allele counts from the 

pruned variant set were used for an initial PCA. The top 10 components from the PCA were 

then used in the PC-Relate computation, along with a ‘min_individual_maf’ parameter setting of 

0.05. 

Pairwise kinship coefficients from PC-Relate were then used to group samples into 

clusters of related individuals. Sample pairs with kinship coefficients greater than 0.0883 
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(corresponding to second-degree or closer) were considered related (Supplementary Table 5). 

We used the Hail maximal_independent_set() function to prune clusters of related individuals in 

such a way as to maximize the number of unrelated samples retained for each familial cluster. 

To resolve cases for which there were multiple possible pruning options, we created an ordered 

list that assigned a rank to each sample in the call set, with more desired samples receiving a 

lower rank than less desirable samples, and based on the ranking, we flagged less desirable 

samples for removal before more desirable samples. 

 

Supplementary Table 5 | Pair counts by degree of relatedness 
Degree of relatedness Number of pairs in joint callset 

Duplicates or twins 5,012 

1st degree 23,939 

2nd degree 6,611 

3rd degree or unrelated 10,457 
 

Samples with release permissions were preferred over samples without release 

permissions. Genome samples were preferred over exome samples. Among the genome 

samples, PCR-free samples were preferred over PCR-plus samples, parent samples in several 

trio studies were chosen over child samples, and samples with a higher average depth of 

coverage were preferred over those with lower coverage. For exomes, samples were ranked 

first according to preference for internally- over externally-sequenced samples; then in 

preference for more recently sequenced samples over less recently sequenced samples; 

subsequently in preference for parents over children in several designated trios; and lastly in 

preference for greater fraction of bases covered above 20x depth over lower fraction of bases 

covered above 20x depth. 
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We defined the maximal set of unrelated individuals after pruning familial clusters as the 

set of unrelated individuals in gnomAD, retaining the number of samples as indicated in 

Supplementary Table 6. 

Supplementary Table 6 | Sample counts by relatedness status 
 Genomes (% total) Exomes (% total) 

Related samples 1,806 (8.98%) 17,308 (10.81%) 

Unrelated samples 18,314 (91.02%) 142,758 (89.19%) 
 

Population and subpopulation inference 

We then inferred continental ancestry on the set of unrelated samples using a PCA and 

random forest approach. Restricting our analysis to unrelated samples, we computed the top 20 

principal components on the alternate allele counts for the same set of variants used in the PC-

Relate PCA and projected the remaining related samples onto these principal components 

(Supplementary Fig. 1). Next, we trained a random forest model on a set of samples with known 

continental ancestry and used this model to assign continental ancestry labels to samples for 

which the random forest probability > 0.9. 
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Supplementary Figure 1 | Continental ancestry principal components. The top ancestry 
principal components are shown, such that a dot represents a single sample colored by its 
inferred continental ancestry. The top 6 principal components were used to infer continental 
ancestry for 141,456 samples. 
 

There were sufficient sample sizes of European and East Asian continental ancestry to 

perform more fine-grained subpopulation inference, and for these populations we performed 

another round of PCA on unrelated individuals, considering only variants with a continental-
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specific allele frequency > 0.001 and a call rate >= 0.999 across all platforms (or no more than 1 

missing sample per platform if the number of samples sequenced on a platform was less than 

1000). We LD-pruned these variant sets (r2 = 0.1; 11,842 variants for East Asians and 84,792 

variants for Europeans) and ran PCA using the alternate allele counts for these variants, 

obtaining sub-continental ancestry principal components (Supplementary Fig. 2). For both 

European and East Asian cohorts, we then projected related samples onto the sub-continental 

PCs. Random forest models were then trained on samples with known sub-population labels 

(e.g., Bulgarian and Estonian for Europeans; Korean for East Asian) and applied to samples 

without sub-population labels. Samples that were assigned sub-population labels by the random 

forest models with probabilities < 0.9 were collected into a generic “other” sub-population 

category. 

Supplementary Figure 2 | Sub-continental ancestry principal components. The top sub-
continental ancestry principal components are shown, such that a dot represents a single 
sample colored by its inferred sub-continental ancestry. For 64,603 European samples (a), three 
principal components were used for sub-population inference; for 9,977 East Asian samples (b), 
two principal components were used for sub-population inference. 
 

The final count of samples per-population and sub-population (after final population- and 

platform-specific filtering, see below) is shown in Supplementary Table 7. A two-dimensional 

visualization of the sub-populations present in gnomAD (Fig. 1a) was created by applying the 



 

16 

UMAP algorithm20 to seven ancestry PCs with a min_dist parameter of 0.5 and an n_neighbors 

parameter of 30. 

Supplementary Table 7 | Population and subpopulation counts 
Population Code Genomes Exomes Total 
African/African-American afr 4,359 8,128 12,487 
Latino/Admixed American amr 424 17,296 17,720 
Ashkenazi Jewish asj 145 5,040 5,185 
East Asian eas (780) (9,197) (9,977) 
Koreans      kor - 1,909 1,909 
Japanese      jpn - 76 76 
Other East Asian     oea 780 7,212 7,992 
Finnish fin 1,738 10,874 12,526 
Non-Finnish European nfe (7,718) (56,885) (64,603) 
Bulgarian     bgr 0 1,335 1,335 
Estonian     est 2,297 121 2,418 
North-Western European     nwe 4,299 21,111 25,410 
Southern European     seu 53 5,752 5,805 
Swedish     swe 0 13,067 13,067 
Other non-Finnish European     onf 1,069 15,499 16,568 
South Asian sas - 15,308 15,308 
Other (population not assigned) oth 544 3,070 3,614 
Total  15,708 125,748 141,456 
 

Population- and platform-specific filters 

After inferring population and platform labels, we computed a battery of sample quality 

control metrics on all samples in the call set passing hard filters: number of deletions, number of 

insertions, number of SNVs, ratio of deletions to insertions, ratio of transitions to transversions, 

and ratio of heterozygous to homozygous variants. These metrics were analyzed separately per 

continental population group and per inferred sequencing platform, as underlying distributions 

for these metrics varied widely both by population and by sequencing platform. Outliers were 

defined as samples with values outside four median absolute deviations (MAD) from the median 

of a given metric, with median and MAD values computed over all samples sharing the same 
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ancestry and platform labels. A sample of the process is plotted in Extended Data Fig. 1d, and 

the number of samples failing per platform is summarized in Supplementary Table 8. 

Supplementary Table 8 | Summary of outliers per population and platform grouping 

Data type 
Platform (inferred for exomes, known 
for genomes) 

Samples 
with at least 

one outlier 
metric 

Total 
Samples 

% of  
Platform 

Exomes Unassigned 129 4,243 3.04% 
 0 67 1,170 5.73% 
 1 92 7,241 1.27% 
 2 59 3,195 1.85% 
 3 10 152 6.58% 
 4 39 1,279 3.05% 
 5 153 1,906 8.03% 
 6 64 527 12.14% 
 7 503 5,928 8.49% 
 8 3 158 1.90% 
 9 666 28,655 2.32% 
 10 927 47,251 1.96% 
 11 6 152 3.95% 
 12 7 415 1.69% 
 13 22 447 4.92% 
 14 8 574 1.39% 
 15 3,382 56,771 5.96% 
     
Genomes Legacy Standard High Coverage Whole 

Genome Sequencing (30x) 
8 131 6.11% 

 Low Input Human WGS (Standard 
Coverage) 

22 56 39.29% 

 PCR-Free Human Genome 30x 32 832 3.85% 
 PCR-Free Human WGS (Lite Coverage) 192 9384 2.05% 
 PCR-Free Human WGS (Standard 

Coverage) 
52 712 7.3% 

 PCR-Free Human WGS (Standard 
Coverage) + Decoy 

196 2913 6.73% 

 Standard High Coverage Whole Genome 
Sequencing (30x) 

3 10 30.0% 

 Standard High Coverage Whole Genome 
Sequencing (30x) | High Read Length 

306 5124 5.97% 

 Standard High Coverage Whole Genome 
Sequencing (30x) | Low Read Length 

102 958 10.65% 
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Finalizing samples in the gnomAD v2.1 release  

The final set of samples included in the gnomAD v2.1 release (125,748 exomes and 

15,708 genomes, for a total of 141,456) was defined to be the set of unrelated samples with 

release permissions, no hard filter flags, and no population- and platform-specific outlier metrics 

(Supplementary Table 9), including 64,754 females and 76,702 males. 

Finally, we created several subsets of samples from the release dataset requested by 

popular demand: controls-only, comprised of samples not designated as cases in the common 

disease studies from which they originated; non-topmed, comprised of samples not included in 

the Trans-Omics for Precision Medicine (TOPMED)-BRAVO cohort (i.e., unique to gnomAD 

relative to TOPMED); non-neuro, comprised of samples not ascertained for a neurological 

phenotype; and non-cancer, comprised of samples not included in cancer cohort studies. Global 

and population-level allele frequencies were recomputed for each of these cohorts and included 

in the release datasets. 

 

Supplementary Table 9 | Sample counts by filtering stage 
Description Genomes (% remaining  

from previous stage) 
Exomes (% remaining 
from previous stage) 

Before filters 20,314 164,332 

After hard filters 20,120 (99.04%) 160,064 (97.40%) 

After hard + release permission 
filters 

17,016 (84.57%) 141,748 (88.56%) 

After hard, release permission, 
and relatedness filters 

16,288 (95.72%) 130,645 (92.17%) 

Final release: After hard, release 
permission, relatedness, and 
outlier metric filters 

15,708 (96.44%) 125,748 (96.25%) 
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Supplementary Table 10 | Sample counts for genomes and exomes in gnomAD subsets 
 Exomes Genomes Total 

Full release dataset 125,748 15,708 141,456 

Controls only 54,704 5,442 60,146 

Non-TOPMED 122,439 13,304 135,743 

Non-neuro 104,068 10,636 114,704 

Non-cancer 118,479 15,708 134,187 
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Variant QC 

Laurent C. Francioli, Konrad J. Karczewski, Grace Tiao, Daniel G. MacArthur 

 

We next sought to define a high-quality set of variation for release and downstream 

analysis. For variant QC, we considered the variants present in the 141,456 release samples 

(see above), as well as sites present in family members forming trios that passed all of the 

sample QC filters (212 trios in genomes, 4,568 trios in exomes), which allowed us to look at 

transmission and Mendelian violations for evaluation purposes. Variant QC was performed on 

the exomes and genomes separately but using the same pipeline (although different thresholds 

were used), which is available at https://github.com/macarthur-

lab/gnomad_qc/tree/master/variant_qc. We excluded variants on the basis of both hard filters 

and a random forest (RF) model that we developed (details below). 

Hard filters 

We excluded (1) all variants that showed an excess of heterozygotes, defined by an 

inbreeding coefficient < -0.3, and (2) all variants for which no sample had a high quality 

genotype (as described above: depth >= 10, genotype quality >= 20 and minor allele fraction >= 

0.2 for all non-reference alleles of heterozygous genotypes). 

Random Forest model 

We implemented a random forest (RF) model using Hail / PySpark to distinguish true 

genetic variants from artifacts. Our model considers SNVs and indels together and operates on 

each variant allele separately (as opposed to each variant site). This model outperformed the 

state-of-the-art Genome Analysis Toolkit (GATK) Variant Quality Score Recalibration (VQSR) 

based on the quality metrics we looked at (details below). All code is open-source and available 

at https://github.com/macarthur-lab/gnomad_hail/blob/master/utils/rf.py. 
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Features 

The variant annotations (features) we used to train the model came from two sources: 

(1) site-level annotations from the GATK HaplotypeCaller (which at present, does not output any 

allele-level quality annotations) and (2) allele-level annotations that we computed using Hail. In 

addition to these variant quality annotations, we also included categorical annotations that 

describe the type of and context of the variant allele. Supplementary Table 11 summarizes the 

features we used and shows their relative importance in the final random forest model we 

trained. Note that since random forests do not tolerate missing data, we imputed all missing 

values using the median value for that feature. 

Supplementary Table 11 | Features used in final random forest model 
     Importance 
Feature  Description  Type Exomes Genomes 
Inbreeding 
Coeff 

 Deviation from Hardy-Weinberg expectation 
of observed heterozygotes 

 Site 0.123 0.042 

StrandOdds 
Ratio 

 Strand bias estimated by the Symmetric 
Odds Ratio test 

 Site 0.100 0.266 

ReadPos 
RankSum 

 Rank Sum Test for relative positioning of 
REF versus ALT alleles within reads 

 Site 0.061 0.060 

MappingQuality 
RankSum 

 Rank Sum Test for mapping qualities of 
REF versus ALT reads 

 Site 0.019 0.031 

       
qd (quality by 
depth) 

 Sum of the non-reference genotype 
likelihoods divided by the total depth in all 
carriers of the allele 

 Allele 0.618 0.470 

pab_max  Highest p-value for sampling the observed 
allele balance under a binomial model in 
any heterozygote 

 Allele 0.065 0.106 

allele_type  SNV or indel  Allele 0.0003 0.001 
       
n_alleles  Number of alleles at the site  Site 0.006 0.006 
mixed_site  True if both SNVs and indels are present at 

the site 
 Site 0.0005 0.0005 

spanning_deletion  True if one or more deletions at other sites 
overlap the site 

 Site 0.002 0.012 
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Training 

We used alleles that were previously genotyped or discovered with high confidence as 

positive training sites (Supplementary Table 12). Because these variants are mostly common, 

we also included transmitted singletons, which are alleles that were found in only a single 

individual in the unrelated gnomAD samples and for which we observed Mendelian transmission 

to an offspring in one of the gnomAD trios. For negative training examples, we used alleles that 

fail the traditional GATK hard filters. 

Supplementary Table 12 | Random forest training examples 
Name Description Class Number of alleles 

   Exomes Genomes 
Omni 2.5 SNVs present on the Omni 2.5 genotyping 

array and found in 1000 genomes (from the 
GATK bundle) 

TP 95K 2.3M 

Mills/Devine Indels present in the Mills and Devine data 
(from the GATK bundle) 

TP 12K 1.3M 

1000 Genomes 
high-quality sites 

Sites discovered in 1000 Genomes with high 
confidence (from the GATK bundle) 

TP 560K 29M 

Transmitted 
singletons 

Singletons in gnomAD unrelated samples 
that are transmitted to an offspring 
excluded from the gnomAD release 

TP 106K 116K 

Failing hard filers Variants failing traditional GATK hard 
filters: QD < 2 || FS > 60 || MQ < 30 

FP 789K 31M 

 

To train our model, we randomly subsetted the training examples to get a balanced set 

of positive and negative training examples. Chromosome 20 was entirely left out of the training 

for evaluation purposes. We trained models using 500 trees with a maximum depth of 5, for 

exomes and genomes separately. 

Evaluation and threshold selection 

While using a balanced set of training data allowed us to train our model without a prior 

on either positive or negative class, it is also not representative of the true positive rate in our 

data. For this reason, we evaluated our model using metrics that consider both common and 

rare variants and adapted our filtering threshold for SNVs and indels and for exomes and 
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genomes. In addition, we also compared the performance of our model against the state-of-the-

art GATK Variant Quality Score Recalibration (VQSR).  

The threshold cutoffs were chosen manually based on the evaluation metrics presented 

below and they were set independently for SNVs (90% SNVs retained) and indels (80% of 

indels retained). These cutoffs broadly maximized our sensitivity and specificity based on the 

collective evaluation of the metrics below. 

To evaluate the performance of our model for filtering common variants, we investigated 

the precision and recall of our model on two samples for which gold standard variation is 

available: NA1287846 (Extended Data Fig. 2a-d) and a synthetic diploid mixture47 (Extended 

Data Fig. 2e-h). For both samples, our model was either superior or similar to GATK VQSR for 

both SNVs and indel at the chosen threshold (intersection of the dashed lines in the figures 

representing 10% and 20% of SNVs and indels filtered, respectively). 

To evaluate the performance of our model for filtering rare variants, we ranked all 

variants by the score output by our model and then binned them in percentiles, so that every 

point on the plot represents the same number of alleles. We also ranked and binned our 

variants based on the GATK VQSR score for comparison purposes. We then evaluated the 

following three metrics: 

1.  The number of de novo calls per child (Extended Data Fig. 3a-d): For each of our 

evaluation trios, we counted the number of alleles that were found in a single child and 

no other sample in the callset (i.e. a de novo mutation call private to the trio). We only 

expect to observe ~1.6 de novo SNVs and ~0.1 de novo indels per exome, and ~65 de 

novo SNVs and ~5 de novo indels per genome21. The shape of the curves show that we 

find a relatively low number of de novo calls at higher confidence (presumably mostly 

true de novo variation) and then a relatively large number of de novo calls with low 

confidence (presumably errors). The sharp increase in the number of de novo calls 

begins around our chosen cutoffs (dashed lines in the figures representing 10% and 
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20% of SNVs and indels filtered, respectively). The number of de novo calls per child at 

our cutoff is very close to expectations for SNVs, suggesting very good specificity, and 

~2x the number of expected indels, suggesting that for this class of especially 

challenging variants we may still have a relatively high error rate (or current rate 

estimates maybe too low). Note that in all cases our model outperforms GATK VQSR. 

2. The number of transmitted singletons (Extended Data Fig. 3e-h): Here, we used 

transmitted singletons on chromosome 20, which were held out for evaluation purposes. 

Because these very rare variants were observed independently in a parent and a child 

(consistent with Mendelian transmission) but not in any other samples, we expect them 

to represent true rare variation. In all cases (exomes and genomes, SNVs and indels), 

our model outperforms GATK VQSR by classifying more of these variants as true 

positives. At our chosen cutoff threshold, we keep 99.5% and 97.8% of the transmitted 

singleton SNVs in exomes and genomes, respectively (vs 90% of all SNVs), and 95.2% 

and 96.9% of the transmitted singleton indels in exomes and genomes respectively (vs 

80% of all indels). 

3. The number of validated de novo mutations (exomes only; Extended Data Fig. 3i-j): We 

had access to 295 SNVs and 80 indels from 331 exome samples that were validated in 

previous studies48. For both SNVs and indels, we outperform GATK VQSR and at our 

chosen cutoff threshold, we keep 96.2% of the validated de novo SNVs (vs 90% of all 

SNVs) and 97.5% of the validated de novo indels (vs 80% of all indels). 

Final variant counts 

For exomes, our filtration process removes 12.2% of SNVs (RF probability >= 0.1) and 

24.7% of indels (RF probability >= 0.2). For genomes, we filtered 10.7% of SNVs (RF probability 

>= 0.4) and 22.3% of indels (RF probability >= 0.4). Supplementary Table 13 shows the number 

of variants filtered and retained by our filtering strategy. 

 The 14,078,157 SNVs in the exomes span 11,999,542 genomic positions, representing 
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20.1% of the 59,837,395 bases where calling was performed. When filtering observed and 

possible sites to a median of 30X coverage, we observe 21.9% of sites with at least one SNV. 

The 204,063,503 SNVs in the genomes span 192,608,400 genomic positions, representing 

6.8% of the 2,831,728,308 bases where calling was performed. 

Supplementary Table 13 | Variant counts by filtering status 
 SNVs Indels 

Passing  
hard filters 

Failing  
hard filters 

Passing  
hard filters 

Failing 
 hard filters 

Exomes Passing RF 
filter 

14,078,157 797,205 889,254 56,136 

Failing RF 
filter 

525,783 626,685 148,750 88,002 

Genomes Passing RF 
filter 

204,063,503 1,326,773 25,925,202 727,296 

 Failing RF 
filter 

18,713,041 4,466,895 5,312,957 1,406,669 

 
Comparison of whole-exome and whole-genome coverage in coding regions 

gnomAD 2.1 is a unique collection of sequenced samples, mixing whole-exome 

sequencing using many different whole-exome capture kits with whole-genome sequencing 

using with and without PCR amplification steps in sample preparation (PCR+ and PCR-free). To 

evaluate how well we captured the coding part of the genome overall and the potential for 

whole-genome data to complement whole-exome data in coding regions, we compared the 

coverage between samples sequenced on different technologies in the protein-coding part of 

the genome. We used 19,636 genes on the basis of all the coding regions (CDS) from the 

gencode v.19 GTF file. We then annotated each coding base with the coverage in a random 

subset of 10% of our samples (as described above) and analyzed how well each gene was 

covered by sequencing platform. The whole-exome sequencing platforms were inferred based 



 

26 

on PCA (see Platform imputation for exomes) and we only show here platforms for which we 

computed coverage for at least 100 samples. Clusters correspond to platforms from specific 

vendors, but should not be regarded as representative of the overall quality of any provider due 

to substantial ascertainment biases and confounding by project and sequencing provider. In this 

analysis, Cluster 9 refers to Illumina capture platforms with 151 bp reads, Cluster 10 to Illumina 

capture platforms with 76 bp reads, and Cluster 15 to Agilent products. We do not have 

information regarding Cluster 5 and 7 products. The whole-genomes were split into PCR+ and 

PCR-free. We defined a base as well-covered if at least 80% of the samples sequenced were 

covered at a depth of at least 20x (10x for males on non-pseudoautosomal regions of the X 

chromosome). As can be seen in Supplementary Fig. 3, ~80% of protein-coding genes are well-

captured by all technologies, whole-genome sequencing captures ~8% additional genes well 

and about 2.5% of the genes are not captured by either.  
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Supplementary Figure 3 | Comparison of gene coverage by sequencing technology. Each 
cell shows the number of genes that correspond to a given bin of bases well-covered by a given 
whole-exome sequencing platform (rows) and a whole-genome sequencing platform (columns).  
 

In addition, ~1% of the genes in Supplementary Fig. 3 are better captured by whole-exome 

sequencing. We hypothesized that this may be due to differences in our alignment pipeline 

which uses bwa-mem for genomes and bwa-aln for exomes, leading to differences in 

homologous regions. To investigate this further, we computed the mean mappability for each 

gene using the UCSC duke35bp mappability track and compared the mappability of genes 

where >50% of bases are well-captured against that of genes where <50% of the bases are 

well-captured (Supplementary Fig. 4). We found that indeed the vast majority of the genes not 

well-captured by whole-genome sequencing have low mappability. We further observe that 
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PCR-free whole-genome sequencing well captures another 121 genes that could not be 

captured with PCR+ whole-genome sequencing. These genes have a high mappability score, 

so it is likely that they have abnormal GC contents and thus are difficult to capture using PCR+ 

whole-genome sequencing. Finally, while the low-mappability genes are also poorly-covered in 

exomes, this gene set is dominated by genes with high mappability, and are simply not captured 

by the exome kit. 

The entire table of coverage summary for each gene and each platform can be found in 

Supplementary Dataset 1 and at: https://storage.googleapis.com/gnomad-public/papers/2019-

flagship-

lof/v1.1/summary_gene_coverage/gencode_grch37_gene_by_platform_coverage_summary.tsv.

gz 
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Supplementary Figure 4 | Mappability and gene coverage. Histogram showing the number 
of genes that are poorly or well-covered by mean gene mappability, broken down by platform for 
whole-genome sequencing (a) and whole-exome sequencing (b).  
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Variant annotation 

Konrad J. Karczewski, Daniel P. Birnbaum, Moriel Singer-Berk, Daniel Rhodes, Eleanor G. 

Seaby, Kristen M. Laricchia, Beryl B. Cummings, Laurent C. Francioli, Grace Tiao, Cotton Seed, 

Monkol Lek, Daniel G. MacArthur 

 

Frequency and context annotation 

All frequency annotations were calculated using a custom script written in Hail 

(https://github.com/macarthur-

lab/gnomad_qc/blob/master/annotations/generate_frequency_data.py). Briefly, after filtering to 

the high quality samples with permissions for data release as described above, we applied the 

call_stats aggregator to compute the allele count, allele number, and number of homozygotes at 

every site. After filtering to high-quality genotypes (GQ >= 20, DP >= 10, and for heterozygotes, 

that each alternate allele has at least 20% of reads supporting the allele), these calculations are 

repeated separately for the full dataset, males and females, for each major population (also split 

by males and females), each subpopulation, and each computationally predicted capture 

platform (see Sample QC). Additionally, the full dataset and each population are downsampled 

to various sample numbers (where sufficient samples exist, 10, 20, 50, 100, 200, 500, 1000, 

2000, 5000, 10000, 15000, 20000, 25000, 30000, 35000, 40000, 45000, 50000, 55000, 60000, 

65000, 70000, 75000, 80000, 85000, 90000, 95000, 100000, 110000, and 120000, as well as 

additional downsamplings of the total numbers of samples of each population). The maximum 

frequency across continental populations (aside from Ashkenazi Jewish, Finnish, or Other) is 

stored as the “popmax” frequency. The filtering frequency described previously56 is implemented 

in Hail 

(https://hail.is/docs/0.2/experimental/index.html#hail.experimental.filtering_allele_frequency) and 

computed for the full dataset and each population (separately for males and females on the sex 
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chromosomes) at 95% and 99% confidence interval levels. Finally, we compute the histogram of 

ages of heterozygous and homozygous variant carriers using Hail’s hist aggregator. This 

process is repeated for the subsets of the data as described in Supplementary Table 10. 

A dataset of every possible SNV in the human genome (2,858,658,098 sites x 3 

substitutions at each site = 8,575,974,294 variants) along with 3 bases of genomic context was 

created using the GRCh37 reference. This dataset was annotated with methylation data for all 

CpG variants and coverage summaries as described above, and was subsequently used to 

annotate the exome and genome datasets where required downstream. The number of variants 

observed at each downsampling, broken down by variant class, is shown in Extended Data Fig. 

4a. As previously shown4, the CpG sites begin to saturate at a sample size of about 10,000 

individuals, which affects the callset-wide transition/transversion (TiTv) ratio (Extended Data Fig. 

4b). In order to compute the proportion of possible variants observed, we filtered the dataset of 

all possible SNVs to the exome calling intervals described previously4 and considered only 

bases where exome coverage was >= 30X (Extended Data Fig. 4c). 

Functional annotation 

Variants were annotated using the Variant Effect Predictor (VEP) version 8557 against 

Gencode v1958, implemented in Hail with the LOFTEE plugin, described below. The 17,209,972 

and 261,942,336 variants in the gnomAD exomes and genomes, respectively, were annotated, 

as well the 8,575,974,294 possible SNVs in the human genome and 429,237 variants in the 

ClinVar dataset described above. VEP performs annotation against individual transcripts: in 

most downstream analyses, unless otherwise specified, variants were filtered to canonical 

transcripts as defined by Gencode/Ensembl. To assess these annotations, we use the 

mutability-adjusted proportions of singletons (MAPS) score previously described4, implemented 

as a Hail module. Notably, in this manuscript, we calibrate MAPS using the mutation rates 

computed below (see Mutational Model), which includes methylation level as a feature. MAPS is 

a relative metric, and so cannot be compared across datasets, but is a useful summary metric 
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for the frequency spectrum, indicating deleteriousness as inferred from rarity of variation (high 

values of MAPS correspond to lower frequency, suggesting the action of negative selection at 

more deleterious sites). Using this metric, we find nonsense, essential splice, and frameshift 

variants as the classes of variation which undergo the greatest degree of negative selection 

(Fig. 1c,d), as previously observed, which is also observed by lower proportion of possible 

variants observed (Extended Data Fig. 4d; Supplementary Table 14; Supplementary Fig. 5). We 

provide the number of variants observed and possible number of variants by functional class, 

variant type (context, reference, and alternative allele for SNVs; length for indels), and median 

coverage, for each of the downsamplings computed in gnomAD as Supplementary Datasets 2-

5. 

Further, we compute the number of pLoF variants discovered in each population for 

each downsampling described above, and show the number of new pLoFs added as a function 

of each new individual sequenced (Extended Data Fig. 4e,f): at current sample sizes, we 

observe ~1.87 new pLoF variants for each additional individual exome sequenced. 
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Supplementary Table 14 | Variants observed by category in 125,748 exomes 
Annotation Variant Type Methyl. 

Level 
Number 

Observed 
Number 
Possible 

Percent 
Observed 

Number 
Singletons 

Percent 
Singleton 

missense CpG 0 26,496 112,509 23.55 12,900 48.69 
missense CpG 1 24,966 53,228 46.90 7,242 29.01 
missense CpG 2 667,832 884,142 75.53 118,669 17.77 
missense non-CpG transition - 2,041,008 16,912,929 12.07 1,177,541 57.69 
missense transversion - 1,788,005 44,340,017 4.03 1,120,233 62.65 
        
nonsense CpG 0 375 1,997 18.78 204 54.40 
nonsense CpG 1 780 1,829 42.65 275 35.26 
nonsense CpG 2 28,594 54,975 52.01 9,785 34.22 
nonsense non-CpG transition - 50,078 684,665 7.31 33,851 67.60 
nonsense transversion - 53,192 2,802,136 1.90 37,165 69.87 
        
synonymous CpG 0 20,272 68,718 29.50 8,914 43.97 
synonymous CpG 1 16,563 31,021 53.39 4,116 24.85 
synonymous CpG 2 353,931 416,729 84.93 39,270 11.10 
synonymous non-CpG transition - 1,314,239 8,937,863 14.70 718,666 54.68 
synonymous transversion - 468,105 9,458,221 4.95 274,277 58.59 
        
frameshift indel - 184,911 - - 129,015 69.77 
inframe 
deletion 

indel - 
61,110 - - 33,724 55.19 

inframe 
insertion 

indel - 
20,076 - - 12,027 59.91 
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Supplementary Figure 5 | Percent observed by methylation. a, As in Fig. 1e, the proportion 
of possible variants observed for each functional class for each mutational type and methylation 
status in 125,748 exomes. b, As in Extended Data Fig. 4b, the proportion of possible variants 
observed as a function of sample size, broken down by variant class and methylation status. 
Colors are consistent in a, b. 
  

LOFTEE 

A number of challenges emerge when performing large-scale annotation of loss-of-

function variants. Specifically, variants that are expected to have large effects on gene function 

will be depleted due to negative selection. However, error rates, including mapping, variant 

calling, and annotation errors, are relatively uniform59. Thus, this phenomenon results in an 
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increased effective error rate at putative LoF variants1,60. 

To address these challenges, we implemented LOFTEE (the Loss-Of-Function 

Transcript Effect Estimator) as a plugin to VEP. LOFTEE utilizes the Ensembl API framework to 

annotate variant consequences based on properties of the genome and transcripts, and 

considers putative LoF (nonsense, splice-disrupting, and frameshift) variants in protein coding 

genes, filtering out variants with known annotation error modes (Extended Data Fig. 5a). Here, 

we use the MAPS metric to validate the expert-guided variant filters, and tune various 

parameters to ensure specificity. The putative LoF variants in these three classes of variation 

that are filtered out by LOFTEE exhibit MAPS scores near that of missense variants, suggesting 

that these filters are successfully filtering out annotation errors (Fig. 2b). The remaining variants 

have a MAPS score of 0.151, indicating a high level of deleteriousness. 

One filter we specifically tuned based on this metric relates to variants near the end of a 

transcript (known as the END_TRUNC filter). Previously, we removed variants in the last 5% of 

a transcript, which was based on the enrichment of putative LoF variants in these regions1,4. 

With more fine-scaled metrics such as MAPS, we are now able to explore and optimize this 

filter. First, we implement the “50 base pair rule”, which removes any variants that are in the 

final exon or within 50 bp of the 3’ end of the penultimate exon61. This filter removes 39,072 

(27.9%) of stop-gained variants in gnomAD, which collectively have a MAPS score of 0.106 (the 

remaining 100,626 variants maintain a very high MAPS score of 0.165). As terminal truncations 

may still be deleterious, we explored the properties of the variants that fail this filter based on 

the proportion of the transcript that is truncated, the number of base pairs they delete, and the 

number of base pairs deleted weighted by GERP score (Extended Data Fig. 5b), similar to the 

approach of Balasubramanian et al.62. Using the latter approach, we identify the top half of 

variants based on deleteriousness (cumulative GERP score of 180; MAPS = 0.141) while 

removing variants with MAPS = 0.06 (similar to missense variants). 
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Additionally, LOFTEE identifies additional putative LoFs in the form of non-canonical 

splice variants, including donor and acceptor disrupting variants, as well as variants that create 

donor splice sites. Briefly, we incorporate MaxEntScan63 scores into a logistic regression model 

along with several other features related to splice site strength and evolutionary conservation. 

These are not used for assessment of constraint (see below), but are provided as other splice 

(OS) variants in the release file and have MAPS scores between those of missense and pLoF 

variants (Fig. 2b). 

Crucially, LOFTEE favors a conservative approach to filtering variation with stringent 

filters to maximize specificity, as pLoF variants are enriched for error modes1,60. This results in a 

decreased sensitivity, as LOFTEE removes variants such as terminal truncations or at non-

canonical splice sites, and does not consider other classes of LoFs such as missense variants 

that may affect structure or function or non-coding regulatory variants. Despite these caveats, 

after LOFTEE filtering, we discover 443,769 pLoF variants (Supplementary Table 15). 
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Supplementary Table 15 | pLoF variants discovered in gnomAD 
Filter applied Number of pLoF variants 
(sequential) Exomes  Genomes 

Transcripts: All Canonical  All Canonical 
No filtering 644,488 587,319  153,505 108,837 
High-quality variants 515,326 470,169  128,275 108,762 
LOFTEE high-confidence (HC) 443,769 413,097  101,288 91,033 
LOFTEE no flags 385,842 364,759  85,051 78,559 
Call-rate filter (80%) 345,458 332,495  83,919 77,551 
 

Genes affected by clonal hematopoiesis 

Clonal hematopoiesis of indeterminate potential (CHIP) is a phenomenon that is 

characterized by the accumulation of somatic mutations in mature blood cells derived from 

hematopoietic progenitors. The frequency of these mutations typically increases as an individual 

ages and complicate analyses of reference datasets64. To identify genes that show evidence of 

CHIP, we searched for canonical transcripts in which individuals carrying pLoF variants had a 

lower allele balance and greater age compared to those carrying synonymous variants. Cohorts 

vary in their reporting of age information. For example, some report age at diagnosis whereas 

others report the age at of the last patient visit. Age is therefore defined as the last known age of 

the individual and is not necessarily the age at sampling. We restricted our analysis to PASS-

only variants in the exome dataset and required pLoF variants to be annotated as high 

confidence by LOFTEE. For each variant, the allele balance among individuals was represented 

as a frequency distribution with the values binned in increments of 0.05, ranging from 0 to 1.0. 

Age values were binned in increments of 5, ranging from 25 to 80, with values outside this 

range grouped into the respective flanking bin. Counts were summed across the frequency 

distributions for allele balance and age separately for pLoF and synonymous variants within a 

transcript in order to generate distributions for each gene, and the floor of the bin was used as 

the representative value of that bin. The Kolmogorov-Smironov test (KS test) was applied to 

determine if the allele balance and age distributions differed between pLoF and synonymous 
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variants for each transcript. Mood’s median test was also used to ensure that the medians of the 

distributions differed. We defined genes as having strong susceptibility to CHIP if the p-values of 

both the KS test and Mood’s median test were below the Bonferroni-corrected p-value (1.4 x 10-

6) and the median age of carriers of pLoF variants was at least 10% greater than the median 

age of those with synonymous variants.  

Our analysis revealed evidence of CHIP in the canonical transcripts of three genes: 

ASXL1, DNMT3A, and TET2 (Supplementary Table 16). These genes are among the most 

commonly reported CHIP-associated genes. Evidence of CHIP in these genes has been found 

in approximately 10% of individuals older than 65 years of age and 18% of individuals older than 

90 years of age65-67. In support of this finding, we found that pLoF variants accumulate with age 

in these genes. For example, our analysis of ASXL1 shows that the allele balance distribution is 

shifted left for pLoF variants, with a median of 0.25 compared to a median of 0.45 for 

synonymous variants, and the age distribution is shifted right for pLoF variants, with a median 

age of 70 as opposed to a median age of 55 for synonymous variants (Supplementary Fig. 6). 

The data for all genes with defined p-values for the allele balance and age KS and Mood’s 

median tests can be found in Supplementary Dataset 6. The presence of somatic variants in 

such genes should be taken into account when interpreting the penetrance, pathogenicity, and 

frequency of potential germline variants. We focused our analysis on signals of pLoF variants 

though notably, CHIP can also be characterized by the accumulation of missense variants 

which would not have been revealed using our methods; future work to filter high-impact 

missense variants will enable a more complete understanding of CHIP. 
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Supplementary Table 16 | Genes with evidence of CHIP. Only genes with a p-value below 
the Bonferroni-corrected significance threshold of 1.4 x 10-6 for both the two-sided KS test and 
Mood’s median test, as well as a median age that is at least 10% greater for individuals with 
pLoF variants than those with synonymous variants, are shown. We define age as the last 
known age of the individual for 85,462 individuals. 
 

 Gene ASXL1 DNMT3A TET2 

 Canonical transcript ENST00000375687 ENST00000264709 ENST00000540549 

Allele 
balance 

Median value  
(pLoF) 

0.25 0.25 0.30 

Median value  
(synonymous) 

0.45 0.50 0.45 

KS test 
 p-value 

3.1E-69 1.3E-92 6.7E-109 

Mood’s median test 
 p-value  

3.0E-19 1.7E-16 4.1E-24 

     

Age Median value  
(pLoF) 

70 65 70 

Median value  
(synonymous) 

55 55 50 

KS test  
p-value 

2.0E-13 8.9E-11 1.3E-24 

Mood’s median test 
 p-value  

2.8E-15 7.5E-12 3.1E-16 
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Supplementary Figure 6 | Allele balance and age distribution for pLoF and synonymous 
ASXL1 variants. Data for each distribution was binned, so the value of the bin floor was used 
as the representative bin value. All individuals less than 25 years old or greater than 80 years 
old were grouped into the 25 and 80 age bins, respectively. Information on age was available for 
85,462 of the exome-sequenced individuals. 
 

Aggregate pLoF frequency 

In order to create a gene-level metric for the fraction of LoF haplotypes for each gene, 

we filtered the pLoF variants to those with high call-rate (80%), as variants with low call-rate 

inflate the allele frequency (e.g. a singleton where only 10 individuals were called will have a 

frequency of 5%, where the true frequency is likely lower), and used the most stringent set of 

LOFTEE criteria, which resulted in 345,458 variants. In order to avoid double counting LoF 

haplotypes harboring more than one pLoF, we group the data by gene and compute the fraction 

of individuals that have no pLoF variants, q2. The fraction of haplotypes with a pLoF is then 

given by p = 1 - sqrt(q2), the distribution of which across genes is shown in Extended Data Fig. 

5c. This metric may be slightly affected by the undercalling of homozygotes issue as noted 
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above, but it will only be slightly underestimated at genes with already high pLoF frequencies, 

as it primarily affects common variants. 

Homozygous variant curation 

From the 345,458 variants with the most stringent set of LOFTEE criteria (no filters or 

flags), we further filtered to 4,238 variants where at least one homozygous individual was 

observed. We subjected these variants to extensive manual curation, in order to filter technical 

errors commonly found in homozygous LoF variant prediction. These technical errors comprise 

three main groups: technical errors, rescue events, and transcript errors. Combinations of errors 

detected within these categories were used to determine if a variant was likely to ablate gene 

function. After reviewing each variant for technical artifacts, the variant was scored using a five 

point scale: not LoF, likely not LoF, uncertain, likely LoF, and LoF.  

Technical errors included mapping errors and genotyping errors from sequencing issues, 

as well as misalignment of reads that could be detected in IGV and the UCSC genome browser, 

and errors within the reference sequence. Mapping errors are evident when reads around the 

variant harbored many other variants, especially those with abnormal allele balances. 

Furthermore, UCSC tracks for large segmental duplications, self chain alignments, and simple 

tandem repeats were utilized in determining mapping error status. Genotyping errors were 

partially eliminated by upstream filtering for read depth, genotype quality, and allele balance 

(see above). Additional hallmarks for genotyping errors included homopolymer repeats (defined 

as an insertion or deletion within or directly neighboring a sequence of seven or more of the 

same nucleotide), GC rich regions, and repetitive regions in which sequencing errors would be 

more common.  

Rescue events include multi-nucleotide variants (MNVs), frame-restoring indels, and 

essential splice site rescues. MNVs visually identified in IGV and resulting in incorrectly called 

stop-gained mutations were classified as not LoF. Frame-restoring indels were verified by 

counting the length of the insertions and deletions to determine if the resulting variation 
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disrupted the frame of the gene. The window used to detect surrounding indels was 

approximately 80 bp in length. Lastly, splice site rescues were verified by visually inspecting the 

+/- 21 bp region for an inframe splice site that could rescue the essential splice site. All possible 

in-frame splice site rescues within 21 bp of the essential splice site were filtered using Alamut 

(v.2.11), an alternative splice site prediction tool. Splice sites were classified as rescues if the 

MaxEntScan score for the alternate sequence was >/= 50% of the reference sequence score.  

Finally, transcript errors were described as variants that occur in an exon found in a 

minority of transcripts for that gene or that occur in a poorly conserved exon. The UCSC 

genome browser was used to detect both of these situational errors. These were further 

assessed using pext (proportion expressed across transcripts) scores15 and only those with low 

overall expression relative to the gene were determined to be not LoF. For an exon to be 

considered in a minority of transcripts, it had to be present in 50% or fewer of that gene’s coding 

Gencode v19 Basic transcripts. Exon conservation was determined by looking at the nucleotide 

bp conservation based on PhyloP. 

In order for a variant to be considered as LoF, it had to have no major error modes 

selected (such as LoF rescue) or have error modes such as weak exon conservation and 

minority of transcripts with a maximum pext score for the gene. If a single minor error mode was 

noted for a variant, which include some genotyping or mapping errors, it would be classified as 

likely LoF. In contrast, rescue errors were automatically classified at likely not LoF or not LoF. 

Multiple error modes (>= 3) resulted in a “not LoF” curation of the variant. Variants in which 

there was inconclusive evidence supporting the variant as LoF or not LoF were curated as 

unknown. 

This process resulted in 2,636 homozygous pLoF passing curation filters, resulting in a 

list of 1,815 genes where we observe at least one homozygous knockout individual. This list 

likely misses some genes due to the strictness of curation and slight undercalling of 

homozygotes4, but also may overestimate the effect of some pLoFs due to rescue mechanisms, 
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and thus represents the best current estimate of confidently LoF-tolerant genes based on the 

gnomAD dataset. The full list of genes is provided in Supplementary Dataset 7. Next, we 

computed the mean number of pLoF alleles per individual, which is shown in Supplementary 

Table 17, with more detail broken down by population and frequency bin in Supplementary 

Datasets 8 and 9. 

 

Supplementary Table 17 | pLoF alleles per individual. Variants with >95% frequency were 
removed. Filters are applied sequentially, except for where the three types of pLoF variants are 
broken down for rare variants. 
 
Filter applied  
(sequential) Exomes  Genomes 

Zygosity: Heterozygous Homozygous  Heterozygous Homozygous 
High-quality + LOFTEE HC 148.2 25.5  205.3 33.2 
LOFTEE no flags 92.7 15.5  135.6 21.1 
LCRs removed 85.3 13.4  122.4 17.9 
Manual curation 63.3 9.12  86.4 12.5 
Rare (<= 1% frequency) 14.2 0.094  16.3 0.081 

● Stop-gained 5.04 0.033  5.56 0.026 
● Essential splice 4.00 0.028  4.25 0.026 
● Frameshift 5.15 0.033  6.51 0.028 

Singleton or doubleton 2.72 0.003  4.78 0.003 
Singleton 1.95 -  3.62 - 
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Constraint modeling 

Konrad J. Karczewski, Kaitlin E. Samocha, Daniel G. MacArthur, Benjamin M. Neale, Mark J. 

Daly 

 

In order to compute which genes are depleted of genetic variation, we extend the 

models described previously4,7,49. Briefly, we estimate the mutation rate for each single 

nucleotide substitution with 1 base of context (e.g. ACG -> ATG) using non-coding regions of 

the genome. We calibrate this mutation rate against the proportion observed of each context at 

synonymous sites in the exome, with an adjustment for low coverage regions. We apply these 

models to other classes of variation to establish an expected number of variants. 

In these analyses, we sought to correct for the effect of methylation on the mutation rate 

at CpG sites, which become saturated for mutation at sample sizes above approximately 10,000 

genomes4. To this end, we obtained methylation data for 37 tissues from the Roadmap 

Epigenomics Consortium54. Across these tissues, we compute the mean proportion of whole 

genome bisulfite sequencing reads corresponding to the methylated allele at each CpG site 

(Extended Data Fig. 6a) and discretize this metric into >0.6, 0.2-0.6, <0.2 (or missing) as high, 

medium, and low methylation levels, which are then used for all future analyses.  

Mutational model 

To calculate the baseline mutation rate for each substitution and context (and for CpG 

sites, the methylation level), we count the instances of each trinucleotide context in the 

autosomes of the human genome where 1) the most severe annotation was intron_variant or 

intergenic_variant, 2) the GERP score was between the 5th and 95th percentile of the genome-

wide distribution (between -3.9885 and 2.6607), and 3) the mean coverage in the gnomAD 

genomes was between 15X and 60X. As methylated CpG variants are saturated at sample 

sizes above ~10,000 genomes, we downsampled the dataset to 1,000 genomes for use in 
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calculating the mutation rate. Further, sites were removed if they were found in the gnomAD 

dataset but filtered out due to low quality, or found in greater than 5 copies in the downsampled 

set. This resulted in 5,918,128,813 possible variants, at which 23,930,773 high-quality variants 

with 5 or fewer copies were observed in the downsampled set. From these values, we compute 

the proportion observed for each context, which represents the relative mutability of each 

variant class, and scale this factor so that the weighted genome-wide average is the human per-

base, per-generation mutation rate (1.2 x 10-8) to calculate the absolute mutation rate. These 

mutation rate estimates are well-correlated with previous estimates at non-CpG sites, but 

crucially, now incorporate the effect of methylation on mutation rate (Extended Data Fig. 6b). 

These estimates are provided in Supplementary Dataset 10. 

Improvements to constraint model 

Using these mutation rate estimates, we compute the expectation for number of variants 

in a given functional class as follows. First, because the exome dataset has a substantially 

larger sample size, we calibrate the mutation rates to a relatively neutral class of variation, 

synonymous variants. For each possible site where the most severe consequence on a 

canonical transcript is synonymous_variant, we compute the proportion observed in a similar 

fashion as above: we remove possible variants where there was no coverage, a low-quality 

variant was observed, or a variant above 0.1% frequency was observed. For each substitution, 

context, and methylation level, further divided by median exome coverage (at integer values 

between 1-100), we compute the proportion observed of high-quality variants below 0.1% 

frequency. Considering only sites above a median coverage of 40, we correlate the proportion 

observed with the mutation rates previously obtained for each mutational class (Extended Data 

Fig. 6c). We fit two models, one for CpG transitions and one for the remainder of sites 

(transversions and non-CpG transitions), to calibrate from the mutation rate to proportion 

observed in 125,748 exomes (Extended Data Fig. 6d). 
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For sites with a median coverage of 1-39, we perform an additional coverage correction, 

in a similar fashion as previously described4, but performed at base-level resolution rather than 

exon-level. First, we define a metric that represents the relative mutability of the exome, or the 

number of observed synonymous variants divided by the total number of possible synonymous 

variants times the mutation rate summed across all substitutions, contexts, and methylation 

level. We compute this metric for high coverage sites as a global scaling factor, and divide this 

metric at low coverage sites by this scaling factor to create an observed:expected ratio for a 

given coverage level (Extended Data Fig. 6e). We build a model of log10(coverage) to this 

scaled ratio as a correction factor for low coverage sites. 

Using these models, we can compute the expected number of variants for an arbitrary 

set of substitutions, such as all the pLoF variants in a given transcript. To do so, for each 

substitution, context, methylation level, and median coverage, we sum the number of possible 

variants times the mutation rate for all variants in our class of interest, and apply the calibration 

model separately for CpG transitions and other sites. For sites with median coverage from 1-39, 

we multiply this value by the coverage correction factor; otherwise, we use the value as-is. 

These values are summed across the set of variants of interest to obtain the expected number 

of variants. After removing TTN, we observe a good fit for synonymous variants at r = 0.98 

(Extended Data Fig. 6f) and depletion for missense and pLoF variants (Extended Data Fig. 6g-

h), consistent with previous results1. 392 genes had a poor fit of synonymous variation (z < -

3.71), which are enriched for mapping artifacts: approximately 32% of these (126/392) have a 

mappability score < 0.9 (as described above in “Comparison of whole-exome and whole-

genome coverage in coding regions”), compared to 10% (1908/18839) of genes that are not 

outliers for number of synonymous variants. Other genes in this category include the highly-

paralogous HIST1 complex, as well as genes notorious for mapping errors such as FLG, 

AHNAK2, and MUC genes. 
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This base-level calibration and coverage correction process enables the assessment of 

constraint against any arbitrary sets of variants. We apply this method for all pLoF variants 

labeled as high-confidence by LOFTEE. While not within the scope of the current paper, we 

additionally assess constraint against missense variants, and missense variants annotated as 

probably_damaging by PolyPhen268 for the benefit of users. We compute these metrics 

separately for all 80,950 transcripts, of which 79,174 have an expected number of pLoF variants 

> 0, which are provided in the release. For most downstream analyses, unless otherwise 

specified, we consider the canonical transcript of each gene and compute these metrics for 

19,704 genes, of which 19,197 have an expected number of pLoF variants > 0. 

For pLoF variants, we compute the pLI score as previously described 4, and we further 

compute the 90% confidence interval around the observed:expected ratio. Specifically, for a 

given pair of observed and expected values, we compute the density of the Poisson distribution 

with fixed k (the observed number of variants) over a range of lambda values, which are given 

by the expected number of variants times a varying parameter ranging between 0 and 2. The 

cumulative density function of this function is computed and the value of the varying parameter 

is extracted at points corresponding to 5% and 95% to indicate the bounds of the confidence 

interval. The upper bound of this interval is termed the LoF observed/expected upper bound 

fraction (LOEUF), and is used for most analyses in this manuscript. All constraint and summary 

metrics are provided in Supplementary Dataset 11. 

Summary of constraint metrics 

The distribution of the pLoF observed/expected ratio is shown in Extended Data Fig. 7a: 

the mean observed/expected value is 0.537 (median 0.482), with 1266 genes with a value of 0 

(no pLoFs observed). However, as we expect fewer than 5 pLoF variants in 498 of these genes, 

we instead use the LOEUF score described above (Extended Data Fig. 7b), which has a mean 

of 0.952 (median 0.911). Binning LOEUF into deciles partitions all human genes by the number 

of observed and expected pLoFs (Extended Data Fig. 7c), resulting in ~1,920 genes per decile. 
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LOEUF is correlated with coding sequence length (beta = -1.07 x 10-4; p < 10-100; Extended Data 

Fig. 7d): as a result, we have adjusted for gene length or removed genes with fewer than 10 

expected pLoFs in all analyses. The most constrained decile has an aggregate pLoF 

observed/expected ratio of ~6%, and accordingly, other splice and missense variants are also 

depleted, to a lesser degree (Extended Data Fig. 7e). The genes previously described as high 

pLI genes4 are more likely to fall in the most constrained deciles (Extended Data Fig. 7f), while 

unconstrained genes are more likely to harbor homozygous pLoFs (Extended Data Fig. 7g). 

Finally, LOEUF decile correlates with the aggregate pLoF frequency (⍴ = 0.157; p < 10-100; 

Extended Data Fig. 7h). A comparison of these metrics is shown in Supplementary Fig. 7. 

 

Supplementary Figure 7 | LOEUF summaries. Scatter plots of the observed/expected (o/e) 
ratio vs LOEUF (a), pLI vs LOEUF (b), and pLI vs observed/expected (c). d, The o/e ratio (dots) 
for each gene ranked by o/e, with confidence intervals as thin lines (LOEUF is the upper 
bound). 
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For certain analyses in this manuscript, we filter the dataset to genes where we expect 

over 10 pLoF variants. This cutoff was chosen as the minimum number of expected pLoF 

variants that can result in membership in the most constrained bin (11.1 expected) or pLI > 0.95 

(9.43 expected). At present, 72.1% of genes (13841/19197) have > 10 pLoFs expected, 

including 86.5% of disease-associated genes from OMIM (2888/3340; OR = 0.45; Fisher’s p < 

10-100). Of the 59 genes satisfying ACMG criteria for reporting of secondary findings, only five 

are underpowered, or have fewer than ten pLoFs expected (SDHD, MYL3, VHL, MYL2, 

SDHAF2). 

We computed the expected number of variants for each gene, using the process 

described above, repeated for each downsampling of the exome dataset. For each gene, the 

number of individuals required to achieve a given expected number of variants is extrapolated 

using a linear model of log(number of expected variants) ~ log(number of individuals), which is 

available in Supplementary Dataset 12. The proportion of genes where at least a given number 

pLoF and missense variants are expected is plotted for a range of sample sizes in 

Supplementary Fig. 8. 
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Supplementary Figure 8 | The sample size required for well-powered constraint 
calculations. The proportion of genes where a varying number of pLoF (a) and missense (b) 
variants would be expected (under neutrality) is shown as a function of (log-scaled) sample size.  
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Constraint assessment and implications 

Konrad J. Karczewski, Beryl B. Cummings, Daniel Rhodes, Qingbo Wang, Ryan L. Collins, 

Benjamin M. Neale, Mark J. Daly, Michael E. Talkowski, Daniel G. MacArthur 

 

We assessed the LOEUF metric using a number of orthogonal metrics, including 

membership in known disease gene lists, comparisons to structural variant occurrence, and 

lethality in mouse orthologs and cellular knockouts. We explore the biological properties of 

constrained genes, as well as features of constraint across populations and subsets. 

Gene list comparisons 

First, we compared the LOEUF distribution of various established gene sets 

(https://github.com/macarthur-lab/gene_lists), as previously used and described4. In particular, 

we used a curated list of 189 known haploinsufficient disease genes, 709 autosomal dominant 

disease genes, 1183 autosomal recessive disease genes, and 360 olfactory receptors. For each 

gene list, we counted the number of genes in that gene list in each LOEUF decile 

(Supplementary Table 18) and normalized to the number of genes in the list (Fig. 3a). 

Supplementary Table 18 | Gene list membership by LOEUF decile 

LOEUF decile 
Haplo- 

insufficient 
Autosomal 
Dominant 

Autosomal 
Recessive 

Olfactory 
Genes 

0-10% 104 140 36 0 
10-20% 47 128 72 1 
20-30% 17 86 112 0 
30-40% 8 80 173 4 
40-50% 7 65 206 8 
50-60% 4 54 207 6 
60-70% 0 46 154 18 
70-80% 2 49 120 49 
80-90% 0 34 58 96 

90-100% 0 26 40 174 
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Supplementary Figure 9 (previous page) | Genes within gene lists by LOEUF decile. The 
genes represented in Supplementary Table 15 are shown by gene list and LOEUF decile. 
 

Supplementary Fig. 9 enumerates all the genes in Supplementary Table 18, which are 

also available as Supplementary Dataset 13. Of the haploinsufficient genes, 80% were found in 

the two most constrained deciles of the genome. There were two genes that are in the 

haploinsufficient gene list, but with little evidence of constraint (in the 8th decile): RNF135 

(LOEUF = 1.44), which has limited support for pathogenicity69; and IKBKG (LOEUF = 1.37), 

which is poorly covered in gnomAD and whose first exon is lowly expressed, suggesting that the 

pLoFs in this gene are likely false positives. Membership in the haploinsufficient gene class is 

highly predicted by LOEUF (logistic regression beta = -4.3; p = 1.57 x 10-33), even when 

adjusted for coding sequence length (p = 0.18 for the contribution of gene length in the joint 

model). Likewise, membership in the olfactory gene class is positively correlated with LOEUF 

(logistic regression beta = 3.4; p = 2.5 x 10-85), even when adjusted for gene length (p = 0.023 

for the contribution of gene length in the joint model). 

Structural variant comparisons 

We also compared constraint metrics to the relative enrichment or depletion of predicted 

LoF deletion SVs documented by a companion study11. We restricted this analysis to 

autosomal, biallelic, rare (AF<1%) deletions found in the 6,749 samples with WGS data in this 

manuscript that were predicted to overlap at least one nucleotide from a protein-coding exon in 

a gene’s canonical transcript per Gencode v1970, and retained all genes with matching gene 

symbols between the SNV and SV datasets (n=17,604). Despite the SV dataset being 

substantially sparser than SNVs and indels on a per-gene basis, we nevertheless fit a Poisson 

regression model to predict the number of expected rare biallelic LoF deletions per gene based 

on the following covariates: gene length, number of exons, median exon size, total number of 

nonredundant nucleotides in protein-coding exons, number of introns, median intron size, total 

number of nonredundant nucleotides in introns, and annotated overlap with segmental 
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duplications. To prevent existing signatures of strong purifying selection confounding this null 

model of expected LoF SV per gene, we restricted the dataset to genes in the 5th-9th deciles 

based on observed:expected ratios for LoF SNVs when fitting the model. The SV-derived 

observed:expected ratios are correlated with LOEUF (r = 0.13; p = 3.5 x 10-71), after adjusting 

for gene length (p = 7.5 x 10-6 for the contribution of gene length). Finally, to compare these SV-

derived observed:expected values to SNV constraint metrics, we first binned genes based on 

their LOEUF decile before summing observed and expected rare LoF deletion SV counts for all 

genes per decile and computing a decile-level LoF SV observed:expected ratio from these 

sums. 

 

Mouse and cell model comparisons 

We compared our constraint metrics with evidence of essentiality from mouse and 

human cell knockout experiments. For comparisons to mouse, human orthologs of mouse 

heterozygous lethal genes were defined by the following processes, based on curated 

experimental results from Mouse Genome Informatics (MGI, http://www.informatics.jax.org). 

First, we extracted all the mouse genes where lethality upon heterozygous knockout was ever 

reported in MGI, using the MouseMine web interface (http://mousemine.org/; accessed on 12 

Feb 2017). Specifically, mouse heterozygous lethal genes were defined as those mouse genes 

containing the subset of the Mammalian Phenotype Term “abnormal survival” (MP: 0010769), 

“nervous system phenotype” (MP:0003631), and “embryo phenotype” (MP:0005380), which are 

highly associated with embryonic lethality (Supplementary Table 19) in the heterozygous 

knockout state, for any mouse strain. Next, we mapped human genes to their corresponding 

mouse orthologs by extracting the human-mouse ortholog correspondence table from MGI 

(http://www.informatics.jax.org/downloads/reports/HMD_HumanPhenotype.rpt). For each of the 

human genes, if any of the mouse homolog(s) was defined as heterozygous lethal, we defined 

the corresponding human gene as mouse heterozygous lethal, for a total of 389 genes. 
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Supplementary Table 19 | Mammalian Phenotype Term lists 
Mammalian 
Phenotype ID Term parent term 

parent Mammalian 
Phenotype ID 

MP:0011400 lethality, complete penetrance mortality/aging MP:0010768 

MP:0010831 lethality, incomplete penetrance mortality/aging MP:0010768 

MP:0002081 perinatal lethality mortality/aging MP:0010768 

MP:0002082 postnatal lethality mortality/aging MP:0010768 

MP:0002080 prenatal lethality mortality/aging MP:0010768 

MP:0010770 preweaning lethality mortality/aging MP:0010768 

MP:0008569 lethality at weaning mortality/aging MP:0010768 

MP:0001890 anencephaly 
nervous system 
phenotype MP:0003631 

MP:0000914 exencephaly 
nervous system 
phenotype MP:0003631 

MP:0001730 embryonic growth arrest embryo phenotype MP:0005380 

MP:0009657 failure of chorioallantoic fusion embryo phenotype MP:0005380 

MP:0001683 absent mesoderm embryo phenotype MP:0005380 

MP:0001696 failure to gastrulate embryo phenotype MP:0005380 

MP:0001690 failure of somite differentiation embryo phenotype MP:0005380 

MP:0004180 failure of initiation of embryo turning embryo phenotype MP:0005380 

MP:0009331 absent primitive node embryo phenotype MP:0005380 

MP:0011185 absent primitive endoderm embryo phenotype MP:0005380 

MP:0000932 absent notochord embryo phenotype MP:0005380 

MP:0004388 absent prechordal plate embryo phenotype MP:0005380 

MP:0001693 failure of primitive streak formation embryo phenotype MP:0005380 
 

Next, in order to compare the constraint metrics with human cell essentiality inferred by 

pooled-library screening experiments using CRISPR/Cas genome engineering, we used a list of 

684 genes deemed essential, and 927 genes deemed non-essential for cell viability in multiple 

cultured cell lines such as HEK293T cells and K562 cells24. Specifically, Hart et. al defined a set 

of essential genes using a strict Bayes Factor threshold, corresponding to the posterior 

probability of being >90% essential for more than six cell lines out of a minimum of 7 to a 

maximum of 12 different screens in different cancer and immortalized cell lines. Additionally, 

they defined nonessential genes based on low RNA expression level across 17 different cell 
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lines, as well as curated shRNA screening results, and this was validated with CRISPR/Cas 

screening. 

Genome engineering using a CRISPR/Cas system is known to typically induce a biallelic 

mutation at the targeted locus71, resulting in a homozygous loss of function of the corresponding 

gene. As there is no corresponding dataset that differentiates heterozygous from homozygous 

lethality, these 684 genes likely represent a mixture of genes that are lethal when knocked out 

in heterozygous and/or homozygous states. 

For each of the three essentiality categories (mouse heterozygous lethal, human cell 

essential, and human cell non-essential), we matched the canonical gene name by HUGO 

Gene Nomenclature Committee (HGNC) approved symbol, binned all the genes in the category 

based on their LOEUF decile, and normalized the number by dividing by the total number of 

genes in that specific category. The percentage of genes per decile is shown in Fig. 3c,d, 

providing evidence that the constraint metric correlates well with essentiality as measured by 

mouse and human cell experiments. Overlap with mouse heterozygous lethality was 

significantly associated with LOEUF (logistic regression beta = -2.27; p = 3.3 x 10-52), even 

when adjusted for coding sequence length (beta = 3.3 x 10-5; p = 0.028). LOEUF is also 

correlated with cell essentiality (logistic regression beta = -1.71; p = 1.7 x 10-65; coding 

sequence length: beta = 2.5 x 10-4; p = 2.4 x 10-12) and non-essentiality (beta = 1.45; p = 3.8 x 

10-71; coding sequence length: beta = -5.9 x 10-6; p = 0.84). Note that the stronger skew towards 

lower deciles in the mouse data is likely due to more specific targeting of heterozygous lethality, 

compared to the CRISPR screens.  

Further, we defined mouse homozygous-lethal knockout genes in a similar fashion as 

described above for heterozygous genes. As expected, the genes that were tolerant of 

homozygous knockout in humans (see above: Homozygous Variant Curation) had a significantly 

lower probability of being lethal when knocked out in mouse or essential in human cells, and 

were on average less constrained (i.e. higher LOEUF scores; Supplementary Table 20). 
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Supplementary Table 20 | Comparison of genes we observe homozygous deletion in 
gnomAD population with other gene lists. Fewer homozygous knockout tolerant genes are 
included in this comparison (n=1519 vs 1649) as 130 genes did not have a unique gene symbol 
approved by HGNC. Further, we filtered out genes from the mouse and cell comparison sets 
that did not have LOEUF score. For gene set comparisons, the p-value was computed using a 
Fisher’s exact test (two-sided) and for LOEUF comparisons, a t-test (two-sided) was used. 
 

 Mouse 
Heterozygous KO 

 Mouse 
Homozygous KO 

 
Cell Essential 

 

Mean 
LOEUF 

 Lethal Others  Lethal Others  Essential Others  

Homozygous 
KO tolerant 
genes  
(n=1519) 

12 1507  87 1432  6 1513  1.26 

Remaining 
genes 
(n=17675) 

383 17292  3647 14028  677 16998  0.91 

Odds Ratio 0.36  0.23  0.10  n/a 

p-value 6.8 x 10-5  9.1 x 10-57  1.5 x 10-17  < 10-100 

 

Functional categorization 

We assessed the correlation between the LOEUF metric and a proxy measure for 

biological knowledge, the target development level (TDL) from the Pharos database72. A full 

definition of the TDL and the associated categories can be found at https://pharos.nih.gov. In 

brief, gene-products can be categorised into one of four categories based on the drugs and 

small molecules that target them, Tclin - targets with approved drugs; Tchem - targets with drug 

activities in ChEMBL that are not approved for market; Tbio - targets with weaker drug activities 

that do not meet the required activity thresholds to be classified as Tchem; Tdark - targets about 

which little is known. Each of these categories is significantly correlated with LOEUF in a joint 

logistic regression model with coding sequence length: Tclin (beta = -0.78; p = 4 x 10-18; cds 

length: beta = 2 x 10-6; p = 0.89), Tchem (beta = -0.63; p = 8 x 10-30; cds length: beta = 5 x 10-6; 

p = 0.68), Tbio (beta = -0.99; p < 10-100; cds length: beta = 1.6 x 10-5; p = 0.07), Tdark (beta = 
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1.17; p < 10-100; cds length: beta = 2.7 x 10-5; p = 0.009). For each class, we counted the 

number of genes in the list in each LOEUF decile and normalized according to the number of 

genes in the list (Extended Data Fig. 8a). 

Network analysis 

Protein-protein interaction networks were used to compare the LOEUF metric to gene-

product functional importance. The STRING database73 was queried using the R API 

(STRINGdb, v1.22.0) for the protein-protein interactions of all genes with at least 10 expected 

pLoFs. We then filtered interactions based on their combined scores74 such that only high 

confidence interactions (score > 0.7) remained. From this, we generated a directed acyclic 

graph and kept the largest component resulting in a protein-protein interaction network of 

14,955 nodes (proteins) and 315,217 edges (interactions). We then calculated the degree (the 

number of nodes a node is connected to) of each node. Lastly, we binned proteins based on 

their gene LOEUF deciles and computed the within decile mean degree with 95% confidence 

intervals (Fig. 4a). 

Expression 

The GTEx v7 gene and isoform expression data were downloaded from dbGaP 

(https://www.ncbi.nlm.nih.gov/gap) from accession phs000424.v7.p2.c999. The GTEx pipeline 

for isoform quantification is available publically (https://github.com/broadinstitute/gtex-pipeline/) 

and briefly involves 2-pass alignment with STAR v2.4.2a and isoform quantification with RSEM 

v1.2.22. We calculated the median isoform expression (measured as transcripts per million, or 

TPM) across individuals for all GTEx tissues, except reproduction-associated GTEx tissues 

(endocervix, ectocervix, fallopian tube, prostate, uterus, ovary, testes, vagina), cell lines 

(transformed fibroblasts, transformed lymphocytes) and any tissue with less than one hundred 

samples (bladder, brain cervicalc-1 spinal cord, brain substantia nigra, kidney cortex, minor 
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salivary gland), resulting in the use of 38 GTEx tissues, which was used for subsequent 

downstream analysis. 

We then computed the number of tissues (up to the 38 tissues as described above) 

where the transcript is expressed (defined as TPM > 0.3). We show the distribution of number of 

tissues where the canonical transcript is expressed in each (gene-based) LOEUF decile (Fig. 

4b). Overall, the number of tissues in which a canonical transcript is expressed is correlated 

with LOEUF (linear regression beta = -1.07; p < 10-100) when adjusted for gene length (beta = -

9.9 x 10-4; p = 10-53 for the contribution of gene length). Additionally, we merged these values 

with the per-transcript LOEUF table, where we computed the LOEUF transcript decile by 

binning the 79,174 transcripts with expected pLoF variants > 0 into 10 bins. We show the 

number of tissues where each transcript is expressed by its LOEUF transcript decile, broken 

down by canonical transcript and all transcripts (Extended Data Fig. 8b). Similarly, the number 

of tissues in which a transcript is expressed is correlated with the transcript’s LOEUF (linear 

regression beta = -5.2; p < 10-100) when adjusted for gene length (beta = -9.4 x 10-5; p = 0.01 for 

the contribution of gene length). 

In order to investigate differential constraint within a gene, we identified 1,790 genes 

containing at least one constrained (transcripts belonging to the first decile) and one 

unconstrained transcript (transcripts belonging to any other decile). We divided the sum of the 

expression of constrained transcripts by the sum expression of all transcripts in the gene, and 

show that the constrained transcript accounts for most of a gene’s expression (Fig 4c).  

Finally, we considered whether the most expressed transcript in a disease-relevant 

tissue was also the most constrained for each gene, using a data set of gene to tissue 

mappings based on disease annotations25. After collapsing GTEx tissues to match with the 

gene-tissue dataset (taking the max expression across GTEx tissues where multiple tissues 

matched), we determined the transcript with the highest expression for each gene. For each 

gene, we filtered the expression data to only include the tissues where at least one disease was 
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identified25. In this dataset, transcripts that were the most expressed in these tissues were also 

be the most constrained transcript for that gene in 55.3% of genes (a 5.4-fold enrichment over 

background). As an enrichment is expected by chance (e.g. due to single transcript genes 

always being the most constrained and most expressed), we performed a permutation test with 

10000 replicates, sampling which transcript was most constrained with replacement, which 

resulted in a background mean of 28.8% (1.91-fold enrichment; Extended Data Fig. 8c). 

Population-specific constraint modeling 

The constraint modeling process was repeated for each of the down-samplings 

(described above in Frequency and context annotation) for the full dataset and each population 

in gnomAD, only considering variants present in each population with frequency < 0.1%, in 

order to compute the number of observed and expected pLoF variants for each sample of 

individuals (downsampling analysis shown in Fig. 2c,d). 

In order to compare across populations, we considered only the results for 8,128 

individuals from each population (corresponding to the sample size of the smallest sampled 

population, African/African-American individuals). We compared the LOEUF scores from non-

Finnish European individuals to those from African/African-American individuals for 927 genes 

where the expected number of pLoF variants was at least 10 in each population (Extended Data 

Fig. 8d). We find that on average, the LOEUF score is lower (more constrained) in the 

African/African-American population than in the non-Finnish European population (0.488 vs. 

0.617; t-test p = 4 x 10-14), but the two are highly correlated (r = 0.78; p < 10-100). In 865 genes 

where the expected number of pLoF variants is at least 10 in all 5 major continental populations, 

we find a dependence between population and mean LOEUF score (Extended Data Fig. 8e). 

Comparison to previous metrics of essentiality 

We compared LOEUF to previous metrics of genic essentiality, including pLI and RVIS. 

pLI was computed on the gnomAD exome variants in this manuscript as described previously4 
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and RVIS8 scores for gnomAD were downloaded from http://genic-intolerance.org/ 

(RVIS_Unpublished_ExACv2_March2017.txt downloaded on July 15, 2019). We selected two 

gold standard datasets for comparison: 1) the haploinsufficient gene list described in “Gene list 

comparisons”, and 2) a union of the mouse heterozygous lethal and “cell essential” gene lists 

described in “Mouse and cell model comparisons.” Using these genes as “true positives” and all 

other genes as “negatives,” we performed logistic regression and created receiver operator 

characteristic (ROC) curves for each method and computed the area under the curve (AUC) as 

a performance assessment. In the logistic regression, LOEUF is highly correlated with 

membership in the haploinsufficient (beta = -2.6; p = 4 x 10-5) and essential (beta = -1.4; p = 1.9 

x 10-25) gene lists, in a joint model with pLI (beta = 1.5; p = 3 x 10-4 and beta = 0.17; p = 0.15, 

respectively), RVIS (beta = -0.18; p = 0.05, and beta = -0.19; p = 1.5 x 10-5, respectively), and 

coding sequence length (beta = 4 x 10-6; p = 0.92 and beta = -8 x 10-5; p = 7 x 10-4, 

respectively). LOEUF substantially outperforms RVIS for both gold standard sets, and performs 

similarly to pLI for identifying haploinsufficient genes and outperforms pLI for essential genes 

(Supplementary Fig. 10). 

 
 

 



 

62 

Supplementary Figure 10 | Comparison to other gene essentiality metrics. ROC curves for 
each gene essentiality metric, for discerning 184 haploinsufficient genes from 16,714 
background genes (a) or 1,019 mouse heterozygous lethal or cell essential genes from 15,879 
background genes (b). 
 

Performance as a function of sample size 

We repeat the ROC process described above for each of the computed LOEUF scores 

for each downsampling of gnomAD and find that the performance of LOEUF is dependent on 

sample size and not yet saturated for identifying haploinsufficient genes (Supplementary Fig. 

11). 

 

Supplementary Figure 11 | Performance of LOEUF by sample size. Area under the ROC 
curve (AUC) for LOEUF computed for various downsamplings of gnomAD, for discerning 184 
haploinsufficient genes from 16,714 background genes (a) or 1,019 mouse heterozygous lethal 
or cell essential genes from 15,879 background genes (b).  
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Disease analysis 

Andrea Ganna, Raymond Walters, Konrad J. Karczewski, Beryl B. Cummings, Jack A. 

Kosmicki, Jessica X. Chong, Daniel G. MacArthur, Mark J. Daly, Benjamin M. Neale 

 

Rare disease 

 To investigate the constraint spectrum of disease genes, we observed the proportion of 

genes that are found in the Online Mendelian Inheritance in Man (OMIM, accessed on October 

9, 2018; Extended Data Fig. 9a) and find a lower LOEUF in disease genes (mean 0.762 vs 

0.992; t-test p-value < 10-100). In a logistic regression model with coding sequence length as a 

covariate, LOEUF is correlated with OMIM status (beta = -0.69; p = 4 x 10-61; gene length beta = 

1.3 x 10-4; p = 1.2 x 10-33). These genes were further filtered to those underlying monogenic 

conditions and divided (as described in Chong et al., 20155) into those discovered by whole-

exome/whole-genome sequencing (WES/WGS) or previous techniques, such as mapping using 

linkage or large recurrent chromosomal microduplication/microdeletions, followed by candidate 

gene sequencing. We find that genes discovered by WES/WGS have lower LOEUF scores than 

those discovered using conventional linkage techniques, suggesting that the high-throughput 

technologies are more effective in identifying highly deleterious de novo variants in disease 

genes under extreme constraint against pLoF variation, compared to linkage approaches that 

are more powerful for identifying inherited variation in moderately constrained genes (Extended 

Data Fig. 9b). Within OMIM genes, LOEUF is correlated with discovery by WES/WGS 

compared to conventional approaches (beta = -0.69; p = 2 x 10-14) when adjusting for coding 

sequence length (beta = 7.8 x 10-6; p = 0.54 for the contribution of gene length).  

To explore the impact of pLoF variants in constrained genes on neurodevelopmental 

phenotypes, we collated de novo variants from previously published studies, including data from 

5,305 probands with intellectual disability / developmental disorders (Hamdam et al75: n = 41, de 



 

64 

Ligt et al76: n = 100, Rauch et al77: n = 51, DDD78: n = 4,293, Lelieveld et al79: n = 820), as well 

as 6,430 ASD probands and 2,179 unaffected controls80. All variants were annotated with VEP 

v85 against Gencode v19 (identically to the full gnomAD dataset as described above) and 

annotated with the worst consequence across all affected transcripts, and merged with per-gene 

LOEUF scores. Genes were filtered to those with at least 10 expected pLoF variants. 

 To obtain case-control rate ratios and 95% confidence intervals, we calculated the 

number of pLoF (stop gained, splice donor, splice acceptor, and frameshift) and synonymous 

variants passing VQSR filters per LOEUF decile in cases and controls and used the estimate 

from a two-sided Poisson exact test on counts, separately for intellectual disability / 

developmental disorders (Fig. 5a) and autism (Extended Data Fig. 9c). 

To evaluate the utility of LOEUF at partitioning effect sizes for schizophrenia, we utilized 

a previously published Swedish case control cohort containing 4,133 schizophrenia cases and 

9,274 controls28. We counted the number of variants seen only once in the dataset (allele count 

= 1) per LOEUF decile for synonymous and pLoF variants per individual, using the worst 

consequence of variant accross transcripts. We then performed a logistic regression on 

case/control status and the number of pLoF and synonymous variants (where the genotype of 

the individual is non-reference) per LOEUF decile, adjusting for sex, batch, the first 5 principal 

components, and the total number of variants identified in the sample. The effect size was 

calculated as the exponent of the beta coefficient from the logistic regression with a 95% 

confidence interval (Extended Data Fig. 9d). 

Common disease 

Heterozygous pLoF variants in constrained genes are expected to confer some non-

trivial survival or reproductive disadvantage4. This has been shown empirically, as individuals 

with diseases characterized by lower reproductive rates carry an excess of rare and de novo 

pLoF variants in constrained genes compared to the general population, which has been shown 

for disorders such as autism7, schizophrenia48, and intellectual disability78. Additionally, this 
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class of genetic variation, as a whole, also exerts an effect in the general population beyond the 

effect on severe neurodevelopmental or psychiatric phenotypes: in particular, individuals that 

carry a higher number of rare pLoF variants in constrained genes tend to achieve a lower 

education level on average that those with fewer of these mutations30.  

Following this observation, Ganna and colleagues have explored the impact of rare pLoF 

variants in constrained genes on 13 quantitative traits and 10 diseases using exome sequencing 

data from more than 100,000 individuals29. As expected, there was no direct association with 

later onset disorders, which are not characterized by reduced reproductive rates. However, they 

identified an association with measures of overall health and survival, such as the number of 

hospitalizations and age at enrollment, suggesting that this class of variants can potentially 

exert pleiotropic effects on many traits. However, the lack of large exome and genome 

sequencing studies with many measured phenotypes limits our ability to explore this aspect. 

One possibility would be to use common variants surrounding or overlapping 

constrained genes to understand the impact of these genes on many phenotypes. This can be 

done in large biobank-scale datasets where common variants have been measured using 

genotyping technology. However, is it not clear the extent to which inferences drawn from high-

impact coding mutations, as discovered by the constraint process, will be reflected in common, 

typically non-coding, variants. A recent paper suggests a convergence between the impact of 

rare coding and common variants in constrained genes: Pardiñas et al. found that common 

variants associated with schizophrenia tend to be enriched around genes that are under strong 

selective pressure81, similarly to what has been previously shown for rare coding variants31. A 

similar enrichment of both common and rare coding variants has been observed in attention 

deficit/hyperactivity disorder35,82. In this analysis, we seek to explore the contribution of common 

variants within and near constrained genes across 657 phenotypes. 
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Specifically, we evaluate enrichment of common variant associations in and near 

constraint genes using stratified LD Score regression83. Briefly, it can be shown that under a 

basic polygenic model we expect the GWAS 𝜒# statistics for SNP j to be: 

𝐸 %𝜒#&' = 𝑁*𝜏,𝑙(𝑗, 𝑐) + 1
,

 

where N is the sample size, c is the index for the annotation category, 𝑙(𝑗, 𝑐) is the LD 

score of SNP j with respect to category Cc, and 𝜏, is the average per-SNP contribution to 

heritability of category Cc. That is, the 𝜒# statistic of SNP j is expected to be a function of the 

total sample N, how much the SNP tags each category Cc (quantified by 𝑙(𝑗, 𝑐), the sum of the 

squared correlation coefficient of SNP j with each other SNP in a 1 cM window that is annotated 

as part of category Cc) and 𝜏,, the effect size of the tagged SNPs.  

With this model, LD Score regression allows estimation of each 𝜏,. Each �̂�, is the 

contribution of category 𝐶, after controlling for all other categories in the model and can be 

interpreted similarly to a coefficient from a linear regression. Testing for significance of �̂�, is 

useful because it indicates whether the per-SNP contribution to heritability of category C is 

significant after accounting for all the other annotations in the model. However, the scaling of �̂�, 

is also a function of the total ℎ89# (SNP-based heritability estimate) for the trait, such that an 

annotation with the same proportional enrichment of signal will have higher 𝜏, for traits with 

higher total ℎ89#. Therefore, to compare the �̂�, coefficients across traits (given the same baseline 

model), we instead use �̂�,∗ =
;<=
>?@A

. 

In addition to considering the conditional contribution of category Cc with �̂�,∗, the total 

marginal heritability explained by SNPs in category Cc, denoted ℎ89#(𝐶,), is given by  

ℎ89#(𝐶,) = * * �̂�,B
,B:&∈E=BE:&∈E=
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In other words, the heritability in category Cc is the sum of the average per-SNP 

heritability for all SNPs in Cc, including contributions to per-SNP heritability from other 

annotations 𝑐F that overlap with category Cc (as indicated by the terms of the inner sum where 

𝑐F ≠ 𝑐). Importantly, ℎ89#(𝐶,) does not depend on the categories chosen to be in the model and 

provides an easier interpretation.  

In this analysis, we will focus first on the heritability enrichment for category Cc (here, 

LOEUF decile) which can be obtained by dividing the proportion of total ℎ89# in ℎ89#(𝐶,) to the 

proportion of all SNPs in Cc. An enrichment > 1 indicates that SNPs in category 𝐶, have, on 

average, a higher per-SNP heritability for a given trait than the average SNP genome-wide. 

We applied stratified LD Score regression to summary statistics generated from the 

Neale lab (https://www.nealelab.is/uk-biobank/) for 4,203 unique phenotypes measured on the 

UK Biobank. Among these phenotypes, we selected 650 phenotypes that have a significant 

heritability, as defined by having a heritability p-value < 0.05 after Bonferroni correction for 

multiple testing. We also included 8 additional sets of summary statistics from large GWAS of 

cardiovascular diseases, educational attainment, neuroticism and 5 

psychiatric/neurodevelopmental disorders (ADHD82, autism spectrum disorder84, bipolar 

disorder85, major depressive disorder86 and schizophrenia81). 

The baseline-LD model87 for the LD Score regression included 74 annotations that 

capture different genomic properties including conservation, epigenetic markers, coding regions 

and LD structure. We also included an annotation that comprised HapMap SNPs 100 kb 

upstream and downstream of each gene included in the analysis. None of the baseline 

annotations were multicollinear with the constraint metric, LOEUF. The strongest correlations 

observed included a metric of background selection (r2 = 0.3)88 and with regions of high CpG 

content (r2 = 0.37). 
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In Fig. 5b, we compared 10 annotations, each defined as a LOEUF decile, and built the 

corresponding annotation for LD Score regression by considering all the common HapMap 

variants that were 100 kb upstream and downstream of the start and end of each gene, 

respectively. Each decile was fit in a separate model, so that we could calculate the enrichment 

compared to all the other deciles: a SNP was assigned an indicator variable indicating if any 

gene in the window fell into the given decile. In order to avoid computing biased estimates of the 

meta-analysis standard errors due to the correlation structure between traits, we identified 

“independent” traits using the findCorrelation function in the R package caret, imposing a 

maximum correlation between variables of 0.2, resulting in 276 independent traits. For each 

annotation, we report the mean and corresponding standard error of the mean, of a random-

effect meta-analysis of the enrichment across the 276 independent traits. 

Overall, we observed that annotations containing highly constrained genes are 

significantly more enriched for heritability across traits than unconstrained genes. In Fig. 5b, we 

have focused on the enrichment for each annotation across the 276 traits, as this metric is more 

straightforward to interpret. In Extended Data Fig. 10a, we report the �̂�,∗ coefficient, which shows 

a similar trend. Note that positive values of �̂�,∗ indicate greater per-SNP heritability from SNPs in 

the annotated category than would be expected based on the other annotations in the baseline-

LD model, while negative values indicate depleted per-SNP heritability compared to that 

baseline expectation. 

Next, we verified that our results were robust to changes in the window size around each 

gene (Extended Data Fig. 10b) and compared windows of 10 kb, 50 kb and 100 kb. The trend in 

enrichment across LOEUF deciles was consistent across different window sizes, although a 

proportionally larger enrichment in heritability across traits was observed for 10 kb windows in 

highly constrained genes as compared to 100 kb windows, whereas the opposite was true for 

unconstrained genes. This is not unexpected given that a larger window around unconstrained 
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genes is more likely to overlap higher constraint genes than a smaller window, while a smaller 

window around constrained genes provides a more specific signal around these genes.  

We further evaluated whether the heritability enrichment among highly constrained 

genes could be explained by such genes having higher expression in the brain or being longer 

than unconstrained genes. We added three additional annotations to the baseline model: 1) the 

log(TPM) for brain expression from GTEx14, 2) the number of exons, and 3) the total gene 

length. Each SNP was annotated with the mean value of each of these annotations for genes 

within a 100 kb window. In Extended Data Fig. 10c, we report the results for the �̂�,∗ coefficient 

across the 10 deciles of LOEUF, after adjusting for these additional annotations, and observed 

consistent results, indicating that brain expression, gene length, and exon count do not account 

for the observed heritability enrichments. 

Finally, we sought to identify which among the 657 traits showed the strongest constraint 

enrichment (Fig. 5c). For this analysis, we used LOEUF as a continuous metric in the LD score 

regression model, and each SNP was annotated with the mean LOEUF score of all genes within 

a 100 kb window. Because the marginal enrichment values for continuous annotations are not 

readily interpretable, we instead consider the p-value for the �̂�,∗ coefficient. This tests whether 

per-SNP heritability is further enriched proportional to LOEUF beyond the enrichment explained 

by the baseline annotations. The strongest associations were observed for schizophrenia, 

educational attainment, and a cognitive test for reaction time (Fig. 5c; Supplementary Table 21). 
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Supplementary Table 21 | Phenotypes with association between heritability and 
constraint. Only phenotypes with p < 10-4 for enrichment based on LD score regression are 
shown. For all phenotypes, see Supplementary Dataset 14. 
 Enrichment  Heritability 

Description p-value Estimate SE  h2 p-value 

Schizophrenia 1.90E-14 0.899 -0.021  0.770 1.90E-14 
Qualifications: College or University 
degree 

3.75E-09 0.860 -0.019  0.286 3.75E-09 

Duration to first press of snap-button 
in each round 

6.51E-08 0.893 -0.022  0.081 6.51E-08 

Educational attainment 4.32E-07 0.885 -0.016  0.115 4.32E-07 
Bipolar 4.87E-07 0.918 -0.033  0.542 4.87E-07 
Mean time to correctly identify 
matches 

8.00E-07 0.905 -0.022  0.078 8.00E-07 

Average total household income 
before tax 

1.04E-06 0.856 -0.023  0.093 1.04E-06 

Time spend outdoors in summer 1.08E-06 0.856 -0.029  0.068 1.08E-06 
Variation in diet 1.54E-06 0.886 -0.025  0.048 1.54E-06 
Answered sexual history questions 7.27E-06 0.756 -0.051  0.081 7.27E-06 
Time spent outdoors in winter 3.39E-05 0.852 -0.038  0.044 3.39E-05 
Drive faster than motorway speed limit 5.00E-05 0.846 -0.030  0.058 5.00E-05 
Frequency of tenseness / 
restlessness in last 2 weeks 

5.38E-05 0.818 -0.037  0.040 5.38E-05 

Qualifications: None of the above 6.57E-05 0.873 -0.021  0.229 6.57E-05 
Frequency of tiredness / lethargy in 
last 2 weeks 

7.24E-05 0.876 -0.025  0.061 7.24E-05 

Alcohol intake versus 10 years 
previously 

8.38E-05 0.849 -0.041  0.031 8.38E-05 

 

Overall, these results suggest that LOEUF captures common-variant heritability 

enrichment across many traits independently of existing genomic annotations. Some of the 

traits, including schizophrenia and educational attainment, that show the strongest enrichment 

here have also been previously characterized by having a similar enrichment for rare coding 

variants29-31. These results indicate that metrics of gene constraint might provide useful 

biological information for common diseases and traits.  
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Data Availability 

Matthew Solomonson, Nick Watts, Konrad J. Karczewski, Grace Tiao, Laurent C. Francioli, 

Qingbo Wang, Ben Weisburd, Daniel G. MacArthur 

 

Release files 

The gnomAD 2.1 dataset is available for download at our website, 

http://gnomad.broadinstitute.org. The exome and genome variant datasets are released as 

sites-level Variant Call Format (VCF) files as well as Hail tables. Per-base coverage summaries 

are also provided as .txt files and Hail tables. 

Additionally, we provide 1,792,248 multi-nucleotide variants (MNVs), which we define as 

two or more variants within 2 bp existing on the same haplotype in an individual, as .tsv files and 

Hail tables. These are discussed in detail in a companion manuscript16. Within the exome, we 

created a separate file of 31,575 MNVs existing within a codon reading frame, annotated the 

functional impact of MNVs on the protein product, which could be different from either or both of 

the two constituent variants, and displayed these in the browser (see below). 

Code availability 

All code to perform quality control, as described in detail above, is provided at 

https://github.com/macarthur-lab/gnomad_qc: the Sample QC and Annotations code requires 

access to individual level data, and thus cannot be run directly and is provided for reference 

only. The code to perform all analyses and regenerate all the figures in this manuscript is 

provided at https://github.com/macarthur-lab/gnomad_lof. All analyses were done using R 3.6.1 

with packages including tidyverse89, broom90, magrittr91, readxl92, plotROC93, meta94, 

STRINGdb95, and tidygraph96. All visualizations were plotted in ggplot297, and aided by scales98, 

ggridges99, egg100, ggpubr101, ggrastr102, cowplot103, ggrepel104, and ggwordcloud105. LOFTEE is 
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available at https://github.com/konradjk/loftee. All code and software to reproduce figures are 

available in a Docker image at konradjk/gnomad_lof_paper:0.2. 

The gnomAD Browser 

We have developed a browser to help researchers and clinicians use gnomAD to 

interpret the impact of genetic variation on gene function. The gnomAD browser’s user interface 

was heavily inspired by the ExAC browser106, and was engineered using technologies that 

address the new requirements brought about by the increased size and complexity of gnomAD. 

Specifically, we have added support for loading, storage, and combining data derived from both 

whole exome and whole genome sequencing methods, as well as user interface elements for 

displaying average base pair coverage, quality metrics scores, MNV annotations, and variant 

summary statistics for WES/WGS data. To accommodate users that require particular sets of 

samples be excluded from summary statistic calculations, the browser has an option for viewing 

the prepared subsets of gnomAD (Supplementary Table 11). These gnomAD subsets currently 

include “controls only”, “non-cancer”, “non-neuro”, or “non-TOPMed”. Nearly all of the data 

shown in the browser can be queried and downloaded through a GraphQL API (http://gnomad-

api.broadinstitute.org), which for some users, obviates the need to transfer, store, and parse 

very large VCF files. We have organized the codebase with the goal of maximizing code reuse 

in other genomic data sharing initiatives and to support ongoing development of new features 

that will aid users in variant interpretation, which will be discussed in more detail in a 

forthcoming publication. The source code for the browser is available at 

https://github.com/macarthur-lab/gnomadjs. 

This variant data, coverage data, and quality metric data, as well as most orthogonal 

datasets shown in the browser, were shaped and loaded into an Elasticsearch database 

(https://www.elastic.co/products/elasticsearch) using Hail (https://hail.is/) running on a Google 

Cloud Platform Dataproc cluster (https://cloud.google.com/dataproc/). The relevant scripts can 

be found at https://github.com/macarthur-lab/gnomadjs/tree/master/projects/gnomad/data and 
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https://github.com/macarthur-lab/hail-elasticsearch-pipelines. The front-end code was bundled 

with webpack (https://webpack.js.org/) and transpiled with Babel (https://babeljs.io/). The view 

layer of the application was built using React (https://reactjs.org/). Application state is managed 

in part by Redux (https://redux.js.org/). Visualizations were developed with D3 (https://d3js.org/), 

HTML Canvas, and scalable vector graphics (SVG). The variant table was rendered with react-

virtualized (https://github.com/bvaughn/react-virtualized). Web page elements were styled using 

styled components (https://www.styled-components.com/). The web server, API, and frontend 

build processes are run using Node.js (https://nodejs.org/en/). Separate docker images 

(https://www.docker.com/) were built for each of the gnomAD browser services (web server, 

API, and databases). The images are deployed and managed by the container orchestration 

engine Kubernetes (https://kubernetes.io/) running on Google Cloud Platform Kubernetes 

Engine (https://cloud.google.com/kubernetes-engine/). 

Supplementary Datasets 

Supplementary Dataset 1 | Coverage and mappability summary for each gene by 
platform. Well-covered bases are defined as those where at least 80% of the samples 
sequenced were covered at a depth of at least 20x (10x for males on non-pseudoautosomal 
regions of the X chromosome). Platforms for exomes are computationally determined as 
described in “Platform imputation for exomes.” 
 
Supplementary Dataset 2 | SNV counts in gnomAD exomes. Number of observed and 
possible SNVs in the gnomAD exomes, broken down by functional class, variant type (context, 
reference, and alternative alleles), and median coverage, for each of the computed 
downsamplings. 
 
Supplementary Dataset 3 | SNV counts in gnomAD genomes. Number of observed and 
possible SNVs in the gnomAD genomes, broken down by functional class, variant type (context, 
reference, and alternative alleles), and median coverage, for each of the computed 
downsamplings. 
 
Supplementary Dataset 4 | Indel counts in gnomAD exomes. Number of observed indels 
and positions where such an indel is possible (`coverage_real_estate`) in the gnomAD exomes, 
broken down by functional class, length, and median coverage, for each of the computed 
downsamplings. 
 
Supplementary Dataset 5 | Indel counts in gnomAD genomes. Number of observed indels 
and positions where such an indel is possible (`coverage_real_estate`) in the gnomAD 
genomes, broken down by functional class, length, and median coverage, for each of the 
computed downsamplings. 
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Supplementary Dataset 6 | Results for the Kolmogorov-Smirnov test and Mood's median 
test on the allele balance and age distributions for each transcript. The uncorrected p-
values are shown for each test (two-sided KS test and Mood’s median test), based on 85,462 of 
the exome-sequenced individuals. Transcripts were omitted from the results if data were 
insufficient to run the analyses and resulted in p-values of "NA" for the Kolmogorov-Smirnov 
tests for both allele balance and age. Summed histograms representing the total counts of each 
bin value for pLoF (`summed_ab_hists_lof` and `summed_age_hists_lof`) and synonymous 
(`summed_ab_hists_synonymous` and `summed_age_hists_synonymous`) variants within the 
transcript and the median value are also reported. The allele balance bins range from 0 to 1.0 in 
increments of 0.05. Age bins range from 25 to 80 in increments of 5 with values <25 and >80 
grouped into the first and last bin, respectively. 
 
Supplementary Dataset 7 | List of genes where at least one confident homozygous pLoF 
genotype was observed. See “Homozygous variant curation” for more details. 
 
Supplementary Dataset 8 | Total number of alleles observed by population by functional 
class in the gnomAD exomes. The aggregate number of alleles (`total`) and homozygous 
individuals (`total hom`) are shown. 
 
Supplementary Dataset 9 | Total number of alleles observed by population by functional 
class in the gnomAD genomes. The aggregate number of alleles (`total`) and homozygous 
individuals (`total hom`) are shown. 
 
Supplementary Dataset 10 | Mutation rates. The estimated mutation rate for each context, 
reference, and alternate allele, split by methylation status for CpG transitions. 
 
Supplementary Dataset 11 | Constraint metrics. Note that this file contains all transcripts: for 
gene-based analyses, the file should be filtered to canonical transcripts (`canonical == true`), 
and LOEUF decile bin (`oe_lof_upper_bin`) recomputed for each gene. The most commonly 
used metrics in this manuscript are `oe_lof_upper`, `oe_lof_upper_bin`, and `p`. Columns are: 
 

● gene: Gene name 
● transcript: Ensembl transcript ID (Gencode v19) 
● canonical: Boolean indicator as to whether the transcript is the canonical transcript for 

the gene 
● obs_mis: Number of observed missense variants in transcript 
● exp_mis: Number of expected missense variants in transcript 
● oe_mis: Observed over expected ratio for missense variants in transcript (obs_mis 

divided by exp_mis) 
● mu_mis: Mutation rate summed across all possible missense variants in transcript 
● possible_mis: Number of possible missense variants in transcript 
● obs_mis_pphen: Number of observed missense variants in transcript predicted "probably 

damaging" by PolyPhen-2 
● exp_mis_pphen: Number of expected missense variants in transcript predicted "probably 

damaging" by PolyPhen-2 
● oe_mis_pphen: Observed over expected ratio for PolyPhen-2 predicted "probably 

damaging" missense variants in transcript (obs_mis_pphen divided by exp_mis_pphen) 
● possible_mis_pphen: Number of possible missense variants in transcript that are 

predicted "probably damaging" by PolyPhen-2 
● obs_syn: Number of observed synonymous variants in transcript 
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● exp_syn: Number of expected synonymous variants in transcript 
● oe_syn: Observed over expected ratio for missense variants in transcript (obs_syn 

divided by exp_syn) 
● mu_syn: Mutation rate summed across all synonymous variants in transcript 
● possible_syn: Number of possible synonymous variants in transcript 
● obs_lof: Number of observed predicted loss-of-function (pLoF) variants in transcript 
● mu_lof: Mutation rate summed across all possible pLoF variants in transcript 
● possible_lof: Number of possible pLoF variants in transcript 
● exp_lof: Number of expected pLoF variants in transcript 
● pLI: Probability of loss-of-function intolerance; probability that transcript falls into 

distribution of haploinsufficient genes (~9% o/e pLoF ratio; computed from gnomAD 
data) 

● pRec: Probability that transcript falls into distribution of recessive genes (~46% o/e pLoF 
ratio; computed from gnomAD data) 

● pNull: Probability that transcript falls into distribution of unconstrained genes (~100% o/e 
pLoF ratio; computed from gnomAD data) 

● oe_lof: Observed over expected ratio for pLoF variants in transcript (obs_lof divided by 
exp_lof) 

● oe_syn_lower: Lower bound of 90% confidence interval for o/e ratio for synonymous 
variants 

● oe_syn_upper: Upper bound of 90% confidence interval for o/e ratio for synonymous 
variants 

● oe_mis_lower: Lower bound of 90% confidence interval for o/e ratio for missense 
variants 

● oe_mis_upper: Upper bound of 90% confidence interval for o/e ratio for missense 
variants 

● oe_lof_lower: Lower bound of 90% confidence interval for o/e ratio for pLoF variants 
● oe_lof_upper: LOEUF: upper bound of 90% confidence interval for o/e ratio for pLoF 

variants (lower values indicate more constrained) 
● constraint_flag: Reason gene does not have constraint metrics. One of:  

○ no variants: Zero observed synonymous, missense, pLoF variants 
○ no_exp_syn: Zero expected synonymous variants 
○ no_exp_mis: Zero expected missense variants 
○ no_exp_lof: Zero expected pLoF variants 
○ syn_outlier: Too many or too few synonymous variants; synonymous z score < -5 

or synonymous z score > 5 
○ mis_too_many: Too many missense variants; missense z score < -5 
○ lof_too_many: Too many pLoF variants; pLoF z score < -5 

● syn_z: Z score for synonymous variants in gene. Higher (more positive) Z scores 
indicate that the transcript is more intolerant of variation (more constrained). Extreme 
values of syn_z indicate likely data quality issues 

● mis_z: Z score for missense variants in gene. Higher (more positive) Z scores indicate 
that the transcript is more intolerant of variation (more constrained) 

● lof_z: Z score for pLoF variants in gene. Higher (more positive) Z scores indicate that the 
transcript is more intolerant of variation (more constrained) 

● oe_lof_upper_rank: Transcript’s rank of LOEUF value compared to all transcripts (lower 
values indicate more constrained) 

● oe_lof_upper_bin: Decile bin of LOEUF for given transcript (lower values indicate more 
constrained) 

● oe_lof_upper_bin_6: Sextile bin of LOEUF for given transcript (lower values indicate 
more constrained) 
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● n_sites: Number of distinct pLoF variant sites in the transcript 
● classic_caf: Sum of allele frequencies of pLoFs in the transcript 
● max_af: Maximum allele frequency of any pLoF in the transcript 
● no_lofs: The number of individuals with no observed pLoF variants in the transcript 
● obs_het_lof: The number of individuals with at least one observed heterozygous pLoF 

variant, but no homozygous pLoF variants, in the transcript 
● obs_hom_lof: The number of individuals with at least one observed homozygous pLoF in 

the transcript 
● defined: The number of individuals where at least one high-quality genotype (including 

homozygous reference) is observed at a called site annotated as a pLoF variant 
● p: The estimated proportion of haplotypes with a pLoF variant. Defined as: 1 - 

sqrt(no_lofs / defined) 
● exp_hom_lof: The expected number of individuals with at least one homozygous pLoF 

variant based on the frequency of pLoF haplotypes. Defined as: defined * p2 
● classic_caf_afr: Sum of allele frequencies of pLoFs in the transcript among 

African/African-American individuals 
● classic_caf_amr: Sum of allele frequencies of pLoFs in the transcript among Latino 

individuals 
● classic_caf_asj: Sum of allele frequencies of pLoFs in the transcript among Ashkenazi 

Jewish individuals 
● classic_caf_eas: Sum of allele frequencies of pLoFs in the transcript among East Asian 

individuals 
● classic_caf_fin: Sum of allele frequencies of pLoFs in the transcript among Finnish 

individuals 
● classic_caf_nfe: Sum of allele frequencies of pLoFs in the transcript among Non-Finnish 

European individuals 
● classic_caf_oth: Sum of allele frequencies of pLoFs in the transcript among Other 

(uncharacterized ancestry) individuals 
● classic_caf_sas: Sum of allele frequencies of pLoFs in the transcript among South Asian 

individuals 
● p_afr: The computation of `p` repeated among only African/African-American individuals 
● p_amr: The computation of `p` repeated among only Latino individuals 
● p_asj: The computation of `p` repeated among only Ashkenazi Jewish individuals 
● p_eas: The computation of `p` repeated among only East Asian individuals 
● p_fin: The computation of `p` repeated among only Finnish individuals 
● p_nfe: The computation of `p` repeated among only Non-Finnish European individuals 
● p_oth: The computation of `p` repeated among only Other (uncharacterized ancestry) 

individuals 
● p_sas: The computation of `p` repeated among only South Asian individuals 
● transcript_type: Transcript biotype (https://www.gencodegenes.org/pages/biotypes.html)  
● gene_id: Ensembl gene ID 
● transcript_level: Transcript level from Gencode 

(https://www.gencodegenes.org/pages/data_format.html) 
● cds_length: Length of coding sequence in gene 
● num_coding_exons: Number of coding exons in gene 
● gene_type: Gene biotype (https://www.gencodegenes.org/pages/biotypes.html) 
● gene_length: Length of gene 
● exac_pLI: pLI score calculated from ExAC 
● exac_obs_lof: Number of observed pLoF variants in gene in ExAC 
● exac_exp_lof: Number of expected pLoF variants in gene in ExAC 
● exac_oe_lof: Observed to expected ratio of pLoF variants in ExAC 
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● brain_expression: Expression of gene in brain from GTEx data 
● chromosome: Chromosome name 
● start_position: Start position of gene 
● end_position: End position of gene 

 
Supplementary Dataset 12 | Estimated number of individuals required to reach an 
expected number of variants for each gene. See “Summary of constraint metrics.” The 
number of individuals required (`n_required`) in order to achieve an expected number of 
variants (`n_variants`) and its percentile rank (`rank`) is shown for each functional class 
(`variant_type`). 
 
Supplementary Dataset 13 | Gene lists. Membership of each gene in haploinsufficient, 
autosomal recessive, and olfactory gene lists described in Fig. 3a, Supplementary Figure 9, and 
Supplementary Table 18. 
 
Supplementary Dataset 14 | Summary of enrichments by phenotype. Table with summary 
statistics from partitioning heritability analysis with LOEUF as a covariate for 657 traits. 
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