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Referee #1 (Remarks to the Author):

In this manuscript, Karczewski and colleagues describe the gnomAD resource -- aggregate variant
calls derived from ~125K human exomes and ~15K human genomes that are already widely used
by the research community. The manuscript focuses on predicted loss-of-function (pLOF) variants
in particular. The paperis a follow up to the same groups’ EXAC resource, published a few years
ago, with the overall cohort approximately doubling in size and with markedly better
representation of human populations around the world. As general statements, the work appears
to be welldone froma technical perspective, the analyses thoughtfully conducted, and the
material clearly presented. It's obviously been an incredible amount of work to pull these data
together, to reanalyze themin a coordinate fashion, and to serve them up to the community in a
useful format.

That praise notwithstanding, I do have some high-level as well as more specific concerns.
Major comments

1. The relatively narrow focus on pLOF variation results in some real missed opportunities here.
Virtually nothing is said about missense variation, non-canonical splice site variation, or constraint
in the non-exome 98% of the genome, for which there are a respectable ~15K genomes available
for analysis. My inference is that at least some of these analyses are being slated for other
manuscripts, but to be frank I would have preferred an at least modestly more expanded scope.
The consequence of this relatively narrow focus on pLOF variants is that the emphasized novelty
here, apart fromthe substantially larger N (as well as what seems to be improvements in
methodology throughout, which are not really emphasized), lies with the shift from pLI scores (a
continuous metric, but one directed at predicting haploinsufficiency, a binary concept) to LOEUF
scores (a continuous metric that reflects the upper bound on a confidence interval for the
observed/expected ratio of pLOF variants), together with some of the specificanalyses thatare
performed. This is certainly progress, but it leaves something to be desired if only because feels
like a lot is being left on the table in terms of all of the things that one might imagine doing with
these data that have nothing to do with pLOF variants.

2. Although the scope could be endless (and although I would love to see at least a bit on the most
extremely constrained noncoding regions), the manuscript could be particularly strengthened by
adding more content around missense variants in particular. Perhaps I should expect it from past
papers, but I am quite surprised by EDF 6f-g in particular and suggest they be moved to the main
figures. In particular, the fact that there are so few genes with substantial constraint for missense
variants remains surprising to me. Given the considerably higher saturation of missense variants in
gnomAD as compared to ExAC, can the authors consider adding regional missense constraint
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analysesala the Samocha et al. 2017 paper?

3. While I'm on those panels (EDF 6f-g), it would be helpful if the extremes, particularly on the
excess observed vs. expected, points in all three panels could be labeled and ideally discussed. Are
there any genes for which significantly more synonymous, missense or pLoF mutations are
observed than were expected? Are these technical artifacts or biologically meaningful outliers?

4. The first two paragraphs, although well written, feel a bit misleading. They set up a strawman
around the concept that breaking parts of a system can be useful for understanding it, but then
mention Mendelian genetics almostas an afterthought. Understanding human biology through LoF
mutations and their consequences has been the mainstay of human genetics for nearly a century.
Whatis being done here builds directly on that foundation, rather than being consequent to a
motivation drawn from the engineering field or from our inability to edit LoF mutations into
humans. Describing this undertaking as the inverse of classical human genetics (i.e. genotype
first, rather than phenotype first; looking for the absence of pLOF variants rather than their
presence) would be a more honest representation of the field-specific context into which this work
falls.

5. A few things about the LOEUF metric remain unclear to me:

a. No justification is provided for using the upper bound of the confidence interval rather than
simply using the o/e ratio itself. I can understand the argumentthat might be made, butIcan also
imagine counterarguments. In any case, thought process by which this decision was made should
be laid out. The confidence intervals seem to be quite wide? (I'm inferring this from the fact that
the median o/e 0f 48% jumps to a median LOEFF of 0.962).

b. Unless I missed it, you show histograms of o/e and LOEUF scores, but no comparison of the
metrics to one another. Related to point (a) above, it would be helpful to present scatter plots of
o/e vs. LOEUF, and also o/e vs. pLI and LOEUF vs. pLI, to provide the reader with a better view on
the extent to which they differ?

c. Many “summary plots” are presented, but I feel like I still lack a raw sense of how the wide the
confidence intervals are for the o/e ratios thatgive rise to the LOEUF scores, as well as how these
confidence intervals vary as a function of the o/e ratios. I suggest that you add a figure that shows
the stacked means and confidence intervals for each gene, sorted by means (ora random subset
of genes if the entire set can't be presented). To phrase it another way — a plot where every gene
has its own line, and the genes are ranked by o/e, and the o/e and confidence intervals for each
gene are shown.

6. What are the considerations involved in estimating selection coefficients from the observed vs.
expected data? Rather than deciles or this upper bound o/e value, it would be very helpful to have
these estimates, particularly in light of arguments made in this recent paper from Fuller et al.
(https://www.nature.com/articles/s41588-019-0383-1) which I urge the authors to cite and
discuss in relation to the shift from pLI to LOEUF (and ideally to motivate just going ahead and
estimating the strength of selection on heterozygotes on the basis of the updated datain
gnomAD).

7. There are many instances where the authors provide highly significant p-values but no
corresponding information about the corresponding difference or effect size. As the authors well
know, miniscule effects can have large p-values. I noticed this in particularin the paragraph
beginning on line 284 (Biological properties...). However, if the authors could review the full paper
for similar instances and provide corresponding effect sizes or fold differences or whatever is
appropriate along with the p-values, that would be helpful.

8. My inference throughout is that when the authors are calculating things such as the proportion
of observed variants out of all possible variants, they are including all possible substitutions (3 per
site). However, it would be helpful to include at least a bit of information on the extentof “site
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saturation”. Forexample, when you say 17.2M and 262M variants, is this approaching ~50% of
coding nucleotides and 10% of all nhucleotides represented in the human genome, at which at least
one of three possible single nucleotide changes is observed? Although the primary focus
could/should remain w/ keeping all possible substitutions as the denominator, it would be helpful
to know the per-site summary statistics as well. This is also relevant to the summary statistics
provided atlines 166-169.

9. Variant calling & indels feel a bit swept under the rug, atleast in the main text. I recognize that
this is covered in the supplementary figures and methods (and I'm not asking for anything new to
be done here; generally convinced), but it would be helpful to have at least a paragraph
summarizing the key take-homes from EDFs 2-3.

10. It's not clear how the statement atlines410-412, that 30% of coding genes are insufficiently
powered for detection, is justified. I infer that you are using a cutoff of 10 pLOF mutations
expected as the definition of sufficiently powered, but where does this come from? On a related
point, at line 230, you state that the increased N from EXAC to gnomAD increases this proportion
from 63% to 72%. The relatively marginal increase from doubling the N leads one to wonder -
what population sizes are required to get this even higher? I guess my broader pointis thata
more formal analysis of power as a function of population size, even if you have to project a bit
based on the existing data, would be very helpful (and justify the cutoff of 10 or whatever
alternative is chosen). What population size would it take to get to 95% of genes with at least 10
pLOF mutations expected?

Additional comments:

11. The claim is made towards the end of the introduction that the metric“improves rare disease
diagnosis” - is this actually done in the paper? It seems like this should be rephrased to be more
in line with what is actually described in the manuscript (unless I missed something, which is
possible).

12. For LOEUF, is is the 95% CI thatis used? I assume so, but it should be stated.

13. More could be said, or at least a citation added, for the data points in Fig. 2E that might be
explained by hypo-methylated CpGs giving rise to a lower rate of % observed? On a related point,
in EDF 4b, is it possible to partition CpG sites on those that are broadly methylated vs. those that
are not? (i.e. is it possible that you are completely saturating those that are consistently
methylated?)

14. It would be helpful if the authors review the manuscript specifically to look gene lists that
might be useful to readers, and to actually provide those as supplementary tables. For example, at
line 216, a setof 1,752 genes that are likely to be tolerant to biallelic activation are referenced but
a corresponding file/table not provided.

15. Line 161 - “all possible synonymous methylated CpG variants” - odd phrasing — do you mean
all possible CG>TG changes? Or are you subsetting to sites that are consistently methylated? More
clarity here would be helpful.

16. Fig 3d - the notion of “cell essential” is a little strange. What cell type? Are these genes that
are consistently essential across CRISPR screens? More clarity on what these are would be good to
include rather than requiring the reader to look at the reference.

17. In Fig. 5¢, there are few enough points above the cutoff that it would be better if you could
find a way to just labelthem all. But on a related point, I think the corresponding section of the
discussion is too bold. Unless I'm missing something, the last sentence of the results feels too
bold. The results primarily follow from a few phenotypes, all related to brain function, and possibly



natureresearch

conflated with one another. It would be better to restrict the claim to this subset of phenotypes
rather than‘many heritable polygenic diseases and traits’.

18. Less a request than a suggestion, but I would love to see more discussionor at least some
brief quantification of the proportion of top-decile LOEUF genes (i.e. most constrained; n = 1,920)
in terms of what % are associated witha human phenotype, what % have an assigned function,
what % have no known function, etc.

Referee #2 (Remarks to the Author):

Summary

In the manuscript entitled “Variation across 141,456 human genomes and exomes reveals the
spectrum of loss-of-function tolerance across human protein-coding genes”, Karczewski and
colleagues describe the Genome Aggregation Database (gnomAD). This is a substantial
augmentation to the Exome Aggregation (EXAC) database, including additional exome data as well
as adding 15,708 genomes. The authors describe the data contained within this resource, the
quality control measures, and highlight a particular variant class, predicted loss of function (pLOF).
They develop a metric termed LOEUF that is used to categorize genes with respect to their
tolerance forloss of function variation. They then provide examples demonstrating how this
information can be used in disease gene research.

High level comments

The impact that the gnomAD and ExAC resource has had on both the research and clinical
genomics communities cannot be overstated. The dedication this group has to making this data
available to the research and clinical communities is exemplary. This project has been a flagship
for demonstrating how large-scale sequencing coupled with summary data release can be
transformative for the field.

With respect to this manuscript, the authors were wise to focus on a narrow aspect of this data
and demonstrate how this specific variant type (pLOF) can contributes to disease gene research.
The manuscript walks through how the LOEUF deciles are generated, and provides numerous
analysis of how this can be used. However, the manuscript fails to connect this with specific
biology that resonates in an impactful way. There are no specificexamples pulled fromthe
categories to make the data more meaningful. For example, when looking at figure 3, there is so
much more information I want to know. This includes identifying specific genes that fall into
expected LOEUF deciles, but also discussing the unexpected events. What are the haploinsufficient
genes that are in the lower LOEUF deciles? Does any of this information confirm or refute known
orthogonal dataaboutgenesin these bins? Perhaps even just noting where the ACMG59 fall in
these deciles, or within these analysis would be useful. Though I understand that the ACMG59 may
not be under the strongest constraint, a data set such as this could help guide the community
about the best way to utilize this data.

I do think there are some other missed opportunities for educating users around some issues of
this analysis. While this manuscript focuses on global analyses, it is important to remember that
many users will look at individual genes, and understanding how individual genes may be
impacted by analytical decisions is important for ensuring the data are used correctly.

More detailed comments

1. pLOF set definition: The authors are very well versed in the types of annotation errors that can
lead to false variant calls, and understand the pLOFs are likely to be enriched in annotation errors.
While I think the authors do a very commendable job of cleaning this dataset, I would urge the
authors
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to review a recent manuscript from Tuladharet al., 2019 (http://dx.doi.org/10.1101/583138)
which is focused on analyzing putative knockout alleles from CRISPR lines. In this manuscript, they
find that 46% of edited lines marketed as knockouts, due to the presence of an indel, are not
actually knockouts, but that some product is produced via other escape mechanisms. While I don’t
think the authors need to any additional experimental work for this manuscript, this reference,
plus additional caution that individual pLOF events need to be followed up with functional assays to
confirm actual LOF is warranted. Particularly because the authors go to so much effort to produce
a high quality dataset, users need to be reminded that while collectively, the data are of high
quality, individual events should be verified. It might be interesting to run LOFTEE on the dataset
in the Tuladhar manuscript to see how many of the ‘escapees’ are flagged by LOFTEE.

2. Variant identification: There are two points to be raised here. The authors do a great job of
trying to eliminate false positives, even at the expense of potentially losing true positives.
However, the authors don't mention the impact of false negatives. For example, STRC has very
poor coverage of exons 19-25 due to the presence of a paralogous sequence in the genome,
complicating alignment and leading to low or no coverage. What percentage of the genome,
particularly the clinically relevant genome, falls into this category? Does gnomAD do better/the
same/worse in difficult regions such as those as described in Mandelker et al., 2016
(https://doi.org/10.1038/gim.2016.58)? Does the genome data help in some of these cases? Also,
do the authors have any comments on the impact of genome data vs. exome data in terms of
variant identification? What are the technical advantages/disadvantages of genome vs. exome? For
example, when looking at PKD2 in the gnomAD browser, it looks as if genome data rescues poor
coverage of the first exon as seen in exome data. How often does this sort of thing occur?

3. More details on specificgenes: There are a few places that summary data is provided, and what
I really want are the details. Forexample, on line 216, there is a statement about 1752 genes that
are likely intolerant to biallelic activation- what are these genes? I expected a supplementary
table, but there is none (though apologies if I missed this).I had the same reaction to
Supplementary table 15-Iwould love to see a giant table, one row for each gene with the
classification (column headers in this table) and LOEUF decile. This would really let me dig into
some interesting stuff. Are there any surprising genes in these deciles (lines 245-249). In fact,
some of the disease genes that unexpectedly fall into the lower LOEUF categories would be some
of the first ones I'd want to test for an escape mechanismleading to expression despite the
prediction of LOF.

4. Figures and data in general: I found the availability of numbers and consistent metrics that
support data figures was inconsistent. Ideally, these numbers would be contained within the
figures or at least the figure legend (for example, every time there is a correlation, I'd like to see
the correlation valuesin the figure orlegend, not justin the text). I found myself having to go
back and forth between the text and figures a lot, and occasionally I thought I found
inconsistencies, though I'm not always sure if the data are inconsistent, or I'm just having trouble
matching the text to the appropriate figure. For example, line 225-226 notes ‘the variationin the
number of synonymous variants observed is accurately captured (r2=0.958)". The data in
extended figure 6f, which states r=0.9791-so consistent use of eitherrorr2 would be
appreciated. Even just ensuring that numbers arein figure legends, if not the figure, is useful for
more easily interpreting the figures. Please review that legends and colors are clear. For example,
what do the colors in figure 5c mean? I spent an embarrassing amount of time looking for the
‘circles’ in extended Data Figure 1, to realized the rounded corner squares were what I should look
for.

5. Assembly information: While I am sympathetic to the needs to use the woefully old GRCh37
assembly (I myself had to do this for a recent manuscript) it is useful to explain to users why this
very old reference is used (page 3 of the supplement) and what the shortcomings are. While I
firmly believe the reference assembly version used will not impact the overall findings of this
paper, it may impact the information at any given locus. For example, a big focus of the GRCh38
update was to improve clinically relevant genes (for example, adding in 3 missing coding exons of
Shank3, and adding a new paralog of KCNE1 which means many of the variants called in GRCh37
may actually be paralogous sequence variants) and users should understand these caveats. This
also impacts the pLOF variant curation, as regions known to be different between GRCh37 and
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GRCh38, as wellas known assembly problems from the GRC would likely be useful in this analysis
(supplemental page 32). Lastly, please

use consistent nomenclature when referring to the assembly. The official assembly name is
GRCh37, but there are various distribution ‘flavors’. And while I weep that this is the case, itis
important to note the data source (hg19 specifically implies data from UCSC for example) so that
these slight variances can be taken into account.

6. Variant annotation and constraint modeling: The supplement sections read as if they are stand
alone sections. I understand why this happens and in many cases this is not a problem, but I had
some trouble understanding where variant annotation, and some of the gene level metrics stop
and the constraint modeling starts. As I was reading the main text, I was curious as to how
regions of low coverage (and thus potential false negatives) impacted the LOEUF and gene level
metrics. Does something look more intolerant to LOF because no variants are called because of
low coverage? The constraint modeling section of the supplement explains how coverage is taken
into account, but the variant annotation section, which has some information on gene level
metrics, does not. My general assumption is that these two sections really work togetherin a way
that is not entirely clear to me from reading the text, but perhaps Iamwrong about that. It would
be nice to clarify some of these metrics with some examples-i.e what calculating the data looks
like on a well covered gene versus a genes like STRC, SMN1 and IKBKG (thank you for the lovely
browser that made looking these examples up relatively straightforward!). Additionally, Figure 2D
highlights that 30% of coding genes in the genome are still underpowered to detect constraint-
how many ClinVar or ACMG59 genes fall into this category?

7. Exon level metrics: Have the authors considered calculating these metrics at the exon level
rather than the gene level? Would this provide even more fine grained information? If a gene only
has a small number of exons under constraint, could it end up in one of the higher LOEUF deciles
depending on gene size? Could this potentially improve variant interpretation? Or would doing this
require significantly more samples? There would likely be utility in doing this at the exon level if
statistically achievable.

Referee #3 (Remarks to the Author):

In their manuscript entitled ‘Variation across 141,456 human exomes and genomes reveals the
spectrum of loss-of-function intolerance across human protein-coding genes’ Karczewski et al.
present the largest human exome/genome dataset published to date.

This is without a doubt a very valuable resource to the field of human genetics/genomics; clinical
researchers, diagnostics, etc. Using a set of >440k high confidence pLoF variants, i.e. a set thatis
more than double the size of EXAC and by applying an improved model (utilizing methylation-
base-pair level coverage correction and LOFTEE) they classified the level of LoF intolerance of all
protein coding genes.

This expands beyond the use of EXAC for many aspects, which increases the usability to novel
reads/users, e.g.:

- More than double sized dataset

- More populations represented

- Exomes plus genomes included

- Options to use dataset with or without certain sub-cohorts (e.g. non-cancer cohorts)

- Isoform refinement

The power of this dataset is confirmed by: a) constraint metric correlated with biological relevance
(PPI; gene expression; disease association); b) the constraint metrics reflect model animal and
cellular KO phenotypes; c) constraint can assist disease gene finding (ratio 15 higher likelihood for
de novo mutations in developmental disease genes in LOEUF decile).

There are however several major aspects that require refinement, and several new aspects could
additionally boost the scientific value, add novel insights orincrease the usability even more.
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1.) It would be interesting to the readers, in which aspects the authors improved over previous
work: MacArthuret al. Science (2012) (DOI: 10.1126/science.1215040); Lek et al. Nature
(2016)(DOI: 10.1038/nature19057); and which of the previous conclusions may have been
falsified since then. It would be important to stress the novelty aspects of the current work (also to
justify publication in this highest ranking journal).

2.) The authors should discuss their findings in light of the recent set of work on ‘Genetic paradox
explained by nonsense’;https://www.nature.com/articles/d41586-019-00823-5

3.) Add a paragraph how many LoF allele human individuals carry on average, per population per
frequency range

4.) The author should consider flagging genes for which the majority of pLoF variants appearin a)
smaller allelic fractions indication somatic/mosaic state; b) in >average aged individuals. Both
would be very indicative for‘drivers of clonal hematopoeisis’; and may prevent false
interpretations of pLoF in genes like DNMT3A, ASXL1, TET2 (which in germline may very well
cause severe developmental diseases caused by AD mutations) as well as flagging up novel genes
with a similar mechanism and biology.

5.) Can the authors describe for which genes/exons the WGS vs WES data improve sensitivity
(‘dark areas’ of exomes)?

6.) Can the authors provide data on compound heterozygous state of pLoF variants in individuals?
This would be very informative for a) adding sensitivity that gene that can/cannottolerate
complete Kos; b) show alleles for which frameshifting variants are rescued by other frameshifting
in cis in orderto restore the reading-frame.

7.) Next to the CNV/SV dataset in preparation (Collins et al.); have the authors compared LOEFF
decile genes for overlap with CNV morbidity map (Eichler lab; Cooperetaland Coe et al.); and HI
scores by the Hurles lab?

8.) It would be very interesting to understand whether there are genes that are exclusive or
enriched for certain types of pLoF. E.g. are there genes that show stop-gains only but no
frameshifts or essential splice site pLoF?

9.) Are there any specific pLoF alleles that are significantly enriched in certain populations? E.g.
are there any population specific PCSK9-like alleles?

10.) How many isoform specific effects are (not) re-solved by transferring fromhg19 to hg38?
11.) The authors cross-reference several other manuscript that are under preparation which
remain a bit difficult to judge (as not available in peer-reviewed versions yet), but the released
preprints are in line with all claims made here.

Minor issues that may further improve the manuscript:

1.) Line 56: "*model of human mutation” isn’t this rather *mutation rate”

2.) Line 91: Mention somatic events (and differences in tissues source) as a source of ‘false
positive germline events’

3.) Line 161: Please add an explanation and citation to the synonymous methylated CpG variants
- as the most mutable site of the human genome.

4.) Line 169 (and ext. fig 4): The authors should be able to model the amount of exomes/genomes
required to robustly reach saturation across all mutational contexts.

5.) Lines 237-238: Could the author define how much the refined model and the increased sample
size to the improved power?

6.) Line 475: change “sex aneuploid” to “sex chromosome aneuploid”.

7.) Figure 6b: define "mu” in legend.

8.) Supplement: page4; why was coverage capped at 100x, and are there any adverse effects
expected for capping?

9.) Supplement: page 46: some references are not formatted correctly at first citation (Hamdan;
Lelieveld).
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Referee #4 (Remarks to the Author):

In, “Variation across 141,456 human exomes and genomes reveals the spectrum of loss -of-
function intolerance across human protein-coding genes", Karczewski et al. describe a compilation
of variants in exome and genome sequence data fromover 100,000 individuals assembled from a
variety of projects. They focus on predicted loss-of-function (pLOF) variants inferred to eliminate
protein production, and describe pipelines to effectively remove erroneous pLOF variants. They
then quantify the extent of observed pLOF variation across populations and genes, asses the
relationship between pLOF and transcript expression, and define pLOF gene-level tolerance scores
for application in human disease genetics.

In general, this work is of high technical quality (a few minor comments are provided below).
Further, the authors are to be commended for their efforts to not only make the data publicand
usable but also to publish software to generate/parse/filter/etc. GhomAD/EXAC has been a highly
impactful resource and this iteration is likely to continue in that regard.

However, my high-level opinion is that while the underlying resource is impressive, this manuscript
is a narrow one documenting only incremental advances over previous work. The novelty here is
largely due to the increased sample size and in refinements to the methods, e.g., the machine
learning approaches to filter variants and the model to infer mutability, but the key concepts and
conclusions have been previously published. Forexample, a key message in this paper, i.e., that
mutational tolerance scores usefully separate genes according to phenotypic relevance, is similar
to that of Petrovski et al., publishedin 2013. The distributional shifts presented here in Figures
3a,c,d and 5a, are similar to those shown in Petrovski et al. Figures 2 and 3; in fact, Petrovski et
al. used nearly identical types of genes to make the same point (i.e., haploinsufficient, mouse-
lethal, OMIM-dominant, OMIM-recessive, and neurodevelopmental-disorder genes). This
manuscript is part of a large group of studies that use related methods and lead to similar
conclusions about the inference of selective tolerance as a means to identify pathogenic variation
(non-comprehensive examples beyond Petrovski et al. include Fu et al. 2013, Samocha et al.
2014, and Gussow et al. 2017).

Thus, the difference between this and previous work is of degree not kind. Towards thatend, this
analysis does not systematically and precisely measure improvement over previous work, nor is
there a systematic delineation of the effects of the various sources of improvement described. For
example, while sample size is analyzed in relation to variant saturation, no comparison of LOEUF
gene group separation efficiencies (e.g., haploinsufficient, essential, ID/DD, etc) at various sample
sizes is demonstrated. Similarly, the variant filtering and mutability models developed here are not
contrasted with other models provided the same input data (e.g., RVIS on the same set of pLOF
variants), nor are the effects of the differing refinements described here measured as isolated
components (e.g., LOEUF on VQSR vs machine-learning-filtered variants or a simple mutability
model vs a CpG/methylation/etc-defined model). While I find it highly likely that the results
described here are non-trivially more powerful for separating genes known to be relevant to
phenotype fromthose that are not, the improvements are likely to be modest; the more
important, pragmatic effect on gene discovery per se is likely to be even smaller given that there
is not a strict monotonic correlation between the distributional separations benchmarked here and
novel disease gene prioritization effectiveness.

Other key results, such as those related to the contribution of errors to pLOF variants and the
relationship between nonsense variants and expression are also conceptually similar to previously
published studies, including some by many of the authors here (e.g., MacArthur et al. 2012,
Bartha et al. 2015, Rivas et al. 2015, Balasubramanian et al. 2017, Ganna et al. 2018). The
preexisting literature on de novo variation in ID/DD, another highlighted result in this manuscript,
is too extensive to concisely summarize or cite here, but it is safe to say that the key results here
(e.g., Figure 5a) have already been seen in numerous studies that use related approaches and
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similar data.

I am not arguing that this manuscript offers nothing distinctive relative to the other cited
manuscripts (and the other uncited manuscripts like them). Indeed, I find it likely that there are
benefits to the increased sample size and methodological refinements described here. However,
these differences are not systematically and precisely quantified, and even ifthey were I do not
believe they would be conceptually or pragmatically large.

There are also some key details and points outsourced to accompanying manuscripts cited as
being in preparation, including Cummings et al., Collins et al., Minikel et al., and Whiffin et al.,
suggesting result overlap that further undermines uniqueness and novelty here. While not cited as
such, it appears that these manuscripts are available on Biorxiv (in my opinion, “in preparation” or
“data not shown” citations are intrinsically inhibitory to meaningful review and should not be
used). After reading these related Biorxivdocuments, it is clear that these manuscripts as a group
overlap extensively with one another, evenbeyond the fact that they are all derived from the
same underlying genome/exome data. Consider the following (non-comprehensive) examples:

1. LOFTEE is a core method in this manuscript, Cummings et al, and Minikel et al., being used to
provide the refined data product (collections of error-depleted pLOF variants) that drives key
conclusions across all three manuscripts.

2. Much of the text in Cummings et al. is thematically highly consistent with key results in this
manuscript, namely expression levels and distribution in relation to pLOF variation, both real and
erroneous. Note, for example, content overlap between Cummings Figure 3 and Karczewski 4b-c
and overlap between Cummings Figure 4 and Karczewski 2a.

3. Figure 1 from Minikel et al. is similar to Figure 2 in this manuscript, drawing from the same data
and presenting very similar results (e.g., compare Minikel 1c with Karczewski 2c-d). Minikel Figure
1 furthermore appears to be very similar to Extended Figure 5 f-h in this manuscript; all these
panels are scatter plots showing observed and expected counts of variants, subset by the same
variant types using the same coloring scheme, and whose key conclusion is to indicate gene or
transcript-level constraint differences on different categories of variation.

4. Collins Figure 6b and Karczewski 3b both appear to use the same data and lead to similar
results, namely the correlation between rates of structural variant observation and constrainton
pLOF SNVs.

While these examples of overlap are not plainly duplicative of one another, they tend to provide
only mildly different perspectives on the same data and ultimately lead to similar high-level
conclusions. In general, there are extensive redundancies across these five manuscripts, including:
shared raw, intermediate, and endpoint datasets; shared methods for variant calling and filtration;
similar individual results and figures; and shared high-level conclusions.

Thus, while I understand that “lump/split” decisions for manuscripts stemming from large team-
driven genomic projects can be challenging, itis my opinion that the split decisions in this case
resulted in a too thin manuscript that provides only incremental impact relative to both previously
published and concurrently submitted papers. However, I find it likely that a more comprehensive
manuscript that combines key points here with those from the companion manuscripts would be
both more reader-friendly and more impactful. It could benefit from elimination of the
redundancies and better highlighting of those results which are truly new. It would also provide a
more cohesive description of GhomAD, the conclusions one can derive fromit, and the impact it
can have as a resource.

Minor technical comments:
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Additional details on the “established gene lists” that drive key results are needed. While a github
link is provided, precise descriptions of how they were defined need to be in the manuscript or
supplement, along with a discussion about how their ascertainment may influence the correlations
and trends observed. This is particularly true to the extent that there are any manual curation
steps and to the extent that there may exist implicit or explicit circularities. If, for example, data
from a previous generation of EXAC were used to define a given list of genes, then the results
presented here might be at least partially tautological. On a related note, who performed these
curations and to what extent did they also perform the analyses presented here? I do not doubt
the general veracity of these results. However, to the extent that this manuscriptis refining
methods/data and not providing conceptually new approaches, precisely estimating the actual
magnitude of individual refinements is particularly important; thus, any relevant biases in the use
of these gene lists as a measure of performance should be removed or controlled for. Ideally, gene
lists defined and curated by an independent group andin the absence of EXAC data would be used
as validation (e.g., those used in Petrovski et al., which predate these analyses and, I believe, the
existence of EXAC as a publicresource).

Similar question relates to the process by which OMIM genes were defined as being discovered
from WES/WGS vs linkage. Was this work done manually? How does it compare to other efforts (if
any)? What about cases in which a combination of both linkage and WES/WGS were used? As per
above, the effects of circularity are relevant here given the fact that ExAC has explicitly (e.g., by
contributing to variant filtration) and implicitly (e.g., via use of intolerance scores in VUS
evaluation) helped to identify some of the WES/W GS-discovered genes; this will likely be difficult
to account for but clearly may confound the interpretation here.

While I have not attempted to run the software or thoroughly check the documentation, I have
little doubt about the quality and utility of the software; such work is, in fact, one area where this
group has a strong record and clearly deserves a lot of credit.

Author Rebuttals to Initial Comments:

Referee #1 (Remarks to the Author):

In this manuscript, Karczewski and colleagues describethe gnomAD resource -- aggregate variant
calls derived from ~125K human exomes and ~15K human genomes that are already widely used by
the research community. The manuscript focuses on predicted loss-of-function (pLOF) variantsin
particular. The paperis a follow up to the same groups’ ExACresource, published afew years ago,
with the overall cohortapproximately doublingin size and with markedly better representation of
human populations around the world. As general statements, the work appears to be well done
from a technical perspective, the analyses thoughtfully conducted, and the material clearly
presented. It’s obviously been anincredible amount of work to pull these datatogether, to reanalyze
themina coordinate fashion, andtoserve them up tothe community in a useful format.

That praise notwithstanding, | do have some high-level as well as more specificconcerns.
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We thank the reviewers for their comments. We have incorporated most of the reviewers’
suggestions, which has improved the manuscript considerably. In particular, we have
clarified many parts of the text and added Supplementary Figures and Tables to provide
readers with some additional intuition behind the metrics developed and how they correlate
with previous metrics of constraint (pLI). We have also added 11 Supplementary Datasets,
including constraint summaries, downsampling summaries, and information on genes that
are tolerant to homozygous inactivation and compare our metric to previous metrics of
variant intolerance.

Major comments

1 The relatively narrow focus on pLOF variation resultsin some real missed opportunities
here. Virtually nothingis said about missense variation, non-canonical splice site variation, or
constraintin the non-exome 98% of the genome, for which there are a respectable ~15K genomes
available foranalysis. My inference is that at least some of these analyses are being slated for other
manuscripts, butto be frank | would have preferred an atleast modestly more expanded scope. The
consequence of this relatively narrow focus on pLOF variantsis that the emphasized novelty here,
apart fromthe substantially larger N (as well aswhat seems to be improvements in methodology
throughout, which are notreally emphasized), lies with the shift from pLl scores (a continuous
metric, but one directed at predicting haploinsufficiency, a binary concept) to LOEUF scores (a
continuous metricthat reflects the upperbound on a confidence interval forthe observed/expected
ratio of pLOF variants), together with some of the specificanalyses that are performed. Thisis
certainly progress, butitleaves somethingto be desired if only because feels likealotis beingleft
on the table interms of all of the things that one mightimagine doing with these datathat have
nothingto do with pLOF variants.

2. Although the scope could be endless (and although | would love to see at least a biton the
most extremely constrained noncoding regions), the manuscript could be particularly strengthened
by adding more content around missense variantsin particular. Perhaps | should expectit from past
papers, butl am quite surprised by EDF 6f-g in particularand suggest they be moved to the main
figures. In particular, the fact that there are so few genes with substantial constraint for missense
variants remains surprising to me. Given the considerably higher saturation of missensevariantsin
gnomAD as compared to EXAC, can the authors consideradding regional missense constraint
analysesalathe Samochaet al. 2017 paper?
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We agree with the reviewer about the wide variety of downstream analyses that can be
performed with this data set, but we think that the focus on pLoF variants in this manuscript
is important to ensure that the manuscript doesn’t become too broad and thus superficial (we
note that Reviewer #2 agrees with this). There are indeed many interesting features of
missense variation that have been previously discussed™* as missense variants are an
order of magnitude more plentiful than pLoF variants, we believe that the sample sizes in
these previous data sets have been generally sufficient to characterize constraint against
missense variation at the gene- and sub-gene-level. However, we've now added
Supplementary Figure 8 to describe how pLoF and missense variant expectations (genes
with over 5, 10, 20, 50, 100 variants) increase with sample size. We found that the increase
in sample size from EXAC to gnomAD provides a much more significant increase of pLoF
than missense variants.

With respect to non-canonical splice site variation, we characterize these in LOFTEE as
“Other Splice” (OS) variants, but their relatively low occurrence and intermediate patterns of
depletion in constrained genes (Extended Data Fig. 7d) precluded their inclusion in
constraint calculations.

Unfortunately, any attempts at constraint against non-coding elements will be underpowered,
even with 15K genomes®. At these sample sizes, we do have the power to investigate
subsets of non-coding variants with predicted large functional impact, and have a companion
manuscript that looks at one such class within 5UTRs*. However, any more comprehensive
effort is complicated by the fact that the functional impact of the vast majority of non-coding
variants is as yet unknown.

3. While I’'monthose panels (EDF 6f-g), it would be helpful if the extremes, particularly onthe
excessobserved vs. expected, pointsin all three panels could be labeled and ideally discussed. Are
there any genes for which significantly more synonymous, missense or pLoF mutations are observed
than were expected? Are these technical artifacts or biologically meaningful outliers?

We have also been interested in these outliers, and investigated them at various points in
both the EXAC and gnomAD data sets. Unfortunately, in our exploration of the most extreme
examples (synonymous z < -3.71), the vast majority of these genes appear to be technical
artifacts: the worst offenders are AHNAK2, FLG, and many of the MUC genes, which are
known to have mapping artifacts, and paralogous genes such as the HIST1 complex. We
note that approximately 32% of them (126/392) have a mappability score < 0.9, compared to
10% (1908/18839) of genes that are not outliers for number of synonymous variants. We
have added a note to this effect in the Supplementary Information. Overall, while it is likely
that there are interesting biological signals in these outliers, identifying those will require
extremely careful filtering of all the noise resulting from a wide variety of technical errors,
which we think falls outside the scope of this manuscript.

4, The firsttwo paragraphs, although well written, feel a bit misleading. They setupa
strawman around the concept that breaking parts of a system can be useful forunderstandingit, but



natureresearch

then mention Mendelian genetics almost as an afterthought. Understanding human biology through
LoF mutations and theirconsequences has been the mainstay of human genetics fornearly a
century. What is being done here builds directly on that foundation, rather than being consequent to
a motivation drawn from the engineeringfield or from our inability to edit LoF mutationsinto
humans. Describing this undertaking as the inverse of classical human genetics (i.e. genotype first,
rather than phenotype first; looking forthe absence of pLOF variants ratherthan their presence)
would be a more honestrepresentation of the field-specificcontext into which this work falls.

We agree that we insufficiently credited the role of Mendelian genetics in creating our current body
of knowledge about human LoF variants and gene function. We have strengthened the mention of
Mendelian disease geneticsinthe introduction, and also added an additional point about forward
and reverse genetics approachesinthe discussion.

5. A few things about the LOEUF metricremain unclearto me:

a. No justificationis provided for usingthe upperbound of the confidence interval ratherthan
simply usingthe o/e ratioitself. | can understand the argument that might be made, but| can also
imagine counterarguments. In any case, thought process by which this decision was made should be
laid out. The confidence intervals seemto be quite wide? (I’'m inferring this from the fact that the
median o/e of 48% jumps to a median LOEFF of 0.962).

We have clarified the use of this ratio in the text: “At current sample sizes, this metric
enables the quantitative assessment of constraint with a built-in confidence value,
distinguishing small genes (e.g. those with observed = 0, expected = 2; LOEUF = 1.34) from
large genes (e.g. observed =0, expected = 100; LOEUF = 0.03), while retaining the
continuous properties of the direct estimate of the ratio (see Supplementary Information).” At
significantly larger sample sizes, these values will converge and the direct use of the o/e
ratio will be more intuitive, but it will likely require ~1 million individuals before we approach
this point (estimated at 75% of genes with expected LoFs > 50; 3 million individuals to reach
90% of genes with expected LoFs > 50). These data are added as Supplementary Fig. 8.

b. Unless | missed it, you show histograms of o/e and LOEUF scores, but no comparison of the
metrics to one another. Related to point (a) above, it would be helpful to present scatter plots of o /e
vs. LOEUF, and also o/e vs. pLl and LOEUF vs. pLl, to provide the reader with abetterview onthe
extenttowhichtheydiffer?
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This is a great suggestion - observing the relationship between these variables really
highlights the continuity of LOEUF compared to pLI (which, though it is a value between O
and 1, is not an appropriate metric to use in a continuous fashion). Further, this reiterates the
point above that the confidence interval provides confidence around the value, which for
large genes (and eventually at large sample sizes for smaller genes), converges at the o/e
value. We have added these scatterplots as Supplementary Fig. 7.

c. Many “summary plots” are presented, but | feel likel still lack araw sense of how the wide
the confidence intervals are forthe o/e ratios that give rise to the LOEUF scores, as well as how
these confidenceintervalsvary asa function of the o/e ratios. | suggestthatyou add a figure that
shows the stacked means and confidence intervals for each gene, sorted by means (ora random
subsetof genesifthe entire setcan’tbe presented). To phrase it another way — a plot where every
gene hasits ownline, andthe genesare ranked by o/e, and the o/e and confidence intervals for
each gene are shown.

We have added this plot to the new Supplementary Fig. 7.

6. What are the considerations involved in estimating selection coefficients fromthe observed
vs. expected data? Ratherthan deciles orthis upperbound o/e value, it would be very helpful to
have these estimates, particularly in light of arguments made in this recent paperfrom Fulleretal.
(https://www.nature.com/articles/s41588-019-0383-1) which | urge the authors to cite and discuss
inrelationtothe shiftfrom pLl to LOEUF (andideally to motivate just going ahead and estimating
the strength of selection on heterozygotes on the basis of the updated datain gnomAD).

We agree that accurate selection coefficients would be helpful for interpretation, but
generating robust and well-calibrated selection coefficients (as well as the associated
uncertainties) would be a non-trivial exercise, and we are concerned about the many ways
that such estimates could be miscalculated without a thorough analysis that would (we think)
exceed the scope of this paper. In addition, our primary pragmatic goal is the prioritization of
disease genes, and we have not yet seen evidence that selection coefficients improve this
(our analysis of the s_het metric from Cassa et al. (2017) actually shows slightly worse
performance for the classification of haploinsufficient disease genes than pLI, using EXAC
data for both; we do not yet have corresponding values from gnomAD data).

We do agree that the Fuller et al. manuscript provides extremely important caveats
regarding the interpretation of constraint-based metrics. We had previously cited this
manuscript as a preprint in the discussion, but we have now updated the citation to its
current published form. We also thoroughly agree that the estimation of well-calibrated
selection coefficients would be very useful for understanding the properties of constraint
against LoF variants - we hope that other groups will use the publicly available gnomAD data
set to generate and explore such metrics.
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7. There are many instances where the authors provide highly significant p-values but no
correspondinginformation aboutthe corresponding difference or effect size. As the authors well
know, miniscule effects can have large p-values. I noticed thisin particularin the paragraph
beginningonline 284 (Biological properties...). However, if the authors could review the full paper
for similarinstancesand provide corresponding effect sizes orfold differences or whateveris
appropriate along with the p-values, that would be helpful.

We have added effect sizes and/or the relevant statistics (e.g. means for each group in a t-
test) to all p-values.

8. My inference throughoutisthat whenthe authors are calculating things such as the
proportion of observed variants out of all possible variants, they are including all possible
substitutions (3 persite). However, itwould be helpful toinclude atleast abit of information on the
extentof “site saturation”. Forexample, whenyou say 17.2M and 262M variants, is this approaching
~50% of coding nucleotides and 10% of all nucleotides represented in the human genome, at which
at leastone of three possiblesingle nucleotide changesis observed? Although the primary focus
could/should remain w/ keepingall possible substitutions as the denominator, it would be helpfulto
know the per-site summary statistics as well. Thisis also relevant to the summary statistics provided
atlines 166-169.

We have now computed these statistics at the site-level, which are now in the
Supplementary information: “The 14,078,157 SNVs in the exomes span 11,999,542 genomic
positions, representing 20.1% of the 59,837,395 bases where calling was performed. When
filtering observed and possible sites to a median of 30X coverage, we observe 21.9% of
sites with at least one SNV. The 204,063,503 SNVs in the genomes span 192,608,400
genomic positions, representing 6.8% of the 2,831,728,308 bases where calling was
performed.”

9. Variant calling & indels feel abit sweptunderthe rug, at leastin the main text. | recognize
that thisis coveredinthe supplementary figures and methods (and I’'m not asking foranything new
to be done here; generally convinced), butitwould be helpful to have atleast a paragraph
summarizingthe key take-homes from EDFs 2-3.

We have now added a paragraph summarizing EDFs 2 and 3 in the main text.

10. It’s not clearhow the statementatlines 410-412, that 30% of coding genes are insufficiently
powered fordetection, isjustified. linferthat you are using a cutoff of 10 pLOF mutations expected
as the definition of sufficiently powered, but where does this come from? On a related point, atline
230, you state that the increased N from EXACto gnomAD increases this proportion from 63% to
72%. The relatively marginal increase from doubling the N leads one to wonder —what population
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sizesarerequiredto getthis even higher? | guess my broader pointis that a more formal analysis of
poweras a function of population size, evenif you have to project abit based onthe existing data,
would be very helpful (and justify the cutoff of 10or whateveralternativeis chosen). What
populationsize would it take to getto 95% of genes with atleast 10 pLOF mutations expected?

The cutoff of 10 was initially described in the supplemental information: “For many of the
analyses in this manuscript, we filter the dataset to genes where we expect over 10 pLoF
variants. This cutoff was chosen as the minimum number of expected pLoF variants that can
result in membership in the most constrained bin (11.1 expected) or pLI > 0.95 (9.43
expected).” We have added a reference to this in the main text. Additionally, and more
importantly, we have now added Supplementary Fig. 8 and Supplementary Dataset 12 that
describes the proportion of genes with at least N pLoFs expected as a function of sample
size. Based on these calculations, it would require ~625,000 samples to achieve 95% of
genes with at least 10 pLoF mutations expected.

Additional comments:

11. The claimis made towards the end of the introduction that the metric “improves rare
disease diagnosis” —is this actually done inthe paper? It seemslike this should be rephrased to be
morein line with whatis actually described inthe manuscript (unless | missed something, whichis
possible).

We have clarified this sentence to “this metric improves interpretation of genetic variants
influencing rare disease”.

12. For LOEUF, is isthe 95% Cl that isused? | assume so, but it should be stated.

We use the upper bound of the 90% CI - this is now more prominently noted in the main text.

13. More could be said, or at least a citation added, for the data pointsin Fig. 2E that mightbe
explained by hypo-methylated CpGs givingrise to alower rate of % observed? On arelated point, in
EDF 4b, is it possible to partition CpGsites on those that are broadly methylated vs. those thatare
not? (i.e.isitpossible thatyou are completely saturatingthosethat are consistently methylated?)

We have now split Fig. 1e and Extended Data Fig. 4b by methylation status and added these
as Supplementary Fig. 5.
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14. It would be helpful if the authors review the manuscript specifically to look gene lists that
might be useful to readers, and to actually provide those as supplementary tables. Forexample, at
line 216, a setof 1,752 genesthatare likely to be tolerantto biallelicactivation are referenced buta
corresponding file/table not provided.

We have now added the established gene sets as Supplementary Fig. 9, as well as the list of bi-allelic
inactivated genes as Supplementary Dataset 7. Further we have compared this latter gene set with
mouse and cellular knockout data, and added it as Supplementary Table 19:

Supplementary Table 19 | Comparison of genes we observe homozygous deletionin
gnomAD population with other gene lists. Fewer homozygous knockout tolerant genes
are included in this comparison (n=1519 vs 1650) as 131 genes that did not have a unique
gene symbol approved by HGNC. Further, we filtered out genes from the mouse and cell
comparison sets that did not have LOEUF score. For gene set comparisons, the p-value was
computed using a Fisher’s exact test (two-sided) and for LOEUF comparisons, at-test (two-
sided) was used.

Mouse Mouse
Heterozygous KO Homozygous KO Cell Essential
Mean

Lethal Others Lethal Others Essential Others LOEUF
Homozygous 12 1507 87 1432 6 1513 1.26
KO tolerant
genes
(n=1519)
Remaining 383 17292 3647 14028 677 16998 0.91
genes
(n=17675)
OddsRatio 0.36 0.23 0.10
p-value 6.8 x 10” 9.1x10” 1.5x 10" <107

15. Line 161 — “all possible synonymous methylated CpGvariants” —odd phrasing—do you
mean all possible CG>TG changes? Or are you subsetting to sites that are consistently methylated?
More clarity here would be helpful.
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We have edited this text to read “all possible consistently methylated CpG to TpG transitions
that would create synonymous variants in the human exome”.

IM

16. Fig3d —the notion of “cell essential” isalittle strange. What cell type? Are these genes that
are consistently essentialacross CRISPR screens? More clarity on what these are would be good to
include ratherthan requiring the readertolook at the reference.

This designation is pulled from the Hart et al., reference, but we have added a more detailed
explanation in the supplementary text: “Specifically, in the study, Hart et. al. defined a set of
essential genes using a strict Bayes Factor threshold, corresponding to >90% posterior
probability of being essential for more than six cell lines out of minimum 7 to maximum 12
different screens in different cancer and immortalized cell lines. They defined nonessential
genes based on low RNA expression level across 17 different cell lines, as well as curated
shRNA screening results, and this was validated with CRISPR/Cas screening.”

17. In Fig. 5¢c, there are few enough points above the cutoff thatit would be betterif you could
find a way to just label them all. But on a related point, | think the corresponding section of the
discussionistoobold. UnlessI’m missing something, the last sentence of the results feels too bold.
The results primarily follow from afew phenotypes, all related to brain function, and possibly
conflated with one another. It would be betterto restrict the claim to this subset of phenotypes
rather than ‘many heritable polygenicdiseases and traits’.

With respect to Fig. 5¢c, we had tested layouts with all the points above the line labeled and
could not find anything that was readable. However, we’ve now added Supplementary Table
17, listing any trait with p < 1e-4 and their summary statistics, and the full dataset as
Supplementary Dataset 13. We have revised the sentence to read: “and suggests that some
heritable polygenic diseases and traits, particularly cognitive/psychiatric ones, have an
underlying genetic architecture driven substantially by constrained genes”.

18. Lessa requestthan a suggestion, but |l would love to see more discussion orat least some
brief quantification of the proportion of top-decile LOEUF genes (i.e. most constrained; n=1,920) in
terms of what % are associated with ahuman phenotype, what % have an assigned function, what %
have no known function, etc.

We have found it quite difficult to rigorously define “assigned function” in a high-throughput
way. However, we have characterized the % with no known ligands in Extended D ata Fig.
8a, and the % associated with a disease phenotype in Extended Data Fig. 9a-b.
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Referee #2 (Remarks to the Author):

Summary

In the manuscript entitled “Variation across 141,456 human genomes and exomes reveals the
spectrum of loss-of-function tolerance across human protein-coding genes”, Karczewskiand
colleagues describe the Genome Aggregation Database (gnomAD). This is a substantial
augmentation tothe Exome Aggregation (ExAC) database, including additional exome dataas well as
adding 15,708 genomes. The authors describe the data contained within this resource, the quality
control measures, and highlight a particular variant class, predicted loss of function (pLOF). They
develop ametrictermed LOEUF that is used to categorize genes with respect to theirtolerance for
loss of function variation. They then provide examples demonstrating how this information can be
usedindisease gene research.

High level comments
The impact that the gnomAD and ExACresource has had on both the research and clinical genomics

communities cannot be overstated. The dedication this group has to making this data available to
the research and clinical communitiesis exemplary. This project has been aflagship for
demonstrating how large-scale sequencing coupled with summary datarelease can be
transformative forthefield.

With respectto this manuscript, the authors were wise tofocus on a narrow aspect of this data and
demonstrate how this specificvariant type (pLOF) can contributes to disease gene research. The
manuscript walks through how the LOEUF deciles are generated, and provides numerous analysis of
how this can be used. However, the manuscript fails to connect this with specific biology that
resonatesinanimpactful way. There are no specificexamples pulled fromthe categories to make
the data more meaningful. Forexample, when looking at figure 3, there is so much more
information | want to know. Thisincludesidentifying specificgenes thatfall into expected LOEUF
deciles, butalso discussing the unexpected events. What are the haploinsufficient genes thatare in
the lower LOEUF deciles? Does any of thisinformation confirm or refute known orthogonal data
aboutgenesinthese bins? Perhaps evenjust notingwhere the ACMG59fallin these deciles, or
withinthese analysis would be useful. Though | understand that the ACMG59 may not be underthe
strongest constraint, adata setsuch as this could help guide the community aboutthe best way to
utilize this data.

| do thinkthere are some other missed opportunities foreducating users around some issues of this
analysis. While this manuscript focuses on global analyses, itisimportant to rememberthat many
userswill look atindividual genes, and understanding how individual genes may be impacted by
analytical decisionsisimportantforensuringthe dataare used correctly.
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We thank the reviewer for these comments. We completely sympathize with the desire to
look at individual outlier genes for multiple analyses - indeed, this desire, and the fact that
we often can’t predict which genes our users will find most interesting, has been a primary
motivation for releasing the variant list in full to enable the community to perform their own
analyses, and a browser for users to explore their favorite individual genes or gene sets.

We have added a discussion of the haploinsufficient genes that are unconstrained to the
Supplementary Information: “Of the haploinsufficient genes, 80% were found in the two most
constrained deciles of the genome. There were two genes that are in the haploinsufficient
gene list, but with little evidence of constraint (in the 8th decile): RNF135 (LOEUF =1.44),
which has limited support for pathogenicity®; and IKBKG (LOEUF = 1.37), which is poorly
covered in gnomAD and whose first exon is lowly expressed, suggesting that the pLoFs in
this gene are likely false positives.” In general, we think that the ACMG59 genes are a rather
confusing comparator in these analyses, due to their ascertainment on the basis of clinical
utility rather than any metric that might correlate with selective constraint (such as age of
onset, inheritance mode, or phenotypic severity). However, we show the distribution of the
LOEUF scores for these genes below. We also note that 5 out of the 59 are not powered for

constraint detection (fewer than 10 pLoFs expected); these are noted in the supplement:
SDHD, MYL3, VHL, MYL2, SDHAF2.
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More detailed comments
1 pLOF setdefinition: The authors are very well versed in the types of annotation errors that
can lead to false variantcalls, and understand the pLOFs are likely to be enriched in annotation
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errors. While I think the authors do a very commendablejob of cleaning this dataset, | would urge
the authors toreview arecent manuscript from Tuladharet al., 2019
(http://dx.doi.org/10.1101/583138) whichisfocused on analyzing putative knockout alleles from
CRISPRIlines. Inthis manuscript, they find that 46% of edited lines marketed as knockouts, due to the
presence of anindel, are not actually knockouts, but that some product is produced viaotherescape
mechanisms. Whilel don’t think the authors need to any additional expe rimental work for this
manuscript, this reference, plus additional caution that individual pLOF events need to be followed
up with functional assays to confirm actual LOF is warranted. Particularly because the authors goto
so much effortto produce a high quality dataset, users need to be reminded that while collectively,
the data are of high quality, individual events should be verified. It might be interestingtorun
LOFTEE on the datasetin the Tuladhar manuscript to see how many of the ‘escapees’ are flagged by
LOFTEE.

We've read this paper with great interest and agree that an exploration of further NMD -
escape modes is worthwhile. Unfortunately, the Tuladhar paper does not appear to include a
list of variants on which we could run LOFTEE. Nevertheless, we have cited this paper as
well as the “Genetic paradox explained by nonsense” paper mentioned by Reviewer 3, and
discussed the implications of our work around these: “However, some additional error modes
may still exist, and indeed, several recent experiments have proposed uncharacterized

NMD-escape mechanisms®’.”

2. Variantidentification: There are two pointsto be raised here. The authors do a great job of
tryingto eliminatefalse positives, even atthe expense of potentiallylosing true positives. However,
the authors don’t mention the impact of false negatives. Forexample, STRC has very poor coverage
of exons 19-25 due to the presence of a paralogous sequence inthe genome, complicating
alignmentandleadingtolow orno coverage. What percentage of the genome, particularly the
clinically relevant genome, fallsinto this category? Does gnomAD do better/the same/worse in
difficultregions such as those as described in Mandelkeretal., 2016
(https://doi.org/10.1038/gim.2016.58)? Does the genome data helpin some of these cases? Also, do
the authors have any comments on the impact of genome datavs. exome datainterms of variant
identification? What are the technical advantages/disadvantages of genome vs. exome? For
example, when looking at PKD2in the gnomAD browser, itlooks as if genome datarescues poor
coverage of the firstexon as seenin exome data. How often does this sort of thing occur?

We thank the reviewer forthis comment (and reviewer #3 fora similarcomment). This analysis is
somewhat complicated as gnomAD has aggregated datasequenced overalong period of time,
spanningdifferent capture kits / sequencing technologies. To evaluate the performance of those
different platformsin the codingregions of the genome, we have now computed foreach gene the
proportion of basesthatare well-covered (20x in at least 80% of the samples). We have added a
sectioninthe Supplementary Material showing that ~80% of protein-coding genes are well-captured
by all technologies, whole-genome sequencing captures ~“8% additional genes well, and about 2.5%
of the genes are not captured by either. Further, we also showed that the majority of genes that
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aren’t well captured by whole-genome sequencing have poor mappability. We break these analyses
down further by capture platform and sequencingtechnology in Supplementary Figures 3and 4.
Finally, we added a table with per-gene, per-platform coverage summary statistics as Supplementary
Dataset 1 and fordownload at https://storage.googleapis.com/gnomad-public/papers/2019-
flagship-

lof/v1.1/summary_gene_coverage/gencode_grch37_gene_by platform_coverage_summary.tsv.gz

3. More details on specificgenes: There are afew placesthat summary datais provided, and
what | really want are the details. For example, online 216, thereis a statementabout 1752 genes
that are likely intolerant to biallelicactivation- what are these genes? | expected a supplementary
table, butthereis none (though apologiesif | missed this). | had the same reaction to Supplementary
table 15- | would love to see a giant table, one row for each gene with the classification (column
headersinthistable) and LOEUF decile. This would really let me diginto some interesting stuff. Are
there any surprising genesin these deciles (lines 245-249). In fact, some of the disease genes that
unexpectedly fall into the lower LOEUF categories would be some of the first ones I’d want to test
for an escape mechanism leading to expression despite the prediction of LOF.

We have now added Supplementary Dataset 3 with a list of the genes tolerant of
homozygous inactivation, and Supplementary Dataset 11 with all the constraint and
summary metrics for each gene in the genome. While Supplementary Table 15 (now 17) has
too many genes to list in a table, we have added Supplementary Figure 9, a high-resolution
figure, where readers can zoom in to see specific genes/gene sets.

4. Figuresand data ingeneral:1found the availability of numbers and consistent metrics that
supportdata figures wasinconsistent. Ideally, these numbers would be contained within the figures
or at leastthe figure legend (forexample, every time there isacorrelation, I'd liketo see the
correlationvaluesinthe figure orlegend, not justinthe text). | found myself having to go back and
forth betweenthe textandfiguresalot, and occasionally I thought | foundinconsistencies, though
I’m not always sure if the data are inconsistent, orI’'mjust having trouble matching the textto the
appropriate figure. Forexample, line 225-226 notes ‘the variation in the number of synonymous
variants observedisaccurately captured (r2=0.958)’. The data in extended figure 6f, which states
r=0.9791- so consistentuse of eitherror r2 would be appreciated. Even just ensuring that numbers
are infigure legends, if notthe figure, is usefulfor more easily interpreting the figures. Please review
that legends and colors are clear. For example, whatdo the colorsin figure 5c mean? | spentan
embarrassingamount of time looking forthe ‘circles’ in extended Data Figure 1, to realized the
rounded cornersquares were what I should look for.

We have now fixed the text to consistently use r rather than r?, and fixed these and many of
the other areas where statistics were missing or inconsistent. We have also clarified the use
of color and shapes in the aforementioned figures.
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5. Assembly information: Whilel am sympathetictothe needs to use the woefully old GRCh37
assembly (I myself had to do this for a recent manuscript) itis useful to explain to users why this very
oldreferenceis used (page 3 of the supplement) and what the shortcomings are. While | firmly
believethe reference assembly version used will notimpact the overall findings of this paper, it may
impactthe information atany given locus. Forexample, a big focus of the GRCh38 update was to
improve clinically relevant genes (for example, adding in 3 missing coding exons of Shank3, and
adding a new paralog of KCNE1which means many of the variants called in GRCh37 may actually be
paralogous sequence variants) and users should understand these caveats. This also impacts the
pLOF variant curation, as regions known to be different between GRCh37and GRCh38, as well as
known assembly problems from the GRCwould likely be usefulin this analysis (supplemental page
32). Lastly, please use consistent nomenclature when referringto the assembly. The official
assembly name is GRCh37, but there are various distribution ‘flavors’. And while | weep that this s
the case, it is important to note the data source (hg19 specifically implies data from UCSCfor
example) sothatthese slight variances can be taken into account.

The underlying data used for this manuscript (the exome and genome callsets) are now
more than three years old, having been produced in 2016 (with most of the read mapping
having been performed in 2015 or prior). While the GRCh38 assembly had already been
produced at the time, the GRCh37 assembly was still the field standard. We agree that in
2019, producing large genomic resources based on the GRCh38 assembly is imperative,
and is therefore what we plan to do for future versions of gnomAD. W e have fixed all
references to be GRCh37 rather than hgl19.

6. Variantannotation and constraint modeling: The supplement sections read as if they are
stand alone sections. | understand why this happens and in many cases thisis not a problem, but|
had some trouble understanding where variant annotation, and some of the gene level metrics stop
and the constraint modeling starts. Aslwas readingthe maintext, | was curious as to how regions
of low coverage (andthus potential false negatives)impacted the LOEUF and gene level metrics.
Does somethinglook more intolerant to LOF because novariants are called because of low
coverage? The constraint modeling section of the supplement explains how coverage is taken into
account, but the variantannotation section, which has some information on gene level metrics, does
not. My general assumptionisthatthese two sectionsreally work togetherinaway thatis not
entirely clearto me fromreading the text, but perhaps| am wrongabout that. It would be nice to
clarify some of these metrics with some examples-i.ewhat calculating the datalookslike onawell
covered gene versusageneslike STRC, SMN1and IKBKG (thank you forthe lovely browser that
made looking these examples up relatively straightforward!). Additionally, Figure 2D highlights that
30% of coding genesinthe genome are still underpowered to detect constraint- how many ClinVar
or ACMG59 genesfall into this category?
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The reviewer is correct about the treatment of coverage throughout the manuscript. For the
purposes of tallying the *observed* number of variants (both for constraint and gene
metrics), we require a genotype to have a depth of at least 10. Only in the constraint section
do we explicity model the mean coverage across individuals at a site in order to accurately
estimate the expected number of pLoFs for genes with low coverage, which feeds into the
LOEUF calculation. Thus, a gene will not look more intolerant to LoF simply because of low
coverage, but instead, this would lead to a decrease in detection power, which is the desired
behavior. Indeed, this does mean that the aggregate pLoF frequency metrics may be
deflated at these genes; however, we have no way to explicitly correct for this as these are
summary metrics derived straight from the data.

Of the ~28% of genes that are underpowered for constraint detection, these are - perhaps
unsurprisingly - depleted for disease-associated genes. We have added a note to this effect
in the Supplementary Information: “At present, 72.1% of genes (13841/19197) have > 10
pLoFs expected, including 86.5% of disease-associated genes from OMIM (2888/3340; OR
= 0.45; Fisher's p < 1 x 10™®). Of the 59 genes satisfying ACMG criteria for reporting of
secondary findings, only five are underpowered, or have fewer than ten pLoFs expected
(SDHD, MYLS3, VHL, MYL2, SDHAF2).”

7. Exon level metrics: Have the authors considered calculating these metrics at the exon level
rather than the gene level? Would this provide even more fine grained information? If agene only
has a small number of exons under constraint, coulditend up in one of the higher LOEUF deciles
dependingon gene size? Could this potentially improvevariantinterpretation? Or would doing this
require significantly more samples? There would likely be utility in doing this atthe exon level if
statistically achievable.

Unfortunately, the calculation of these metrics at a per-exon level would be highly
underpowered: even at the gene level, we only reach 10 expected pLoFs for ~70% of genes,
and breaking this down by exon would reduce this number accordingly. However, the code
provided can compute constraint against arbitrary bases, and thus will be usable when
sample sizes grow. In the meantime, we have described a method that removes bases
within exons with little to no evidence of transcript expression® that shows the power of this
approach.

Referee #3 (Remarks to the Author):

In theirmanuscript entitled ‘Variation across 141,456 human exomes and genomes reveals the
spectrum of loss-of-function intolerance across human protein-coding genes’ Karczewskietal.
presentthe largesthuman exome/genome dataset published to date.

Thisis withoutadoubta veryvaluable resource to the field of human genetics/genomics; clinical
researchers, diagnostics, etc. Using aset of >440k high confidence pLoF variants, i.e. asetthatis
more than double the size of ExACand by applying animproved model (utilizing methylation-base-
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pair level coverage correction and LOFTEE) they classified the level of LoF intolerance of all protein
codinggenes.

This expands beyond the use of EXACfor many aspects, which increases the usability to novel
reads/users, e.g.:

- More than double sized dataset

- More populations represented

- Exomes plus genomesincluded

- Optionsto use dataset with or without certain sub-cohorts (e.g. non-cancer cohorts)
- Isoform refinement

The power of this datasetis confirmed by: a) constraint metric correlated with biological relevance
(PPI; gene expression; disease association); b) the constraint metrics reflect model animal and
cellular KO phenotypes; c) constraint can assist disease gene finding (ratio 15 higherlikelihood for de
novo mutationsin developmental disease genesin LOEUF decile).

There are however several major aspects that require refinement, and several new aspects
could additionally boost the scientific value, add novel insights or increase the usability even
more.

1.) Itwouldbeinterestingtothe readers, in which aspectsthe authorsimproved over previous
work: MacArthur et al. Science (2012) (DOI: 10.1126/science.1215040); Lek et al. Nature (2016)(DOI:
10.1038/nature19057); and which of the previous conclusions may have been falsified since then.

We have added Supplementary Fig. 10 and 11, which both give a good sense of the
increase in power for assessing constraint as sample sizes increase. We're not aware of any
major conclusions from previous papers that have since been falsified, but we are now able
to give a more refined estimate of the average number of LoF variants per individual
(Supplementary Table 16, and Supplementary Datasets 8-9) - this number has stayed
surprisingly consistent since the 2012 paper, despite substantial changes in sequencing
accuracy and gene model curation over that period.

2.) Theauthors shoulddiscusstheirfindingsin light of the recentset of work on ‘Genetic paradox
explained by nonsense’; https://www.nature.com/articles/d41586-019-00823-5
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We've read this paper with great interest, but unfortunately the proposed mechanism cannot
be assessed using genetic data alone. We have added a note about this paper to the
discussion: “However, some additional error modes may still exist, and indeed, several

recent experiments have proposed uncharacterized NMD-escape mechanisms®’.”

3.) Adda paragraph how many LoF allele humanindividuals carry on average, per population per
frequency range

We have added a summary of this information as Supplementary Table 16, and a full
breakdown in Supplementary Datasets 8-9.

4.) The author should considerflagging genesforwhich the majority of pLoF variants appearina)
smallerallelicfractionsindication somatic/mosaicstate; b) in >average aged individuals. Both would
be veryindicative for ‘drivers of clonal hematopoeisis’; and may prevent false interpretations of
pLoF ingenes like DNMT3A, ASXL1, TET2 (whichin germline may very wellcause severe
developmental diseases caused by AD mutations) as well as flagging up novel genes with asimilar
mechanism and biology.

This is a great suggestion. We have previously shown that pLoF variants in ASXL1 are very
clearly found in older individuals and at lower allele balances in EXAC®, but haven’t
systematically explored the impact of CHIP using gnomAD. We have now performed a full
analysis of this phenomenon and added a section to the supplementary information, “Genes
affected by clonal hematopoiesis®. We searched for genes in which LoF variants were
present at lower allele balances in older individuals compared to synonymous variants. This
analysis confirmed that significant signals of clonal hematopoiesis of indeterminate potential
(CHIP) are present in the known CHIP-associated genes DNMT3A, ASXL1, and TET2, but

did not reveal any novel genes passing a genome-wide significance threshold with a similar
mechanism.

5.) Can the authorsdescribe for which genes/exonsthe WGS vs WES data improve sensitivity (‘dark
areas’ of exomes)?

Anothergreatsuggestion - this prompted us tolookinto how genomes add power even within
protein-codingregions. We have now computed foreach gene the proportion of basesthatare well -
covered (20x in at least 80% of the samples) foreach of the sequencing platformsin gnomAD. We
have added a sectioninthe Supplementary Material explaining how this was computed, showed
overall resultsin Supplementary Figures 4-5, and have released afile with coverage summary for
each gene and each platform (https://storage.googleapis.com/gnomad-public/papers/2019-flagship-
lof/v1.1/summary_gene_coverage/gencode grch37 gene_ by platform_coverage summary.tsv.gz).
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6.) Cantheauthors provide dataon compound heterozygous state of pLoF variantsinindividuals?
This would be very informative fora) adding sensitivity that gene that can/cannot tolerate complete
Kos; b) show alleles for which frameshifting variants are rescued by other frameshiftingincisin
orderto restore the reading-frame.

Analyses of compound heterozygosity require large-scale inference of variant phase, which
is a worthwhile analysis, but one that will require substantial dedicated work and that we
believe falls outside the scope of this paper.

However, we completely agree that the degree to which frameshifting variants are rescued
by other frameshifting variants in cis is worthwhile, and we have generated the list of such
indel pairs up to 30 bp distance each other. These have been made available at
https://storage.googleapis.com/gnomad-public/release/2.1/frame restoring indels.tsv. As we
felt these analyses were better suited to our companion manuscript on multi-nucleotide
variants™, we have also added a figure setto that manuscript to describe the basic property
of suchindel pairs, such as:

- The proportion of in-phase indel pairsis very low when the distance is >30 bp

- The most common pattern of frame-restoringindels resultsin Obp insertion/deletion (e.g.

4bp deletion +4bp insertion)
- suchindel pairs are most commonly foundin HLA genes
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Figure S3 (of the gnomAD MNV paper) *°. Properties of frame-restoring indel pairs

a, The numberofindel pairs (orange =all, blue = phased) is shown as a function of distance between
theindels. We setthe threshold distance to be 30 as there are relatively fewindel pairs past this
distance. b, The distribution of the distance between indel pairs resulting in frame restoration
(exome only, same forc™h). ¢, The distribution of the resultinginsertion or deletion length for frame-
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restoringindel pairs. d, The number of frame-restoringindel pairs pergene, and the list of genes
with more than six such variants. e-f, The allele count distribution of frame-restoringindels (e) and
the distribution of allele counts divided by the maximum allele count of constituent SNVs (f). The
valueisexactly 1 (implyingLDr” = 1) for 81.5% of overall frame-restoringindel pairs, suggesting that
majority of such indel events are likely the result of one mutational event. g-h, The mean LOEUF
(constraint) score (g) and the fraction of LoF-constrained genes for frame-restoringindel pairs (h),
percombination of LOFTEE filters of the constituentindels.

7.) Nexttothe CNV/SV datasetin preparation (Collinsetal.); have the authors compared LOEFF
decile genes foroverlap with CNV morbidity map (Eichlerlab; Cooperetal and Coe et al.); and HI
scores by the Hurles lab?

The SV companion manuscript' has a comparison of the SV calls with the CNV morbidity
map, and we have previously compared our constraint metrics to the HI scores from the
Hurles lab and find a high correlation (Supplementary information of ).

8.) Itwouldbeveryinterestingtounderstand whetherthere are genesthatare exclusive or
enriched for certaintypes of pLoF. E.g. are there genes that show stop-gains only but no frameshifts
or essential splice site pLoF?

Most genes, especially highly constrained genes, have fewer than 5-10 observed pLoF
variants per gene, and thus, a systematic comparison within a gene across the three classes
of pLoF variants is likely to be underpowered for most genes. For genes with many pLoF
variants, many of these are likely to be false positives and a systematic assessment would
yield primarily signals related to false positives (especially enrichment of indels at repetitive
sites). While this analysis would be interesting, we think it will require a larger sample size
and further improvements in variant filtering before the results are meaningful.

9.) ArethereanyspecificplLoF allelesthatare significantly enriched in certain populations? E.g. are
there any population specific PCSK9-like alleles?

There are many pLoFs that are private to each population and it is quite difficult to assess
the biological importance of enrichments of any given variant in the absence of associated
phenotype data. The vast majority of pLoF variants are rare, found in one or only a few
individuals (typically from the same population). Thus, the QQ plot for enrichments would be
hyper-inflated, the multiple testing burden of such an analysis exorbitant (0.5M variants * 7
populations), and the interpretation of results very difficult.

10.) How many isoform specificeffects are (not) re-solved by transferring from hg19 to hg38?
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As this analysis was performed on hgl9, we have not yet assessed the improvements added
by alignments to hg38. The next gnomAD dataset will be natively aligned to hg38, which will
enable comparisons of the two references.

Minor issues that may further improve the manuscript:
1.) Line56: “model of human mutation”isn’t this rather “mutation rate”

2.) Line91: Mentionsomaticevents (and differencesin tissues source)as a source of ‘false positive
germline events’

3.) Line 161: Please add an explanation and citation to the synonymous methylated CpGvariants —
as the most mutable site of the human genome.

Thank you - these are now all corrected (the last of these is now: “These variants reflect the
expected patterns of variation based on mutation and selection: we observe 84.9% of all
possible consistently methylated CpG to TpG transitions that would create synonymous
variants in the human exome (Supplementary Table 14), indicating that at this sample size
we are beginning to approach mutational saturation of this highly mutable and weakly
negatively selected variant class”).

4.) Line 169 (and ext.fig4): The authors should be able to model the amount of exomes/genomes
required to robustly reach saturation across all mutational contexts.

This is definitely possible, and in fact we have previously described a method of modeling
and predicting variant saturation at different sample sizes (up to 500K) and applied it to
EXAC data (see *?, and especially Figure 1b).

5.) Lines237-238: Couldthe authordefine how much the refined model and the increased sample
size tothe improved power?

Unfortunately not - while we agree that it would be useful to understand the relative impact of
these two factors, it would be very expensive in computation and reformatting labor to re-run
the new model on older data or vice versa.

6.) Line475: change “sex aneuploid” to “sex chromosome aneuploid”.

7.) Figure 6b: define “mu”inlegend.
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These are now spelled out.

8.) Supplement: page 4; why was coverage capped at 100x, and are there any adverse effects
expectedforcapping?

The coverage was capped at 100X for efficiency of computing coverage; we have now
added a note to this effect in the supplement. With respect to adverse effects, the effects of
coverage on constraint calculations is shown in Extended Data Fig. 6e, and there is very
little effect even above 50X.

9.) Supplement: page 46: some references are not formatted correctly atfirst citation (Hamdan;
Lelieveld).

Thank you - these are now corrected.
Referee #4 (Remarks to the Author):

In, “Variation across 141,456 human exomesand genomes reveals the spectrum of loss -of-function
intolerance across human protein-coding genes”, Karczewskiet al. describe a compilation of variants
inexome and genome sequence datafrom over 100,000 individuals assembled from avariety of
projects. Theyfocuson predicted loss-of-function (pLOF) variants inferred to eliminate protein
production, and describe pipelines to effectively remove erroneous pLOF variants. Theythen
quantify the extent of observed pLOF variation across populations and genes, asses the relationship
between pLOF and transcript expression, and define pLOF gene-leveltolerance scores forapplication
inhuman disease genetics.

In general, this work is of high technical quality (afew minor comments are provided below).
Further, the authors are to be commended for their efforts to not only make the data publicand
usable butalsoto publish software to generate/parse/filter/etc. GhomAD/EXAC has beenahighly
impactful resource and thisiterationis likely to continue in that regard.
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However, my high-level opinion is that while the underlying resource is impressive, this
manuscriptis a narrow one documenting only incremental advances over previous work.
The novelty here is largely due to the increased sample size and in refinements to the
methods, e.g., the machine learning approaches to filter variants and the model to infer
mutability, but the key concepts and conclusions have been previously published. For
example, a key message in this paper, i.e., that mutational tolerance scores usefully
separate genes according to phenotypic relevance, is similar to that of Petrovski et al.,
published in 2013. The distributional shifts presented here in Figures 3a,c,d and 5a, are
similar to those shown in Petrovski et al. Figures 2 and 3; in fact, Petrovski et al. used nearly
identical types of genes to make the same point (i.e., haploinsufficient, mouse-lethal, OMIM-
dominant, OMIM-recessive, and neurodevelopmental-disorder genes). This manuscriptis
part of a large group of studies that use related methods and lead to similar conclusions
about the inference of selective tolerance as a means to identify pathogenic variation (non-
comprehensive examples beyond Petrovski et al. include Fu et al. 2013, Samocha et al.
2014, and Gussow et al. 2017).

Thus, the difference between this and previous work is of degree notkind. Towards thatend, this
analysis does not systematically and precisely measure improvement over previous work, noris
there a systematicdelineation of the effects of the various sources of improvement described. For
example, whilesample size isanalyzed in relation to variant saturation, no comparison of LOEUF
gene group separation efficiencies (e.g., haploinsufficient, essential, ID/DD, etc) at various sample
sizesis demonstrated. Similarly, the variant filtering and mutability models developed here are not
contrasted with other models provided the same input data(e.g., RVIS on the same set of pLOF
variants), norare the effects of the differing refinements described here measured asisolated
components(e.g., LOEUF on VQSR vs machine-learning-filtered variants or a simple mutability model
vs a CpG/methylation/etc-defined model). While I find it highly likely that the results described here
are non-trivially more powerful for separating genes known to be relevant to phenotype fromthose
that are not, the improvements are likely to be modest; the more important, pragmaticeffecton
gene discovery perseislikelytobe evensmallergiven that there is not a strict monotonic
correlation between the distributional separations benchmarked here and novel disease gene
prioritization effectiveness.
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While the overall concepts of LoF annotation and constraint have been previously described,
we have added substantial variant filtration improvements (e.g. the RF filtering process and
LOFTEE) and methodological improvements (such as changes to the underlying mutational
expectation model, and the development of LOEUF, a continuous form of the previously
published concepts; e.g. pLI). In combination with more than doubling the underlying
sample size, these changes have considerably increased the resolution for the detection of
LoF constraint in human genes.

A systematic assessment of the relative impact of each of the filtering and model
components (and their combinations) would be extremely time-consuming. However, we
have added a comparison of LOEUF to RVIS, which is described in the Supplementary
Figure 10: while we could not find the RVIS code to run on the exact same set of pLoF
variants, we used the publicly available setof RVIS scores on gnomAD variants that was
available at http://genic-intolerance.org (RVIS_Unpublished ExXACv2_March2017.txt
downloaded on July 15, 2019). Further, we computed the effect of increasing sample size on
LOEUF, which is now shown in Supplementary Figure 11.

Comparisonto previous metrics of essentiality

We compared LOEUF to previous metrics of genicessentiality, including pLland RVIS. pLI
was computed on the gnomAD exome variants in this manuscript as described previously' and RVIS"
scores for gnomAD were downloaded from http://genic-intolerance.org/
(RVIS_Unpublished_ExACv2_March2017.txt downloaded on July 15, 2019). We selected two gold
standard datasets for comparison: 1) the haploinsufficient gene list described in “Gene list
comparisons”,and 2) a union of the mouse heterozygous lethal and “cell essential” gene lists
described in “Mouse and cell model comparisons.” Using the se genes as “true positives” and all
othergenesas “negatives,” we created receiver operator characteristic (ROC) curves foreach
method and computed the area underthe curve (AUC) as a performance assessment. LOEUF
substantially outperforms RVIS for both gold standard sets, and performs similarly to pLI for
identifying haploinsufficient genes and outperforms pLl for essential genes (Supplementary Fig. 10).
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Supplementary Figure 10 | Comparison to other gene essentiality metrics. ROC curves
for each gene essentiality metric, for discerning haploinsufficient genes (a) or mouse
heterozygous lethal or cell essential genes (b).
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Performance as a function of sample size
We repeat the ROC process described above for each of the computed LOEUF scores for

each downsampling of gnomAD and find that the performance of LOEUF is dependent on sample
size and not yet saturated for identifying haploinsufficient genes (Supplementary Fig. 11).

Supplementary Figure 11 | Performance of LOEUF by sample size. Area under ROC

curve (AUC) for LOEUF computed for various downsamplings of gnomAD, for discerning
haploinsufficient genes (a) or mouse heterozygous lethal or cell essential genes (b).
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Otherkeyresults, such as those related to the contribution of errors to pLOF variantsand the
relationship between nonsense variants and expression are also conceptually similar to previously
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published studies, including some by many of the authors here (e.g., MacArthuret al. 2012, Bartha
et al. 2015, Rivasetal. 2015, Balasubramanian etal. 2017, Ganna etal. 2018).

As the reviewer previously noted, we are committed to rapid, open-source release of
methods. This manuscript describes in detail the LOFTEE filtering strategy and software
package, which, while it was used in previous work due to being freely available for years
ahead of publication, has not yet been published in its current form. While LOFTEE
implements many of the filters previously described, there are a number of optimizations,
including a conservation-weighted base truncation scheme, splice-rescue variants, as well
as the inclusion of non-canonical splice variants, that have not been previously described.
We have now added a note about the splice rescue variants in the main text, and these are
described in Extended Data Figure 7 and Supplementary information.

The preexisting literature on de novo variationin ID/DD, another highlighted resultin this
manuscript, is too extensive to concisely summarize or cite here, butitis safe to say thatthe key
results here (e.g., Figure 5a) have already been seenin numerous studies that use related
approaches and similar data.

While we agree that the enrichment of de novo variants in DD/ID patients has been
previously described, the enrichments here are stronger than those in previous works, partly
as the continuous nature of LOEUF permits the finer-grained exploration of highly-
constrained genes.

| am not arguing that this manuscript offers nothing distinctive relative to the othercited
manuscripts (and the otheruncited manuscripts likethem). Indeed, I find it likely that there are
benefitstothe increased sample size and methodological refinements described here. However,
these differences are not systematically and precisely quantified, and evenif they were | do not
believethey would be conceptually or pragmatically large.

There are also some key details and points outsourced to accompanying manuscripts cited as being
in preparation, including Cummings etal., Collins etal., Minikel etal., and Whiffin etal., suggesting
resultoverlap that furtherundermines uniqueness and novelty here. While not cited as such, it
appearsthat these manuscripts are available on Biorxiv (in my opinion, “in preparation” or “data not
shown” citations are intrinsically inhibitory to meaningful review and should not be used). After
readingthese related Biorxivdocuments, itis clear that these manuscripts as a group overlap
extensively with one another, even beyond the fact that they are all derived from the same
underlying genome/exome data. Considerthe following (non-comprehensive) examples:
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While all of the manuscripts in the gnomAD package are now available on bioRxiv, they
were not live (and thus couldn’t be fully cited) at the time of submission of this manuscript.
We respectfully disagree with the proposed examples of redundancies between the papers
(see below for specific responses). In fact, we find it a strength that the dataset can be used
in different fashions and achieve consistent and consistently powerful results with multiple
complementary approaches.

1. LOFTEE is a core method inthis manuscript, Cummings et al, and Minikel et al., being used to
provide the refined data product (collections of error-depleted pLOF variants) that drives key
conclusions across all three manuscripts.

In these three papers, we describe three different strategies with different datasets and
audiences. In Cummings et al., we describe the use of orthogonal expression (GTEX) data to
improve variant, including pLoF, annotation. This is applied to the gnomAD dataset as it is
the largest genetic variant dataset in existence, but is multi-purpose and could be adapted to
any expression or genetic variant dataset. The methods described in Cummings et al. have
almost no overlap with the methods described here, as they relate primarily to gene
expression analysis. Meanwhile, Minikel et al. uses some of the data and results described
in this paper to perform a detailed exploration of the use of pLoF variation for drug target
discovery and validation, which falls well outside the scope of this manuscript. The fact that
the same underlying data set and harmonized quality control and filtering approaches were
used in these three papers to perform conceptually distinct analyses is, we would argue, a
strength of this manuscript package rather than redundancy.

2. Much of the textin Cummings etal. is thematically highly consistent with key resultsin this
manuscript, namely expression levels and distribution in relation to pLOF variation, both real and
erroneous. Note, forexample, content overlap between Cummings Figure 3 and Karczewski 4b-c
and overlap between Cummings Figure4and Karczewski 2a.

Fig. 3 in Cummings et al. describes the MAPS score for variants in genes falling into each
LOEUF decile, which is then split out by the proportion expressed of the variants. Fig. 4b in
this work describes the proportion of tissues where the genes falling into each LOEUF
decile, while 4c describes the percent of expression that derives from the constrained
transcript (vs unconstrained transcripts). There is no overlap in these figures except the x-
axis in the former, and the words “proportion” and “expressed” in the latter.

Fig. 4 in Cummings et al. and Fig. 2a here show the proportion filtered by variant
classification by different methodologies. While these are conceptually similar, showing that
a method filters more common variation than gold standard disease variation is a common
way to assess the performance of a metric for binary metrics (as ROC curves are for
guantitative metrics).
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3. Figure 1 from Minikel etal.issimilarto Figure 2 inthis manuscript, drawing from the same
data and presentingvery similarresults (e.g., compare Minikel 1cwith Karczewski 2c-d). Minikel
Figure 1 furthermore appearsto be very similarto Extended Figure 5f-hin this manuscript; all these
panels are scatter plots showing observed and expected counts of variants, subset by the same
varianttypes usingthe same coloring scheme, and whose key conclusionis toindicate gene or
transcript-level constraint differences on different categories of variation.

Fig. 1 in Minikel et al. was indeed similar to Extended Data Fig. 5f-h, which is in turn similar
to Extended Data Fig. 5in *. These are meant as orienting figures to illustrate the observed
and expected models, which is why they are in the Extended Data Figures for the latter two
cases. Minikel et al. has now been restructured in review, and this figure has been removed
from that manuscript.

4, Collins Figure 6b and Karczewski 3b both appearto use the same data and lead to similar
results, namely the correlation between rates of structural variant observation and constrainton
pLOF SNVs.

Indeed, these figure panels do have a substantial overlap. However, in this manuscript, the
panel is intended as a high-level summary of the SV result, and to orient readers that a
companion manuscript describing structural variants is available, as the focus in this
manuscriptis SNVs and indels. In Collins et al., the result is further expanded on in
comparison to other SV types and constraint metrics in order to draw conclusions about SVs
that are not relevant to this manuscript.

While these examples of overlap are not plainly duplicative of one another, they tend to provide
only mildly different perspectives on the same data and ultimately lead to similar high-level
conclusions. Ingeneral, there are extensive redundancies across these five manuscripts,including:
shared raw, intermediate, and endpoint datasets; shared methods forvariant calling and filtration;
similarindividualresults and figures; and shared high-level conclusions.

Thus, while lunderstand that “lump/split” decisions for manuscripts stemming from large team-
driven genomicprojects can be challenging, itis my opinion that the split decisionsin this case
resultedinatoo thin manuscript that provides onlyincremental impact relativeto both previously
published and concurrently submitted papers. However, | find it likely that a more comprehensive
manuscript that combines key points here with those from the companion manuscripts would be
both more reader-friendly and more impactful. It could benefitfrom elimination of the
redundancies and better highlighting of those results which are truly new. Itwould also provide a
more cohesive description of GhomAD, the conclusions one can derive fromit, and the impactit can
have as a resource.
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This manuscript is intended as a flagship manuscript describing multiple advances, including
of the gnomAD dataset, sample and variant filtration, variant filtration using LOFTEE,
improvements to the constraint process, and LOEUF. At its current length, it already includes
a full manuscript, 26 figures, 21 tables, and 80 pages of supplementary material: lumping in
the additional full-length manuscripts (which each have their own message and audience)
would considerably increase the length and correspondingly, diffuse the focus of this
manuscript. We also note that a degree of interdependency and consistency of ideas
between papers is a necessary aspect of a manuscript package.

Minor technical comments:

Additional details on the “established genelists” that drive key results are needed. While agithub
linkis provided, precise descriptions of how they were defined need to be inthe manuscriptor
supplement, along with adiscussion about how theirascertainment may influence the correlations
and trends observed. Thisis particularly true to the extent thatthere are any manual curation steps
and to the extent thatthere may existimplicit or explicit circularities. If, forexample, datafroma
previous generation of ExXACwere used to defineagiven list of genes, then the results presented
here might be at least partially tautological. On a related note, who performed these curationsand
to whatextentdid they also perform the analyses presented here? | do notdoubt the general
veracity of these results. However, to the extentthat this manuscriptis refiningmethods/data and
not providing conceptuallynew approaches, precisely estimating the actual magnitude of individual
refinementsis particularlyimportant; thus, any relevant biases in the use of these gene listsas a
measure of performance should be removed or controlled for. Ideally, gene lists defined and
curated by an independent group andin the absence of ExAC data would be used as validation (e.g.,
those usedin Petrovski etal., which predate theseanalysesand, | believe, the existence of ExACas a
publicresource).

The gene lists used are the same as those in the EXAC paper, and thus predate the EXAC
and gnomAD resources, and we have added a note to this effect in the Supplementary
Information. The data were curated by other groups, and those who did the analysis here did
not feed back results of these analyses to the curators.

Similar question relates to the process by which OMIM genes were defined as being discovered from
WES/WGS vs linkage. Was thiswork done manually? How doesitcompare to otherefforts (if any)?
What about cases in which a combination of both linkage and WES/WGS were used? As per above,
the effects of circularity are relevant here given the fact that ExAC has explicitly (e.g., by contributing
to variantfiltration) and implicitly (e.g., via use of intolerance scoresin VUS evaluation) helped to
identify some of the WES/WGS-discovered genes; this will likely be difficult to account for but clearly
may confound the interpretation here.
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The genes were automatically curated as previously described™. This is now clarified in the
supplement: “These genes were further filtered to those causal for monogenic conditions
and divided (as in Chong et al., 2015™) into those discovered by whole-exome/whole-
genome sequencing (WES/WGS) or previous techniques, such as mapping using linkage or
large recurrent chromosomal microduplication/microdeletions, followed by candidate gene
sequencing.” We are aware of no other efforts to curate OMIM data in this manner
(OrphaNet does not record any information about discovery). With respect to circularity,
these data were not shown in the original manuscript, but we note that the decrease in
LOEUF scores begins in 2012 and remains for years afterwards, predating EXAC (first
released in October 2014) and especially its widespread use, as can be seen in this figure
below. A further analysis of this curated dataset shows a post-WES/WGS era enrichment for
gene-disease relationships attributable to de novo variants, supporting our claim here
[Bamshad et al., 2019; AJHG in press].

[redacted]
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ReviewerReports on the First Revision:
Referee #1:
Overall the authors were responsive to my comments, and the manuscript is much improved.

My remaining major comment is that I continue to struggle with LOEUF as a metric. I don‘t believe
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that it fully sunkin for me on my first read how conflated LOEUF is with gene length. I understand
why you are doing it this way (i.e. using LOEUF instead of o/e), but there needs to be more
transparency and care on this point. pLI may be disguising variability in intolerance, but LOEUF is
disguising gene length as a confounder on confidence, and that needs to be discussed more
explicitly.

First, you need to show the relationship, e.g. as a box plot of gene lengths for LOEUF deciles.
Ideally this would be a main text panel.

Second, the fact that short genes tend to be given low LOEUF scores just because they are short
needs to be made more explicit. The new sentence at line 273-275 is poorly written, and
practically should be its own paragraph (that cites the above requested figure).I can see low
LOEUF telling you something about constraint. But high LOEUF doesn’t seemto tell you much of
anything, as it conflates “not under constraint” and “too short to say anything meaningful”. I
would really like to see a main text full paragraph acknowledging and quantifying this limitation
and its consequences.

Third, you do take care to control for length in some but not all of the subsequent analyses that
use LOEUF. For example, throughout Fig. 3 (and Fig. 5 as well, perhaps?; possibly otherfigures,
I'm just using these as examples), I recognize that the result is very likely to hold up, but it seems
relevant to state whether or not there are differences in the gene length distribution between the
classes of genes being compared. This would also help reinforce the point to the readers that
paying attention to gene length is key. The authors should carefully go through the manuscript
and make sure that all LOEUF-dependent analyses control for gene length.

Minor:
79 - “many of which” should be “"most of which” or “the vast majority of which”.

268 - It may be worth emphasizing more that the shape of EDF7a suggests a flattish rather than
dichotomous distribution of o/e, which argues for o/e (or LOUEF) over pLI.

Referee #2:

In this manuscript version, Karczewski and colleagues make substantial improvements to the
original manuscript. I think the authors have done an outstanding job responding to the comments
of four reviewers, who clearly all came at this manuscript with different perspectives.Iam
especially pleased with the quality of the figures in this version of the manuscript. They are much
clearer and easier to follow. I support publication of this article. Below, I note a couple of very
minor issues.

line 236: Perhaps this was just me, but I had to read this sentence a few times to grok what was
going on. I think it may benefit from clarifying that the 1,555 was in all populations (I think).

ED Figs. 4 and 6: I think these figures could benefit from a bit more padding between figures. The
x-axis labels on the top graphs start to blend into where titles might be for the lower graphs. It
took me a few minutes to orient here, and I think a bit of extra padding would help with this.

Supplement p. 4: "We mapped reads onto the human genome build 37...” Please specify the
source for this specific set of FASTAs, as well as the decoys (ifany) that were used for the
alignment. And, thank you for clarifying assembly name usage (GRCh37) throughout the
manuscript.

Supplement p. 51: Apologies if I missed this, but I didn't see a reference to a figure or data table
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this section was referencing. You seem to have this in other parts of the supplement, and it is very
useful to have that reference when going through this material.

Referee #3:

In their revised manuscript the authors have addressed most of my concerns and have
significantly improved their manuscript during revision. They have also addressed valuable points
raised by other reviewers, which again has led to an overall improved manuscript.

In particular, they have added valuable data following my suggestions:
- Suppl. Figs. 10 and 11 to show theincreased power of the current dataset;
- Suppl. Table 17 (and respective datasets) show #pLoF perindividual;

- The novel analysis on CHIP (Suppl. Table 16 and accompanying datasets) are valuable new
data/analysis;

- A comparison of the added value of WGS over WES even for coding regions, summarized in
Suppl. Figs. 3 and 4 (not as stated in rebuttal letter SF 4 and 5); also the provided list of
coverages per gene (https://storage.googleapis.com/gnomad-public/papers/2019-flagship-
lof/vl.1/summary_gene_coverage/gencode_grch37_gene_by_platform_coverage_summary.tsv.gz
) is valuable to the community;

- The authors have added‘allele rescue by subsequent frameshifts’ to the accompanying paperon
MNVs.

While the overall quality has further improved, I see further improvements opportunities, i.e. here
a few suggestions for minor revisions:

- It would be interesting to state in the main text that the number of LoF variants perindividual is
constant since the 2012 paper. This should be further specified in: total # pLoF, of which so many
common, rare and private (as now shown in Suppl. Datasets 8-9; incorrectly stated in rebuttal
letter to also be contained in Suppl. Table 16 — which in fact contains the CHIP data; should be
Suppl. Table 17). (refers to rebuttal point 3.)

- Concerning the CHIP analysis (Suppl. Table 16) the authors should mention that
missense/activating mutations have not been subject of the current study, but are a known
important contributor to the CHIP phenomenon. The authors should also clarify that the age used
was ‘last known age of the individual’ rather than ‘age at sampling’. The authors conclude that no
novel genes have beenidentified as such strong candidates as ASXL1, DNMT3A, and TET2. This,
however, is not expected, as these have been known to be the three strongest drivers of clonal
hematopoiesis. The power of the current dataset, however, should pinpoint other important but
less strong drivers. Can the authors comment on the genes that show significant KS test and
Moods median test p-values (<1.4x10-6) but‘only’ an age difference of 55 vs 50 years? These are
e.g. SHROOM3, EPB41L4A, CYP4B1, AMPD1, OR5K2, ANKDD1B, FAM58A, KRTAP4-8. (refers to
rebuttal point4.)

- While I agree with the authors that true compound heterozygosity requires large-scale inference
of variant phase, itis, however, safe to assume that every individual that carries 2 pLoF variants in
the same gene hasa 50% chance that this is in cis or trans. Already having the information
whether 2 rare/private LoFs are from the same or two independent individuals can be very useful;
and this could significantly enrich the list of genes for which homozygous KOs have been (never)
observed. (refers to rebuttal point 6.)
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- While I can understand that the power is lacking to distinguish the three classes of pLoF, adding
a simple ratio of stop, fs, splice-site would be useful to the reader. (refers to rebuttal point 8.)

Referee #4:

I have read through the response to reviewers. In general, the authors have been thoughtful and
responsive to reviewer comments; there are no major concerns about the technical quality of the
data, and the impact of the resource as a whole has been and will continue to be high.

However, I still am not convinced that the narrow focus on LOF variation is the most effective
choice for presenting this work; within the current scope of this manuscript, the conceptual novelty
is minimal and the technical novelty is modest (e.g., Supp. Fig. 10). I continue to think that the
key results here should be combined with the distinct key results from the other GnhomAD-related
papers. Isimply don't agree that the three overlapping papers use “different strategies with
different datasets and audiences”; the redundancies, ranging from nearly literal duplication to
conceptually similar even if technically distinct, remain extensive. While I understand the authors’
concern that the current manuscriptis already long, my concern is not related to length but
novelty and impact. Further, a combined manuscript that highlighted the truly distinct parts of
each paperand collapsed the redundant components would be substantially more concise than the
summed length of the current collection of manuscripts. So the net effect would be to shorten
rather than extend, in addition to better highlighting the truly novel elements.

That said, the nature and structure of the Nature-published form of these manuscript(s) is an
editorial consideration about which I am happy to state my opinion and move on; I don‘t see a
need for further rounds of revision or review.

Referee #5:

The manuscript by Karczewski et al. entitled "Variation across 141,456 human exomes and
genomes reveals the spectrum of loss-of-function intolerance across human protein-coding genes"
describes an impressively large-scale catalog of harmonized genetic data that was used to catalog
predicted loss of function (pLoF) variants that may underlie rare diseases. This review focuses
more on the software and code behind the manuscript than on the manuscript itself. The authors
have done a laudable job of making all the code and data publicly available and provided ample
documentation; however, I have two concerns: the authors do not have a unit testsin their
python-and perl-based GitHub repositories that can be used to automatically review their code,
and my attempts to reproduce the figures in R were unsuccessful due to a number of warnings and
errors. I believe these concerns can be quickly resolved and will greatly improve the ability of
others to reuse orreproduce the data and the analyses. It is worth noting that my lack of
experience using the Google Cloud Platform Dataproc cluster limited my ability test Hail and the
LOFTEE software in the cloud, so an additional review by someone who is familiar using these tools
on the Google platform might be worthwhile.

Specific comments

The gnomAD browser (https://gnomad.broadinstitute.org/) accompanying the manuscript has a
very nice userinterface. I was able to easily view pLoF and other variantsin my favorite genes.
This web-browseris an excellent resource for those who wish to use a GUI to explore the data
(e.g. clinicians, teachers, students, members of the who lack the computational expertise to sift
through the raw data).

As described in the manuscript, all data processing and analyses were performed using Hail
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(https://hail.is/), which is an open-source, Python-based library. The documentation for Hail 0.2 is
very thorough, and I was able to successfully follow the local installation instructions and the
GWAS tutorials with relative ease. This speaks very well for the potential to reproduce the
analyses described in the manuscript. However, I was not able to install Hail on the HPC system I
normally use (Stampede 2 at the Texas Advanced Computing Facility) norwas I able to install it
the Cloud Platform Dataproc cluster (https://cloud.google.com/dataproc/) used by the authors. I
am a first time Google Cloud user, so this doesn't really surprise me.

The hyperlinkon p. 30 is a dead end. “The filtering frequency described previously13 is
implemented in Hail
(https://hail.is/docs/0.2/experimental.html#hail.experimental.filtering_allele_frequency).

In addition to the detailed supplementary materials, some of the co-authors wrote a blog post
(https://macarthurlab.org/2018/10/17/gnomad-v2-1/) that provides a detailed walk-through of
the scripts and the variables used to generate many of the figures in the manuscript. This is also a
valuable resource for anyone wishing to reproduce the analyses.

I am concerned that none of the three repositories listed in the "code and software checklist" have
clearly marked tests thatcould be used to automate the process of code review. I did find tests in
https://github.com/macarthur-lab/gnomad_hail; however, this repository was not listed as critical
to the manuscript. Also, it appears that these error messages are sent to a slack channel, which
would be highly useful if you were a member of the slack channel but not so useful to someone
outside the McArthur lab group.Iam aware that the authors consider these repositories to be a
collection of scripts rather than a software package; however, because the README files
encourage others to use and modify the code, it would be very useful if the authors could add
continuous integration (like Travis-CI (https://travis-ci.com/), which would allow automated
testing when changes to code are made, and the addition of a badge (or shield) to the repo’s
README would give new users confidence that the code is working as expected.

The “gnomad_qc’ repository is well organized, and the functions are well documented. This
workflow describes in the repository corresponds nicely to the "Sample QC” section of the
supplementary materials, so I could identify which functions correspond to steps outlined in the
methods section. This repository also corresponds to ED Fig. 1, but I find this figure to be more
confusing than helpful. It's not immediately obvious that the terse bullet points map onto the
arrows between boxes. It would be more useful if panel 1a was broken down into panels 1a-g and
if each arrow was labelled with the function(s) that is used to perform that action. By giving each
step its own label, you can remove the text in the middle and more precisely refer to read to that
specific part of the figure when describing the workflow in the methods section.

In “gnomad_qc/sample_qc/apply_hard_filters.py” on line 13, the authors use “cutoff of F<0.5 for
females and F>0.8 for males for genomes”; however, on p. 8 of the suppl. methods, the authors
state “For genomes... samples with F > 0.8 were classified as male and samples with F < 0.2 were
classified as female.” Which is correct: 0.2 or 0.5 for females?

In “gnomad_qc/sample_qc/apply_hard_filters.py " on line 31, the authors refer to a metadata file
that by given to them by a colleague. Is this metadata public? Can it be referred to by a DOI? How
does this comment about the peculiarity of the metadata affect the ability for someone else to
remix or reuse this pipeline?

The R code in “gnomad_lof/R" is also well written and well documented. I especially like that all
the libraries, custom aesthetics, custom functions, and aliases use are located in *constants.R".
This file does need to be sourcedin "all_figures.R" for the contents to be loaded in the
environment before generating the figures.

Of the 30+ R packages used, I had to installabout 10 libraries. One way to make this repository
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more reproducible would be to use Binder to create a shareable, interactive environment in the
cloud following the instructions described at
https://mybinder.readthedocs.io/en/latest/sample_repos.html#specifying-an-r-environment-with-
a-runtime-txt-file.

“figure1()" did not return a figure. The error message was:

Errorin download.file(url, fname) :
cannot open URL ' https://storage.googleapis.com/gnomad-public/papers/2019-flagship-
lof/vl.0/summary_results/observed_possible_expanded_exomes.txt.bgz'

I went directly to that link in a browser and was told there was “No such object”.

“figure2()", “efigure5()’, " efigure6()" did return pdffiles, but they had not content. There was
no

“figure3()" did not return a figure. The error and warning messages were "Error: “by’ required,
because the data sources have no common variables”™ and “Unknown levels in “f* : all_ar, all_ad".
For this figure, I was able to manually run the code inside the functions well enough to partially
generate Fig. 3a (because for some reason my gene_list only contains olfactory genes, so they
were the only genes plots, rather than all three). Additionally, I think traced the errorto
“left_join(load_all_gene_list_data())" because, in my environment, both “gene_data’ and
“gene_lists® have a column called "gene” that could be used for joining, but somethingis going
awry.

“figure4()" did not return a figure but did return a few warning messages. There first said “we
couldn't map to STRING 0% of youridentifiers”, which I think means all 100% of the strings were
mapped, but the double negative is a little confusing. The second message occurred twice and
said, “At centrality.c:2784 :closeness centrality is not well-defined for disconnected graphs”.

“figure5()" almost caused R studio to crash (as predicted in the README), but my session
powered through. I did get a pop-up message saying “some updates could not be installed
because RStudio interrupted restart. I also don‘t know how to interpret this, but it might help you
debug. As with Fig. 2, a pdffile was created but there were no pages.

“efigure2()” and "efigure3()’ ran successfully and produced png and pdf files that look exa ctly
like the figures in the manuscript. I also like that the authors use “ggarrange()’ and "get_legend®
to reproducibly label and arrange the figures and create a shared legend. On that note, I checked
to see baseRand/orallthe R packages used were cited, and I did not find any citations for the
software. I don’t believe that there is a page limit to the supplementary materials, so it would be
nice to acknowledge these open-source software packages. You can get these from the command
line using, forexample, " citation("cowplot")".

I could not source “efigd_downsamplings.R” because https://storage.googleapis.com/gnomad-
public/papers/2019-flagship-
lof/v1.0/summary_results/observed_possible_expanded_exomes.txt.bgz was not found.

“source('efig7_constraint.R")" overloaded my ram to the extent thatI couldn’t even use the
mouse or keyboard to quit R, so I chose to shut down my computer after a few minutes of
listening to it work at max capacity. This is not good. One solution is to put a disclaimerin a
comment next to this line to warn the user. A second solution would be to optimize the code, but I
do not have a suggestion.

“source('efig8_biology.R')" returned the following error: " Errorin .local(drv, ...) : Failed to
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connect to database: Error: Unknown database 'tcrd520'" .

The GitHub repository " konradjk/loftee’ contains the perl-based, Loss-Of-Function Transcript
Effect Estimator (LOFTEE) package or Hail plugin that is used to filter and flag Loss -of-function
mutations in conjunction with a clinical variation (ClinVar) dataset containing four hundred
thousand variants and a SNV dataset with eight billion variants to annotate the 125,748 exomes. I
do not know how to read PERL, so I can’t evaluate the quality of the code, but the repois well
organized, and the README thoroughly describes the functions. Given the requirements
(SAMtools, human genome, PhyloCSF) I did not even attempt to install the software locally. I
usually run SAMtools on Stampede 2 at the Texas Advanced Computing, so I was going to test it
there, butI couldn’tinstall HAIL on Stampede. I also attempted to test Hailand LOFTEE on the
Google Cloud Platform Dataproc cluster, but I'm a first-time user,and I wasn't able to overcome
installation problems. For review purposes, it would be ideal if someone with Google Cloud
expertise reviewed the software. For training purposes, creating a tutorial (video or blog post)
about how to use LOFTEE with Hail on Google would be very valuable to those looking to use these
tools for new analyses orto reproduce the analyses described in Karczewski et al.

Author Rebuttals to First Revision:

We thankall five reviewers fortheircomments, and have addressed them below. We believe this
has improved the manuscript and especially the usability of the code now and for future projects.

In the process of manuscript revisions we identified an issue with undercalling of some homozygous
genotypes due tolow levels of contaminationinasubset of gnomAD individuals. Thisissue, which
affects a small fraction of genotypes at <2% of the variantsitesin gnomAD, is spelled outin more
detail in a separate preprint [Karczewski etal., 2019]. The affected variants have beenflagged in the
gnomAD browserand data release, and permanent fixes willbe made in a future gnomAD release.

While acomplete fix would require reprocessing the entiregnomAD data set, whichis not viable for
this manuscriptrelease, we have thoroughly reviewed the impact of this error mode on all of the
analyses presentedinthe gnomAD preprints. Fortunately, since the vast majority of ouranalyses rely
only on site accuracy (whichis unaffected) orallelefrequencies (which are only very slightly altered),
thisimpactis extremely modest. We have added a caveat to the two analyses thatare non-trivially
affected by this errormode: the curation of homozygous LoF-tolerant genes (for which some true
LoF-tolerantgenes may have been missed) and the generation of the composite LoF allele
frequency, or CAF, genome-wide (will have beenvery slightly underestimated at asubset of genes).
We believe the remainder of the paperis not materially affected by this error mode.

Referee #1(Remarkstothe Author):

Overall the authors were responsive to my comments, and the manuscriptis muchimproved.
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My remaining major commentisthat|continue to struggle with LOEUF as a metric. | don’tbelieve
that itfully sunkinfor me on myfirstread how conflated LOEUF is with gene length. | understand
why you are doingit thisway (i.e. using LOEUF instead of o/e), but there needs to be more
transparency and care on this point. pLI may be disguising variability inintolerance but LOEUF is
disguising genelength asaconfounder on confidence, and that needs to be discussed more
explicitly.

We thank the reviewerforthese comments - unfortunately, all constraint metrics are confounded at
leastinsome part by gene length. To make this clearforreaders, we have added the relationship
between LOEUF and gene length as an Extended Data Figure panel, clarified thisin the text, and
repeated all analyses with coding sequence length as a covariate, which have all remained highly
significant.

First,you needto show the relationship, e.g. asabox plot of gene lengths for LOEUF deciles. Ideally
thiswould be a main text panel.

We have now added this as a figure panel to Extended Data Fig. 7, as we don’t have any mainfigures
describingthe technical process of LOEUF.

Second, the fact that short genestendto be given low LOEUF scores just because they are short
needs tobe made more explicit. The new sentence atline 273-275 is poorly written, and practically
should be its own paragraph (thatcites the above requested figure). | can see low LOEUF telling you
something about constraint. But high LOEUF doesn’t seemtotell you much of anything, asit
conflates “notunder constraint” and “too short to say anything meaningful”. | would reallylike to
see a maintext full paragraph acknowledging and quantifying this limitation and its consequences.

We have added a new paragraph to discuss this caveat. We have also added some texttothe
supplement discussing Extended Data Fig. 7d, outlining the approaches we’ve taken to reduce the
impact of confounding by gene length on the analyses throughout the paper(described in more
detail below): “LOEUF is correlated with coding sequence length (beta=-1.07 x 10*; p < 10™%;
Extended DataFig. 7d): as a result, we have adjusted forgene length orremoved genes with fewer
than 10 expected pLoFsinall analyses.”

The new paragraph reads:
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“We note that the use of the upperbound meansthat LOEUF isa conservative metricin one
direction: genes with low LOEUF scores are confidently depleted for pLoF variation, whereas genes
with high LOEUF scores are a mixture of genes without depletion, and genes thatare too small to
obtain a precise estimate of the o/e ratio. In general, however, the scale of gnomAD means that
gene lengthisrarely asubstantive confounderforthe analyses described here, and all downstream
analysesare adjusted for coding sequencelength orfiltered to genes with atleast 10 expected pLoFs
(see Supplementary Information).”

Third, you do take care to control for lengthin some but not all of the subsequent analyses that use
LOEUF. For example, onthroughout Figure 3 (and Figure 5 as well, perhaps?; possibly other figures,
I’'mjust usingthese as examples), | recognizethatthe resultisvery likelyto hold up, butit seems
relevantto state whetherornot there are differencesin the gene length distribution between the
classes of genes being compared. This would also help reinforce the point to the readers that paying
attentiontogene lengthis key. The authors should carefully go through the manuscript and make
sure that all LOEUF dependentanalyses control forgene length.

Thisis entirely fair- ourearly analyses made us confident that the LOEUF results describedin the
paperweren’tdriven by confounding, but this was not adequately formally demonstrated in the
paper. We have now reviewed all analyses described in the paper toinvestigate any impact of
confounding by gene length. Our overall findingis that while gene lengthisindeed correlated with a
variety of biological metrics, the correlations between LOEUF and these metricsis generally far
stronger, andis not materially driven by gene length confounding. We have now added a coding
sequence length adjustment tothe supplement forthe main and extended datafigures where
appropriate. These additions are enumerated below:

Fig.3a: There was no statistical test done previously, but we have now added one to the
supplement: “Membership in the haploinsufficient geneclassis highly predicted by LOEUF (logistic
regression beta=-4.3; p = 1.57 x 10**), even when adjusted for coding sequence length (p=0.18 for
the contribution of gene lengthin the joint model). Likewise, membership in the olfactory geneclass
is positively correlated with LOEUF (logisticregression beta=3.4; p = 2.5 x 10®°), even when
adjusted forgene length (p=0.023 for the contribution of gene lengthinthe joint model).”

Fig.3b: We have now adjusted for gene length and added this to the supplement: “The SV -derived
observed:expected ratios are correlated with LOEUF (r =0.13; p = 3.5 x 107"), afteradjusting for
gene length (p=7.5 x 10°® for the contribution of gene length).”

Fig.3c-d: We have added statistical teststothe supplement, adjustingforgene length, forthe
mouse knockout and cell essential/non-essential genes: “Overlap with mouse heterozygous lethality
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was significantly associated with LOEUF (logisticregression beta=-2.27; p = 3.3 x 10°?), evenwhen
adjusted for coding sequence length (beta=3.3 x 10°; p = 0.028). LOEUF isalso correlated with cell
essentiality (logisticregression beta=-1.71; p = 1.7 x 10°*; coding sequence length: beta=2.5 x 10*;
p = 2.4 x10™) and non-essentiality (beta=1.45; p = 3.8x 10”"; codingsequence length: beta=-5.9x
10°%; p=0.84).”

Fig.4b: We have added to the supplement: “Overall, the number of tissues in which a canonical
transcriptis expressed is correlated with LOEUF (linear regression beta=-1.07; p < 10'%°) when

adjusted forgene length (beta=-9.9x 10*; p = 10°* forthe contribution of gene length).”

Fig. 5a and Extended DataFig. 9c: In this analysis, we have clarified in the supplementthat “Genes
were filtered to those with atleast 10 expected pLoF variants.”

Extended DataFig. 8a: We had not previously performed an explicit statistical test for this analysis,
but we have now added a set of tests for each category: “Each of these categoriesis significantly
correlated with LOEUFin a jointlogisticregression model with coding sequence length: Tclin (beta=
-0.78; p =4 x 10*%; cds length: beta=2 x 10°; p = 0.89), Tchem (beta=-0.63; p = 8 x 10°°; cds length:
beta=5x10°; p = 0.68), Thio (beta=-0.99; p < 10™°%; cds length: beta=1.6 x 10”; p = 0.07), Tdark
(beta=1.17; p<10™°; cds length: beta=2.7 x 10”; p = 0.009).”

Extended DataFig. 8b: In a similarfashionto Fig. 4b, we repeated this analysis forall transcripts:
“Similarly, the number of tissuesin which atranscriptis expressedis correlated with the transcript’s
LOEUF (linearregression beta=-5.2; p < 10'°°) when adjusted forgene length (beta=-9.4 x 10°; p =
0.01 for the contribution of gene length).”

Extended DataFig. 9a: We have added a logisticregression model to the supplement for OMIM vs
LOEUF adjustingforgene length: “Inalogisticregression modelwith coding sequencelengthasa
covariate, LOEUF is correlated with OMIM status (beta= -0.69; p = 4 x 10°*; gene lengthbeta=1.3 x
10%; p=1.2x107).”

Extended DataFig. 9b: We have added a logisticregression modelto the supplement for NGS status
vs LOEUF adjustingforgene length: “Within OMIMgenes, LOEUF is correlated with discovery by
WES/WGS compared to conventional approaches (beta=-0.69; p = 2 x 10**) when adjusting for
coding sequence length (beta=7.8 x 10°®; p = 0.54 for the contribution of gene length). “
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Extended DataFig. 9d: We have now filtered this analysistoinclude only genes with atleast 10 pLoF
variants expected, whichis now properly described alongside Fig. 5aand Extended Data Fig. 9c.

Supplementary Fig. 10a-b: We have added a joint logisticregression modelto the supplement: “In
the logisticregression, LOEUFis highly correlated with membership in the haploinsufficient (beta = -
2.6; p=4x10”) and essential (beta=-1.4; p = 1.9 x 10”°) gene lists, inajoint model with pLI (beta=
1.5; p=3x 10* and beta =0.17; p =0.15, respectively), RVIS (beta=-0.18; p = 0.05, and beta = -0.19;
p=1.5x107, respectively), and coding sequence length (beta=4 x 10°; p = 0.92 and beta= -8x 10°;
p=7x 10" respectively).”

Minor:
79 — “many of which” should be “most of which” or “the vast majority of which”
We have modified this statement to be “most of which”.

268 — It may be worth emphasizing more that the shape of EDF7a suggests aflattish ratherthan
dichotomousdistribution of o/e, which arguesforo/e (or LOUEF) over pLI

We have added a clause in the main text “that the distribution of o/e is not dichotomous, but
continuous”.

Referee #2 (Remarks tothe Author):

In this manuscript version, Karczewski and colleagues make substantial improve- ments to the
original manuscript. | think the authors have done an outstanding job responding to the comments
of 4 reviewers who clearly all came at this manuscript with different perspectives. | am especially
pleased with the quality of the figures in this version of the manuscript. They are much clearerand
easiertofollow. | support publication of this article. Below, | note a couple of very minorissues.

line 236: perhaps this wasjust me, but | had to read this sentence afew timesto grok what was
goingon. | thinkit may benefitfrom clarifying that the 1,555 was in all populations (I think).
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We have changed “have an aggregate pLoF frequency of atleast 0.1%” to “have an aggregate pLoF
frequency atleast0.1% across all individuals in the dataset”.

EDF 4 and EDF 6: | think these figures could benefit from a bit more padding between figures. The X-
axislabels onthe top graphs start to blendinto where titles might be forthe lower graphs. It took
me a few minutesto orienthere-and | think a bit of extra padding would help with this.

We have added more paddingin Extended Data Figures4and 6.

Supplemental page 4:. “We mapped reads ontothe human genome build 37.. . ”. Please specify the
source for this specificset of FASTAs, as well asthe decoys (if any) that were used forthe alignment.
And, thank you forclarifying assembly name usage (GRCh37) throughout the manuscript.

We have added more description onthe reference genome to the supplement: “The FASTA file can
be found at ftp.ncbi.nlm.nih.gov/sra/reports/Assembly/GRCh37-

HG19 Broad variant/Homo sapiens assembly19.fasta, which has 85 contigsincludingadecoy
(NC_007605, 171823bp).”

Supplemental page 51: Apologiesif | missed this, butldidn’t see areference to afigure or data table
this section was referencing. You seemto have thisin other parts of the supplement, anditisvery
useful to have thatreference when going through this material.

We apologize fornotincluding areference tothis Figure. We have now edited the textand added
the data file as Supplementary Dataset 13: “Supplementary Fig. 9enumerates all the genesin
Supplementary Table 18, which are also available as Supplementary Dataset 13.”

Referee #3 (Remarkstothe Author):

In theirrevised manuscript the authors have addressed most of my concerns and have significantly
improvedtheir manuscript during revision. They have also addressed valuable points raised by other
reviewers, which again has led toan overall improved manuscript.
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In particular, they have added valuable datafollowing my suggestions:
- Supplementary Fig 10 and 11 to show the increased power of the current dataset.
- Supplementary Table 17 (and respective datasets) show #pLoF perindividual.

- The novel analysis on CHIP (Supplementary Table 16 and accompanying datasets) are valuable new
data/analysis.

- A comparison of the added value of WGS over WES even for codingregions, summarizedin
Supplementary Figures 3and 4 (not as stated in rebuttal letter SF4 and 5); also the provided list of
coverages pergene (https://storage.googleapis.com/gnomad-public/papers/2019-flagship-
lof/v1.1/summary_gene_coverage/gencode grch37 gene_by_platform_coverage _summary.tsv.gz)
isvaluable tothe community.

- The authors have added ‘allele rescue by subsequent frameshifts’ to the accompanying paperon
MNVs.

While the overall quality has furtherimproved, | see furtherimprovements opportunities, i.e. here a
few suggestions for minorrevisions:

- It would be interesting to state in the main text that the number of LoF variants perindividual is
constantsince the 2012 paper. Thisshould be furtherspecifiedin: total #plLoF, of which so many
common, rare and private (asnow shown in Suppl. Datasets 8-9; incorrectly stated in rebuttal letter
to also be containedin Supplementary Table 16 — which in fact contains the CHIP data; should be
Supplementary Table 17). (refers to rebuttal point 3.))

We have added a note to this effectin the main text (“The number of pLoF variants per individual is
consistent with previous reports®, and is highly dependent on frequency filters chosen
(Supplementary Table 17).”), and expanded Supplementary Table 17to include filters for rare and
private variants.

- Concerningthe CHIP analysis (Supplementary Table 16) the authors should mention, that
missense/activating mutations have not been subject of the current study, but are a known
important contributorto the CHIP phenomenon. The authors should also clarify that the age used
was ‘last known age of the individual’ ratherthan ‘age at sampling’. The authors conclude that no
novel genes have beenidentified as such strong candidates as ASXL1, DNMT3A and TET2. Thisis
however not expected, asthese have been known to be the three strongest drivers of clonal
hematopoiesis. The power of the current dataset howevershould pinpoint otherimportant butless
strongdrivers. Canthe authors commentonthe genes that show significant KS test and Moods
median test p-values (<1.4x10-6) but ‘only’ an age difference of 55vs 50 years? These are e.g.
SHROOMS3, EPB41L4A, CYP4B1, AMPD1, OR5K2, ANKDD1B, FAMS58A, KRTAP4-8. (refers to rebuttal
point4.))
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We have added a discussion pointto the supplement that “We focused ouranalysis on signals of
pLoF variants though notably, CHIP can also be characterized by the accumulation of missense
variants which would not have beenrevealed using our methods; future work to filter high -impact
missense variants will enablea more complete understanding of CHIP.” Additionally, we have added
clarification that “Cohorts varyintheirreporting of age information. Forexample, some report age
at diagnosis whereas othersreportthe age at of the last patient visit. Age is therefore defined asthe
lastknown age of the individual and is not necessarily the age at sampling.” and have added a note
to the Table legend to mention that thisis the “last known age of the individual.” With respect to the
genesthatare significant but with small effect size, we note that residual technical artifacts
(especially annotation errors at common pLoF variants) may skew the distributions and resultin an
inflated significance with small effect, and thus, wanted to focus on the genes with high impact.
However, we releasethe full datasetas Supplementary Dataset 6 with all summary statisticsand p-
valuesforothersto explore further.

- While l agree with the authors that true compound heterozygosity requires large -scale inference of
variant phase. It ishoweversafe to assume that everyindividualthat carries 2 pLoF variantsinthe
same gene hasa 50% that thisis incis or trans. Already having the information whether2
rare/private LoFs are from the same or two independentindividuals can be very useful; and this
couldssignificantly enrich the list of genes for which homozygous KOs have been (never) observed.
(referstorebuttal point6.))

We are also interested in this question, butit would require extensive analysis to properly address,
and will also benefit substantially from later gnomAD versions with larger numbers of whole
genomes. As such, we believe that this work falls beyond the scope of this manuscript and will need
to be a future focus.

- While I can understand that the powerislackingto distinguish the three classes of pLoF; addinga
simple ratio of stop, fs, splice-site would be useful tothe reader. (refers to rebuttal point8.)).

We have now added the distribution of these classes of variation in Supplementary Table 17.

Referee #4 (Remarks tothe Author):
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| have read through the response toreviewers. In general, the authors have been thoughtful and
responsive to reviewer comments, there are no major concerns about the technical quality of the
data, and the impact of the resource asa whole has been and will continue to be high.

However, | still am not convinced that the narrow focus on LOF variation is the most effective choice
for presentingthis work; within the current scope of this manuscript, the conceptual novelty is
minimal and the technical novelty is modest (e.g., Supp Fig 10). | continue to think that the key
results here should be combined with the distinct key results from the other GhomAD-related
papers. | simply don’tagree thatthe three overlapping papers use “different strategies with
different datasets and audiences”; the redundancies, ranging from nearly literal duplication to
conceptually similareven if technically distinct, remain extensive. While | understand the authors’
concernthat the current manuscriptisalready long, my concernis not related to length but novelty
and impact. Further, a combined manuscript that highlighted the truly distinct parts of each paper
and collapsed the redundant components would be substantially more concise than the summed
length of the current collection of manuscripts. Sothe net effect would be to shorten ratherthan
extend, inaddition to better highlighting the truly novel elements.

That said, the nature and structure of the Nature-published form of these manuscript(s) isan
editorial consideration about which | am happy to state my opinionand move on;| don’tsee a need
for furtherrounds of revision orreview.

Referee #5(Remarks tothe Author):

The manuscript by Karczewski et al. entitled "Variation across 141,456 human exomes and genomes
revealsthe spectrum of loss-of-function intolerance across human protein-coding genes" describes
an impressively large-scale catalog of harmonized genetic data that was used to catalog predicted
loss of function (pLoF) variants that may underlie rare diseases. This review focuses more on the
software and code behind the manuscriptthan on the manuscriptitself. The authors have done a
laudable job of makingall the code and data publicly available and provided ample documentation;
however, | have two concerns: the authors do not have a unittestsintheir python-and perl-based
GitHub repositories that can be used to automatically review their code, and my attempts to
reproduce the figuresin Rwere unsuccessful due toanumberof warnings and errors. | believe these
concerns can be quickly resolved and will greatly improve the ability of otherstoreuse orreproduce
the data and the analyses. Itis worth noting that my lack of experience usingthe Google Cloud
Platform Dataproccluster limited my abilitytest Hail and the LOFTEE software in the cloud, so an
additional review by someone whois familiar using these tools on the Google platform mightbe
worthwhile.
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We thank the new reviewerfortheircomments on the code. We have fixed the code and file hosting
so that all the figures may be reproduced, except Extended Data Figure 9 for which we could not
share some external datafiles. We have additionally created a Dockerimage
(konradjk/gnomad_lof_paper:0.2) and verified thatitalso recreatesall the figures. We address the
commentaboutunittests below.

Specificcomments

The gnomAD browser (https://gnomad.broadinstitute.org/) accompanying the manuscript hasavery
nice userinterface. | was able to easily view pLoF and othervariants in my favorite genes. This web-
browserisan excellentresource forthose who wish to use aGUI to explore the data (e.g. clinicians,
teachers, students, members of the who lack the computational expertise to sift through the raw
data).

As describedinthe manuscript, all data processing and analyses were performed using Hail
(https://hail.is/), which isan open-source, Python-based library. The documentation for Hail 0.2is
very thorough, and | was able to successfully follow the local installation instructions and the GWAS
tutorials with relative ease. This speaks very wellfor the potential to reproduce the analyses
describedinthe manuscript. However, | was not able to install Hail onthe HPC system | normally use
(Stampede 2 at the Texas Advanced Computing Facility) norwas | able to install it the Cloud Platform
Dataproc cluster (https://cloud.google.com/dataproc/) used by the authors. lam a first time Google
Cloud user, so thisdoesn’treally surprise me.

The hyperlink on page 30 isa dead end. “The filtering frequency described previously13is
implemented in Hail
(https://hail.is/docs/0.2/experimental.html#hail.experimental.filtering allele frequency)

This has now been fixed to:
https://hail.is/docs/0.2/experimental /index.html#hail.experimental.filtering allele frequency

In additiontothe detailed supplementary materials, some of the co-authors wrote ablog post
(https://macarthurlab.org/2018/10/17/gnomad-v2-1/) that provides a detailed walk-through of the
scriptsand the variables used to generate many of the figuresin the manuscript. Thisisalsoa
valuable resource foranyone wishing to reproduce the analyses.
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https://hail.is/docs/0.2/experimental/index.html#hail.experimental.filtering_allele_frequency

natureresearch

We thank the reviewerfortheircomments, and are glad the browserand blog posts have been
useful.

| am concerned that none of the three repositories listed in the "code and software checklist" have
clearly marked teststhat could be used to automate the process of code review. I did find testsin
https://github.com/macarthur-lab/gnomad_hail; however, this repository was not listed as critical to
the manuscript. Also, itappearsthat these error messages are sent to a Slack channel, which would
be highly useful if you were amember of the slack channel but not so useful to someone outside the
McArthur lab group. | am aware that the authors considerthese repositories to be a collection of
scripts rather than a software package; however, becausethe README files encourage othersto use
and modify the code, itwould be very useful if the author could add continuous integration (like
Travis-Cl (https://travis-ci.com/) which would allow automated testing when changes to code are
made, and the addition of abadge (or shield) tothe repo’s README would give new users

confidence thatthe code isworking as expected.

We agree that unittests are extremely important for production code, but afew things conspire to
make this difficult. Firstand foremost, as we continue to build new large datasets, we are constantly
working on making these functions more generic, and thus, theirinterface is regularly changing.
These reposrepresentasnapshot of the current analysis, but we are factoring out manyto create a
generalizable toolkit for large-scale dataanalysisin Hail. We are building this outas we go, butitis a
substantial effort that we will not be able todo in a reasonable timeframe for this manuscript. Many
of the specificfunctions would require large test datasets (e.g. run_pca_with_relateds would require
a full dataset), and so, are difficult to write comprehensive tests,and similarly, many of the functions
require sample-level metadatathat cannot be shared.

Note that while we did not write unittestsforthese scripts, we did run many sanity checks on the
data that wasreleased, whichis providedin ‘prepare_data_release.py’ which was aform of test on
therelease file that helped us catch many bugs alongthe way. In particular, we checked the
following:

- Thefraction of filtered variants, broken down by allele type (SNV, indel) and site type (bi-
allelic, multi-allelic), followed our general expectations (overallfiltering numbers, SNV
generally more confident thanindels and bi-allelicsites overall more confident than multi-
allelicsites.

- Forallsamplesandforeach of the subsets we created, that the allele countand allele
number (and by definition allelefrequency)forunfiltered samples was greaterthan O for all
variants and was always smallerorequal to that of filtered samples.

- Thatthe sum of allele count, allele numberand number of homozygotes forall populations
equalsthe total allele count, allele numberand number of homozygotes respectively.

- Forallsamples, subsets and each (sub)population, that:

- Allele countin males+allele countin females=total allele count
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- Allele numberinmales+allele numberinfemales =total allele number
- Homozygote countin males+ Homozygote countin females =total Homozygote
count
- Thatallelecountandallele numberonthe Y chromosome were all 0in females
- That all males were counted as hemizygous on the non-pseudoautosomal parts of
chromosomesXandY
- That all the quality metrics we annotated the data with did not have unexpected
missingness

In summary, we agree that unittests are valuable, and plantoincorporate these into future versions
of the pipeline, butdo notbelieve thatitis necessary or feasible toincludetheminthe codebase for
this manuscript.

The gnomad_qc repositoryis well organized, and the functions are well documented. This workflow
describesinthe repository corresponds nicely to the “Sample QC” section of the supplementary
materials, so | could identify which functions correspond to steps outlined in the methods section.
Thisrepository also corresponds to extended Data Figure 1, but | find this figure to be more
confusingthan helpful. It’s notimmediately obvious that the terse bullet points map onto the arrows
between boxes. It would be more usefulif panel 1awas broken downinto panels la-gand if each
arrow was labelled with the function(s) thatis used to perform that action. By giving each stepits
own label, you can remove the textinthe middle and more precisely referto read to that specific
part of the figure when describingthe workflow in the methods section.

We thank the reviewerforthisidea - we have added a mapping between the stepsin Extended Data
Fig. 1a and the sample QCcode in the Supplementary information, and believe this has clarified our
process:

“The pipelineisavailableinits entirety at https://github.com/macarthur-lab/gnomad gcandis

summarized in Extended DataFig. 1a, where numbered steps correspond to the following scriptsin
the code repository:

Hard filtering: apply_hard_filters.py
Relatednessinference:joint_sample_gc.py

Ancestryinference: joint_sample_qc.py, assign_subpops.py
Platforminference: exomes_platform_pca.py

Population-and platform-specificoutlier filtering: joint_sample_qc.py
Finalizingreleasecallset: finalize_sample_qc.py”

ISR o

In gnomad_qc/sample_qc/apply_hard_filters.pyon line 13, the authors use a “cutoff of F<0.5 for
femalesand F>0.8 for malesforgenomes”; however, on page 8 of the supplementary methods, the


https://github.com/macarthur-lab/gnomad_qc
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authors state “For genomes...samples with F> 0.8 were classified as male and sampleswith F< 0.2
were classified as female.” Which is correct: 0.2 or 0.5 for females?

Thank you for catching this - indeed it should be 0.5and this has now been fixedinthe
supplementary text.

In gnomad_qc/sample_qc/apply_hard_filters.pyonline 31, the authors refertoa metadatafile that
by giventothem by a colleague. Isthis metadata public? Canitbe referred to by a DOI? How does
thiscomment aboutthe peculiarity of the metadata affect the ability forsomeone else to remix or
reuse this pipeline?

Unfortunately, this metadatafile contains sample-levelinformation which cannot be released to the
public. This part of the code is provided only for reference and would need to be edited foruse by
othersas it depends onthe particular upstream processing steps of the QC pipeline.

The R codeingnomad_lof/Risalsowell written and welldocumented. | especially like thatall the
libraries, custom aesthetics, custom functions, and aliases use are located in constants.R. Thisfile
doesneedtobe sourcedin all_figures.Rforthe contentsto be loaded in the environment before
generatingthe figures.

Of the 30+ R packages use, | had to install about 10 libraries. One way to make this repository more
reproducible would be to use Binderto create a shareable, interactive environmentin the cloud
followingthe instructions described at

https://mybinder.readthedocs.io/en/latest/sample repos.html#tspecifying-an-r-environment-with-a-
runtime-txt-file

We thank the reviewerforthis suggestionto ensure areproducibleenvironment. We have updated
all the code to use the newestversions of all included libraries and have also created a Dockerimage
to ensure thatthe code and data are in the same place and produce the desired output. We have
tested this Dockerona Macbook Prowith 16 GB of RAM and it now createsall the figures without
error.

figurel() did notreturna figure. The error message was:

Error in download.file(url, fname):


https://mybinder.readthedocs.io/en/latest/sample_repos.html#specifying-an-r-environment-with-a-runtime-txt-file
https://mybinder.readthedocs.io/en/latest/sample_repos.html#specifying-an-r-environment-with-a-runtime-txt-file
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cannot open URL' https://storage.googleapis.com/gnomad-public/papers/2019-flagship-
lof/v1.0/summary_results/observed_possible_expanded_exomes.txt.bgz'

| wentdirectly tothat linkina browserand was told there was “No such object”.

We apologize forthe inconvenience. We had identified aminorissue with thisfile, regenerated it,
and moveditoverto a new versioned directory. We have now updated the code toauto-detect
which versionisavailableand this should work now with the newest one.

figure2(), efigure5(), efigure6() did return pdf files, butthey had not content. There were no error
messages inthe standard output that | could use to debug.

We apologize forthe lack of figures generated. When the commands are run one-by-one, outputis
created, butthe wrapperfunctionsand scripts are missing crucial print functions that would
generate the output when ‘source’d. We have now added these and this should generate output for
all figures.

‘figure3() did notreturnafigure. The errorand warning messages were "Error: by’ required,
because the data sources have nocommonvariables and ‘Unknownlevelsin f:all_ar,all_ad’. For
thisfigure, | was able to manually runthe code inside the functions well enough to partially generate
figure 3a (because for some reason my gene_listonly contains olfactory genes, sothey were the only
genes plots, ratherthan all three). Additionally, | think traced the errorto
‘left_join(load_all_gene_list_data()) because, in my environment, both ‘gene_data and ‘gene_lists’
have a column called ‘gene’ that could be used forjoining, but somethingis goingawry.

Thisfunctionrelied on aspecificlocation of gene list data, and silently produced no output rather
than erroring(!). We have now added some of the gene liststo the repo, and added a call to
download the othersif they don’t exist. Thank you for spotting this.

figure4() did notreturn a figure but did return a few warning messages. There first said “w e couldn’t
map to STRING 0% of your identifiers”, which I think means all 100% of the strings were mapped, but
the double negative is alittle confusing. The second message occurred twice and said, “At
centrality.c:2784 :closeness centrality is not well-defined for disconnected graphs”.

Thisfigure should work now as well (the warnings are from STRINGdb and are unrelated).
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figure5() almost caused Rstudio to crash (as predicted inthe README), but my session powered
through. | did geta pop-up message saying “some updates could not be installed because RStudio
interruptedrestart. | also don’t know how to interpret this, butit might help you debug. As with
figure 2, a pdffile was created but there were no pages.

Thisoneis a mysteryto us. We have fixed the printingissue, but we do not see the update message.
This function alsoworksinside the Docker.

efigure2() and efigure3() ran successfully and produced png and pdf files thatlook exactly like the
figuresinthe manuscript. | also like thatthe authors use ggarrange() and get_legendtoreproducibly
label and arrange the figures and create a shared legend. Onthat note, | checked to see base R
and/orall the R packages used were cited and | did not find any citations forthe software. | don’t
believethatthereisa page limittothe supplementary materials, soit would be nice to acknowledge
these open-source software packages. You can get these from the command line using, forexample,
citation("cowplot").

We have enumerated and added citations for many of the packages used: “All analyses were done
usingR 3.6.1 with packages including tidyverse®, broom®, magrittr®, readxI®®, plotROC®®, meta®’,
STRINGdb®®, and tidygraph®. All visualizations were plotted in ggplot2’®, and aided by scales’?,
ggridges’?, egg’®, ggpubr’®, ggrastr”, cowplot’®, ggrepel’’, and ggwordcloud™.”

| could not source “efigd_downsamplings.R” because https://storage.googleapis.com/gnomad-
public/papers/2019-flagship-
lof/v1.0/summary_results/observed possible_expanded_exomes.txt.bgz was not found.

The fix applied for Figure 1 has also fixed this one as well.

source('efig7_constraint.R') overloaded my ramto the extentthat| couldn’t even use the mouse our
keyboardto quitR, so | chose to shut down my computer aftera few minutes of listening toitwork
at max capacity. Thisis not good. One solutionis to put a disclaimerinacomment nextto thisline to
warn the user. A second solution would be to optimize the code, butl do not have a suggestion.

We have reduced the heavy computationalburden by pre-computing the metrics in this script. We
now load that data explicitly (but have retained the initial metric-generation code for reference).
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source('efig8_biology.R') returned the following error: Error in .local(drv, ...) : Failed to connectto
database: Error: Unknown database 'tcrd520'.

We have replicated this error. The Pharos database was updatedin the meantime and we had hard -
codedthe version availableatthe time. We have instead downloaded the dataneeded into the repo
to avoid the dependence on this database (and left the download code as-is for future reference).

The GitHub repository ‘konradjk/loftee contains the perl-based, Loss-Of-Function Transcript Effect
Estimator (LOFTEE) package or Hail plugin thatis usedto filterand flag Loss-of-function mutationsin
conjunction with aclinical variation (ClinVar) dataset containing four hundred thousand variants and
a SNV dataset with eight billion variants to annotate the 125,748 exomes. | do not know how to read
PERL, so | can’t evaluate the quality of the code, but the repois well organized, and the README
thoroughly describes the functions. Given the requirements (SAMtools, human genome, PhyloCSF) |
did not even attempttoinstall the software locally. | usually run SAMtools on Stampede 2 at the
Texas Advanced Computing, sol was goingto testit there, but| couldn’tinstall HAILon Stampede. |
also attempted to test Hail and LOFTEE onthe Google Cloud Platform Dataproccluster, butI’'ma
first-time user, and | wasn’t able to overcome installation problems.

For review purposes, it would be ideal if someone with Google Cloud expertise reviewed the
software. Fortraining purposes, creating a tutorial (video or blog post) about how to use LOFTEE
with Hail on Google would be very valuable to those looking to use these tools for new analyses or
to reproduce the analyses described in Karczewski etal.

The Hail website contains extensive documentation on usingitin Google cloud, as well asrunning
VEP (whichincludes LOFTEE by default). The software is updated very frequently, so ablog post or
video would likely become out of date rather quickly; however, the Hail documentationis keptup -
to-date with the code (e.g. VEP and LOFTEE documentation at
https://hail.is/docs/0.2/methods/genetics.html#hail.methods.vep)and its usage on Google cloud
(https://hail.is/docs/0.2/hail on the cloud.html).
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Reviewer Reports on the Second Revision:
Referees' comments:
Referee #1:

I apologize for my delayed reply here. I've finally had a chance to review the authors' responses to
my last round of (additional) comments. They have been addressed very well, and I have no
further concerns.

Referee #3:

The authors have addressed all my points satisfactorily, hence I would recommend this manuscript
for publication now.

Referee #5:

I have reviewed the response to the reviewers' comments and the revised updated code and
software.

I am very impressed and satisfied with the revision. The authors updated the R scripts, and I can
confirm that I was able to reproduce all the figures (except for Ext. Data Figs. 8 and 9) as
expected. Also, the authors' changes to satisfy other reviewer comments have greatly improved
the figures themselves. I agree with the authors' rebuttal that unit tests are not suitable for the
software,and I amvery pleased that they have provided a dockerimage with all the data and
code. I appreciate the extra effort they put into the revision, and I am confident that the readers
of this paperwillas well.

As a side note, the pdfthat links directly to Ext. Data Fig. 1 is a new and improved figure;
however, the merged file with the manuscript and figures has an old version of Ext. Data Fig. 1.



