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Referee #1 (Remarks to the Author): 

 

In this manuscript, Karczewski and colleagues describe the gnomAD resource -- aggregate variant 

calls derived from ~125K human exomes and ~15K human genomes that are already widely used 

by the research community. The manuscript focuses on predicted loss-of-function (pLOF) variants 

in particular. The paper is a follow up to the same groups’ ExAC resource, published a few years 

ago, with the overall cohort approximately doubling in size and with markedly better 

representation of human populations around the world. As general statements, the work appears 

to be well done from a technical perspective, the analyses thoughtfully conducted, and the 

material clearly presented. It’s obviously been an incredible amount of work to pull these data 

together, to reanalyze them in a coordinate fashion, and to serve them up to the community in a 

useful format. 

 

That praise notwithstanding, I do have some high-level as well as more specific concerns. 

 

Major comments 

 

1. The relatively narrow focus on pLOF variation results in some real missed opportunities here. 

Virtually nothing is said about missense variation, non-canonical splice site variation, or constraint 

in the non-exome 98% of the genome, for which there are a respectable ~15K genomes available 

for analysis. My inference is that at least some of these analyses are being slated for other 

manuscripts, but to be frank I would have preferred an at least modestly more expanded scope. 

The consequence of this relatively narrow focus on pLOF variants is that the emphasized novelty 

here, apart from the substantially larger N (as well as what seems to be improvements in 

methodology throughout, which are not really emphasized), lies with the shift from pLI scores (a 

continuous metric, but one directed at predicting haploinsufficiency, a binary concept) to LOEUF 

scores (a continuous metric that reflects the upper bound on a confidence interval for the 

observed/expected ratio of pLOF variants), together with some of the specific analyses that are 

performed. This is certainly progress, but it leaves something to be desired if only because feels 

like a lot is being left on the table in terms of all of the things that one might imagine doing with 

these data that have nothing to do with pLOF variants. 

 

2. Although the scope could be endless (and although I would love to see at least a bit on the most 

extremely constrained noncoding regions), the manuscript could be particularly strengthened by 

adding more content around missense variants in particular. Perhaps I should expect it from past 

papers, but I am quite surprised by EDF 6f-g in particular and suggest they be moved to the main 

figures. In particular, the fact that there are so few genes with substantial constraint for missense 

variants remains surprising to me. Given the considerably higher saturation of missense variants in 

gnomAD as compared to ExAC, can the authors consider adding regional missense constraint 



 

analyses ala the Samocha et al. 2017 paper? 

 

3. While I’m on those panels (EDF 6f-g), it would be helpful if the extremes, particularly on the 

excess observed vs. expected, points in all three panels could be labeled and ideally discussed. Are 

there any genes for which significantly more synonymous, missense or pLoF mutations are 

observed than were expected? Are these technical artifacts or biologically meaningful outliers? 

 

4. The first two paragraphs, although well written, feel a bit misleading. They set up a strawman 

around the concept that breaking parts of a system can be useful for understanding it, but then 

mention Mendelian genetics almost as an afterthought. Understanding human biology through LoF 

mutations and their consequences has been the mainstay of human genetics for nearly a century. 

What is being done here builds directly on that foundation, rather than being consequent to a 

motivation drawn from the engineering field or from our inability to edit LoF mutations into 

humans. Describing this undertaking as the inverse of classical human genetics (i.e. genotype 

first, rather than phenotype first; looking for the absence of pLOF variants rather than their 

presence) would be a more honest representation of the field-specific context into which this work 

falls. 

 

5. A few things about the LOEUF metric remain unclear to me: 

 

a. No justification is provided for using the upper bound of the confidence interval rather than 

simply using the o/e ratio itself. I can understand the argument that might be made, but I can also 

imagine counterarguments. In any case, thought process by which this decision was made should 

be laid out. The confidence intervals seem to be quite wide? (I’m inferring this from the fact that 

the median o/e of 48% jumps to a median LOEFF of 0.962). 

b. Unless I missed it, you show histograms of o/e and LOEUF scores, but no comparison of the 

metrics to one another. Related to point (a) above, it would be helpful to present scatter plots of 

o/e vs. LOEUF, and also o/e vs. pLI and LOEUF vs. pLI, to provide the reader with a better view on 

the extent to which they differ? 

c. Many “summary plots” are presented, but I feel like I still lack a raw sense of how the wide the 

confidence intervals are for the o/e ratios that give rise to the LOEUF scores, as well as how these 

confidence intervals vary as a function of the o/e ratios. I suggest that you add a figure that shows 

the stacked means and confidence intervals for each gene, sorted by means (or a random subset 

of genes if the entire set can’t be presented). To phrase it another way – a plot where every gene 

has its own line, and the genes are ranked by o/e, and the o/e and confidence intervals for each 

gene are shown. 

 

6. What are the considerations involved in estimating selection coefficients from the observed vs. 

expected data? Rather than deciles or this upper bound o/e value, it would be very helpful to have 

these estimates, particularly in light of arguments made in this recent paper from Fuller et al. 

(https://www.nature.com/articles/s41588-019-0383-1) which I urge the authors to cite and 

discuss in relation to the shift from pLI to LOEUF (and ideally to motivate just going ahead and 

estimating the strength of selection on heterozygotes on the basis of the updated data in 

gnomAD). 

 

7. There are many instances where the authors provide highly significant p-values but no 

corresponding information about the corresponding difference or effect size. As the authors well 

know, miniscule effects can have large p-values. I noticed this in particular in the paragraph 

beginning on line 284 (Biological properties…). However, if the authors could review the full paper 

for similar instances and provide corresponding effect sizes or fold differences or whatever is 

appropriate along with the p-values, that would be helpful. 

 

8. My inference throughout is that when the authors are calculating things such as the proportion 

of observed variants out of all possible variants, they are including all possible substitutions (3 per 

site). However, it would be helpful to include at least a bit of information on the extent o f “site 



 

saturation”. For example, when you say 17.2M and 262M variants, is this approaching ~50% of 

coding nucleotides and 10% of all nucleotides represented in the human genome, at which at least 

one of three possible single nucleotide changes is observed? Although the primary focus 

could/should remain w/ keeping all possible substitutions as the denominator, it would be helpful 

to know the per-site summary statistics as well. This is also relevant to the summary statistics 

provided at lines 166-169. 

 

9. Variant calling & indels feel a bit swept under the rug, at least in the main text. I recognize that 

this is covered in the supplementary figures and methods (and I’m not asking for anything new to 

be done here; generally convinced), but it would be helpful to have at least a paragraph 

summarizing the key take-homes from EDFs 2-3. 

 

10. It’s not clear how the statement at lines 410-412, that 30% of coding genes are insufficiently 

powered for detection, is justified. I infer that you are using a cutoff of 10 pLOF mutations 

expected as the definition of sufficiently powered, but where does this come from? On a related 

point, at line 230, you state that the increased N from ExAC to gnomAD increases this proportion 

from 63% to 72%. The relatively marginal increase from doubling the N leads one to wonder – 

what population sizes are required to get this even higher? I guess my broader point is that a 

more formal analysis of power as a function of population size, even if you have to project a bit 

based on the existing data, would be very helpful (and justify the cutoff of 10 or whatever 

alternative is chosen). What population size would it take to get to 95% of genes with at least 10 

pLOF mutations expected? 

 

Additional comments: 

 

11. The claim is made towards the end of the introduction that the metric “improves rare disease 

diagnosis” – is this actually done in the paper? It seems like this should be rephrased to be more 

in line with what is actually described in the manuscript (unless I missed something, which is 

possible). 

 

12. For LOEUF, is is the 95% CI that is used? I assume so, but it should be stated. 

 

13. More could be said, or at least a citation added, for the data points in Fig. 2E that might be 

explained by hypo-methylated CpGs giving rise to a lower rate of % observed? On a related point, 

in EDF 4b, is it possible to partition CpG sites on those that are broadly methylated vs. those that 

are not? (i.e. is it possible that you are completely saturating those that are consistently 

methylated?) 

 

14. It would be helpful if the authors review the manuscript specifically to look gene lists that 

might be useful to readers, and to actually provide those as supplementary tables. For example, at 

line 216, a set of 1,752 genes that are likely to be tolerant to biallelic activation are referenced but 

a corresponding file/table not provided. 

 

15. Line 161 – “all possible synonymous methylated CpG variants” – odd phrasing – do you mean 

all possible CG>TG changes? Or are you subsetting to sites that are consistently methylated? More 

clarity here would be helpful. 

 

16. Fig 3d – the notion of “cell essential” is a little strange. What cell type? Are these genes that 

are consistently essential across CRISPR screens? More clarity on what these are would be good to 

include rather than requiring the reader to look at the reference. 

 

17. In Fig. 5c, there are few enough points above the cutoff that it would be better if you could 

find a way to just label them all. But on a related point, I think the corresponding section of the 

discussion is too bold. Unless I’m missing something, the last sentence of the results feels too 

bold. The results primarily follow from a few phenotypes, all related to brain function, and possibly 



 

conflated with one another. It would be better to restrict the claim to this subset of phenotypes 

rather than ‘many heritable polygenic diseases and traits’. 

 

18. Less a request than a suggestion, but I would love to see more discussion or at least some 

brief quantification of the proportion of top-decile LOEUF genes (i.e. most constrained; n = 1,920) 

in terms of what % are associated with a human phenotype, what % have an assigned function, 

what % have no known function, etc. 

 

 

 

 

 

Referee #2 (Remarks to the Author): 

 

Summary 

In the manuscript entitled “Variation across 141,456 human genomes and exomes reveals the 

spectrum of loss-of-function tolerance across human protein-coding genes”, Karczewski and 

colleagues describe the Genome Aggregation Database (gnomAD). This is a substantial 

augmentation to the Exome Aggregation (ExAC) database, including additional exome data as well 

as adding 15,708 genomes. The authors describe the data contained within this resource, the 

quality control measures, and highlight a particular variant class, predicted loss of function (pLOF). 

They develop a metric termed LOEUF that is used to categorize genes with respect to their 

tolerance for loss of function variation. They then provide examples demonstrating how this 

information can be used in disease gene research. 

 

High level comments 

The impact that the gnomAD and ExAC resource has had on both the research and clinical 

genomics communities cannot be overstated. The dedication this group has to making this data 

available to the research and clinical communities is exemplary. This project has been a flagship 

for demonstrating how large-scale sequencing coupled with summary data release can be 

transformative for the field. 

With respect to this manuscript, the authors were wise to focus on a narrow aspect of this data 

and demonstrate how this specific variant type (pLOF) can contributes to disease gene research. 

The manuscript walks through how the LOEUF deciles are generated, and provides numerous 

analysis of how this can be used. However, the manuscript fails to connect this with specific 

biology that resonates in an impactful way. There are no specific examples pulled from the 

categories to make the data more meaningful. For example, when looking at figure 3, there is so 

much more information I want to know. This includes identifying specific genes that fall into 

expected LOEUF deciles, but also discussing the unexpected events. What are the haploinsufficient 

genes that are in the lower LOEUF deciles? Does any of this information confirm or refute known 

orthogonal data about genes in these bins? Perhaps even just noting where the ACMG59 fall in 

these deciles, or within these analysis would be useful. Though I understand that the ACMG59 may 

not be under the strongest constraint, a data set such as this could help guide the community 

about the best way to utilize this data. 

I do think there are some other missed opportunities for educating users around some issues of 

this analysis. While this manuscript focuses on global analyses, it is important to remember that 

many users will look at individual genes, and understanding how individual genes may be 

impacted by analytical decisions is important for ensuring the data are used correctly. 

 

More detailed comments 

1. pLOF set definition: The authors are very well versed in the types of annotation erro rs that can 

lead to false variant calls, and understand the pLOFs are likely to be enriched in annotation errors. 

While I think the authors do a very commendable job of cleaning this dataset, I would urge the 

authors 

 



 

to review a recent manuscript from Tuladhar et al., 2019 (http://dx.doi.org/10.1101/583138) 

which is focused on analyzing putative knockout alleles from CRISPR lines. In this manuscript, they 

find that 46% of edited lines marketed as knockouts, due to the presence of an indel, are not 

actually knockouts, but that some product is produced via other escape mechanisms. While I don’t 

think the authors need to any additional experimental work for this manuscript, this reference, 

plus additional caution that individual pLOF events need to be followed up with functional assays to 

confirm actual LOF is warranted. Particularly because the authors go to so much effort to produce 

a high quality dataset, users need to be reminded that while collectively, the data are of high 

quality, individual events should be verified. It might be interesting to run LOFTEE on the dataset 

in the Tuladhar manuscript to see how many of the ‘escapees’ are flagged by LOFTEE. 

2. Variant identification: There are two points to be raised here. The authors do a great job of 

trying to eliminate false positives, even at the expense of potentially losing true positives. 

However, the authors don’t mention the impact of false negatives. For example, STRC has very 

poor coverage of exons 19-25 due to the presence of a paralogous sequence in the genome, 

complicating alignment and leading to low or no coverage. What percentage of the genome, 

particularly the clinically relevant genome, falls into this category? Does gnomAD do better/the 

same/worse in difficult regions such as those as described in Mandelker et al., 2016 

(https://doi.org/10.1038/gim.2016.58)? Does the genome data help in some of these cases? Also, 

do the authors have any comments on the impact of genome data vs. exome data in terms of 

variant identification? What are the technical advantages/disadvantages of genome vs. exome? For 

example, when looking at PKD2 in the gnomAD browser, it looks as if genome data rescues poor 

coverage of the first exon as seen in exome data. How often does this sort of thing occur?  

3. More details on specific genes: There are a few places that summary data is provided, and what 

I really want are the details. For example, on line 216, there is a statement about 1752 genes that 

are likely intolerant to biallelic activation- what are these genes? I expected a supplementary 

table, but there is none (though apologies if I missed this). I had the same reaction to 

Supplementary table 15- I would love to see a giant table, one row for each gene with the 

classification (column headers in this table) and LOEUF decile. This would really let me dig into 

some interesting stuff. Are there any surprising genes in these deciles (lines 245-249). In fact, 

some of the disease genes that unexpectedly fall into the lower LOEUF categories would be some 

of the first ones I’d want to test for an escape mechanism leading to expression despite the 

prediction of LOF. 

4. Figures and data in general: I found the availability of numbers and consistent metrics that 

support data figures was inconsistent. Ideally, these numbers would be contained within the 

figures or at least the figure legend (for example, every time there is a correlation, I’d like to see 

the correlation values in the figure or legend, not just in the text). I found myself having to go 

back and forth between the text and figures a lot, and occasionally I thought I found 

inconsistencies, though I’m not always sure if the data are inconsistent, or I’m just having trouble 

matching the text to the appropriate figure. For example, line 225-226 notes ‘the variation in the 

number of synonymous variants observed is accurately captured (r2=0.958)’. The data in 

extended figure 6f, which states r=0.9791- so consistent use of either r or r2 would be 

appreciated. Even just ensuring that numbers are in figure legends, if not the figure, is useful for 

more easily interpreting the figures. Please review that legends and colors are clear. For example, 

what do the colors in figure 5c mean? I spent an embarrassing amount of time looking for the 

‘circles’ in extended Data Figure 1, to realized the rounded corner squares were what I should look 

for. 

5. Assembly information: While I am sympathetic to the needs to use the woefully old GRCh37 

assembly (I myself had to do this for a recent manuscript) it is useful to explain to users why this 

very old reference is used (page 3 of the supplement) and what the shortcomings are. While I 

firmly believe the reference assembly version used will not impact the overall findings of this 

paper, it may impact the information at any given locus. For example, a big focus of the GRCh38 

update was to improve clinically relevant genes (for example, adding in 3 missing coding exons of 

Shank3, and adding a new paralog of KCNE1 which means many of the variants called in GRCh37 

may actually be paralogous sequence variants) and users should understand these caveats. This 

also impacts the pLOF variant curation, as regions known to be different between GRCh37 and 



 

GRCh38, as well as known assembly problems from the GRC would likely be useful in this analysis 

(supplemental page 32). Lastly, please 

 

use consistent nomenclature when referring to the assembly. The official assembly name is 

GRCh37, but there are various distribution ‘flavors’. And while I weep that this is the case, it is 

important to note the data source (hg19 specifically implies data from UCSC for example) so that 

these slight variances can be taken into account. 

6. Variant annotation and constraint modeling: The supplement sections read as if they are stand 

alone sections. I understand why this happens and in many cases this is not a problem, but I had 

some trouble understanding where variant annotation, and some of the gene level metrics stop 

and the constraint modeling starts. As I was reading the main text, I was curious as to how 

regions of low coverage (and thus potential false negatives) impacted the LOEUF and gene level 

metrics. Does something look more intolerant to LOF because no variants are called because of 

low coverage? The constraint modeling section of the supplement explains how coverage is taken 

into account, but the variant annotation section, which has some information on gene level 

metrics, does not. My general assumption is that these two sections really work together in a way 

that is not entirely clear to me from reading the text, but perhaps I am wrong about that. It would 

be nice to clarify some of these metrics with some examples- i.e what calculating the data looks 

like on a well covered gene versus a genes like STRC, SMN1 and IKBKG (thank you for the lovely 

browser that made looking these examples up relatively straightforward!). Additionally, Figure 2D 

highlights that 30% of coding genes in the genome are still underpowered to detect constraint- 

how many ClinVar or ACMG59 genes fall into this category? 

7. Exon level metrics: Have the authors considered calculating these metrics at the exon level 

rather than the gene level? Would this provide even more fine grained information? If a gene only 

has a small number of exons under constraint, could it end up in one of the higher LOEUF deciles 

depending on gene size? Could this potentially improve variant interpretation? Or would doing this 

require significantly more samples? There would likely be utility in doing this at the exon level if 

statistically achievable. 

 

 

 

Referee #3 (Remarks to the Author): 

 

In their manuscript entitled ‘Variation across 141,456 human exomes and genomes reveals the 

spectrum of loss-of-function intolerance across human protein-coding genes’ Karczewski et al. 

present the largest human exome/genome dataset published to date. 

This is without a doubt a very valuable resource to the field of human genetics/genomics; clinical 

researchers, diagnostics, etc. Using a set of >440k high confidence pLoF variants, i.e. a set that is 

more than double the size of ExAC and by applying an improved model (utilizing methylation-

base-pair level coverage correction and LOFTEE) they classified the level of LoF intolerance of all 

protein coding genes. 

This expands beyond the use of ExAC for many aspects, which increases the usability to novel 

reads/users, e.g.: 

- More than double sized dataset 

- More populations represented 

- Exomes plus genomes included 

- Options to use dataset with or without certain sub-cohorts (e.g. non-cancer cohorts) 

- Isoform refinement 

The power of this dataset is confirmed by: a) constraint metric correlated with biological relevance 

(PPI; gene expression; disease association); b) the constraint metrics reflect model animal and 

cellular KO phenotypes; c) constraint can assist disease gene finding (ratio 15 higher likelihood for 

de novo mutations in developmental disease genes in LOEUF decile). 

 

There are however several major aspects that require refinement, and several new aspects could 

additionally boost the scientific value, add novel insights or increase the usability even more. 



 

 

1.) It would be interesting to the readers, in which aspects the authors improved over previous 

work: MacArthur et al. Science (2012) (DOI: 10.1126/science.1215040); Lek et al. Nature 

(2016)(DOI: 10.1038/nature19057); and which of the previous conclusions may have been 

falsified since then. It would be important to stress the novelty aspects of the current work (also to 

justify publication in this highest ranking journal). 

2.) The authors should discuss their findings in light of the recent set of work on ‘Genetic paradox 

explained by nonsense’;https://www.nature.com/articles/d41586-019-00823-5 

3.) Add a paragraph how many LoF allele human individuals carry on average, per population per 

frequency range 

4.) The author should consider flagging genes for which the majority of pLoF variants appear in a) 

smaller allelic fractions indication somatic/mosaic state; b) in >average aged individuals. Both 

would be very indicative for ‘drivers of clonal hematopoeisis’; and may prevent false 

interpretations of pLoF in genes like DNMT3A, ASXL1, TET2 (which in germline may very well 

cause severe developmental diseases caused by AD mutations) as well as flagging up novel genes 

with a similar mechanism and biology. 

5.) Can the authors describe for which genes/exons the WGS vs WES data improve sensitivity 

(‘dark areas’ of exomes)? 

6.) Can the authors provide data on compound heterozygous state of pLoF variants in individuals? 

This would be very informative for a) adding sensitivity that gene that can/cannot tolerate 

complete Kos; b) show alleles for which frameshifting variants are rescued by other frameshifting 

in cis in order to restore the reading-frame. 

7.) Next to the CNV/SV dataset in preparation (Collins et al.); have the authors compared LOEFF 

decile genes for overlap with CNV morbidity map (Eichler lab; Cooper et al and Coe et al.); and HI 

scores by the Hurles lab? 

8.) It would be very interesting to understand whether there are genes that are exclusive or 

enriched for certain types of pLoF. E.g. are there genes that show stop-gains only but no 

frameshifts or essential splice site pLoF? 

9.) Are there any specific pLoF alleles that are significantly enriched in certain populations? E.g. 

are there any population specific PCSK9-like alleles? 

10.) How many isoform specific effects are (not) re-solved by transferring from hg19 to hg38? 

11.) The authors cross-reference several other manuscript that are under preparation which 

remain a bit difficult to judge (as not available in peer-reviewed versions yet), but the released 

preprints are in line with all claims made here. 

 

 

Minor issues that may further improve the manuscript: 

1.) Line 56: “model of human mutation” isn’t this rather “mutation rate” 

2.) Line 91: Mention somatic events (and differences in tissues source) as a source of ‘false 

positive germline events’ 

3.) Line 161: Please add an explanation and citation to the synonymous methylated CpG variants 

– as the most mutable site of the human genome. 

4.) Line 169 (and ext. fig 4): The authors should be able to model the amount of exomes/genomes 

required to robustly reach saturation across all mutational contexts. 

5.) Lines 237-238: Could the author define how much the refined model and the increased sample 

size to the improved power? 

6.) Line 475: change “sex aneuploid” to “sex chromosome aneuploid”. 

7.) Figure 6b: define “mu” in legend. 

8.) Supplement: page 4; why was coverage capped at 100x, and are there any adverse effects 

expected for capping? 

9.) Supplement: page 46: some references are not formatted correctly at first citation (Hamdan; 

Lelieveld). 

 

 

 



 

 

Referee #4 (Remarks to the Author): 

 

In, “Variation across 141,456 human exomes and genomes reveals the spectrum of loss -of-

function intolerance across human protein-coding genes“, Karczewski et al. describe a compilation 

of variants in exome and genome sequence data from over 100,000 individuals assembled from a 

variety of projects. They focus on predicted loss-of-function (pLOF) variants inferred to eliminate 

protein production, and describe pipelines to effectively remove erroneous pLOF variants. They 

then quantify the extent of observed pLOF variation across populations and genes, asses the 

relationship between pLOF and transcript expression, and define pLOF gene-level tolerance scores 

for application in human disease genetics. 

 

In general, this work is of high technical quality (a few minor comments are provided below). 

Further, the authors are to be commended for their efforts to not only make the data public and 

usable but also to publish software to generate/parse/filter/etc. GnomAD/ExAC has been a highly 

impactful resource and this iteration is likely to continue in that regard. 

 

However, my high-level opinion is that while the underlying resource is impressive, this manuscript 

is a narrow one documenting only incremental advances over previous work. The novelty here is 

largely due to the increased sample size and in refinements to the methods, e.g., the machine 

learning approaches to filter variants and the model to infer mutability, but the key concepts  and 

conclusions have been previously published. For example, a key message in this paper, i.e., that 

mutational tolerance scores usefully separate genes according to phenotypic relevance, is similar 

to that of Petrovski et al., published in 2013. The distributional shifts presented here in Figures 

3a,c,d and 5a, are similar to those shown in Petrovski et al. Figures 2 and 3; in fact, Petrovski et 

al. used nearly identical types of genes to make the same point (i.e., haploinsufficient, mouse-

lethal, OMIM-dominant, OMIM-recessive, and neurodevelopmental-disorder genes). This 

manuscript is part of a large group of studies that use related methods and lead to similar 

conclusions about the inference of selective tolerance as a means to identify pathogenic variat ion 

(non-comprehensive examples beyond Petrovski et al. include Fu et al. 2013, Samocha et al. 

2014, and Gussow et al. 2017). 

 

Thus, the difference between this and previous work is of degree not kind. Towards that end, this 

analysis does not systematically and precisely measure improvement over previous work, nor is 

there a systematic delineation of the effects of the various sources of improvement described. For 

example, while sample size is analyzed in relation to variant saturation, no comparison of LOEUF 

gene group separation efficiencies (e.g., haploinsufficient, essential, ID/DD, etc) at various sample 

sizes is demonstrated. Similarly, the variant filtering and mutability models developed here are not 

contrasted with other models provided the same input data (e.g., RVIS on the same set of pLOF 

variants), nor are the effects of the differing refinements described here measured as isolated 

components (e.g., LOEUF on VQSR vs machine-learning-filtered variants or a simple mutability 

model vs a CpG/methylation/etc-defined model). While I find it highly likely that the results 

described here are non-trivially more powerful for separating genes known to be relevant to 

phenotype from those that are not, the improvements are likely to be modest; the more 

important, pragmatic effect on gene discovery per se is likely to be even smaller given that there 

is not a strict monotonic correlation between the distributional separations benchmarked here and 

novel disease gene prioritization effectiveness. 

 

Other key results, such as those related to the contribution of errors to pLOF variants and the 

relationship between nonsense variants and expression are also conceptually similar to previously 

published studies, including some by many of the authors here (e.g., MacArthur et al. 2012, 

Bartha et al. 2015, Rivas et al. 2015, Balasubramanian et al. 2017, Ganna et al. 2018). The 

preexisting literature on de novo variation in ID/DD, another highlighted result in this manuscript, 

is too extensive to concisely summarize or cite here, but it is safe to say that the key results here 

(e.g., Figure 5a) have already been seen in numerous studies that use related approaches and 



 

similar data. 

 

I am not arguing that this manuscript offers nothing distinctive relative to the other cited 

manuscripts (and the other uncited manuscripts like them). Indeed, I find it likely that there are 

benefits to the increased sample size and methodological refinements described here. However, 

these differences are not systematically and precisely quantified, and even if they were I do not 

believe they would be conceptually or pragmatically large. 

 

There are also some key details and points outsourced to accompanying manuscripts cited as 

being in preparation, including Cummings et al., Collins et al., Minikel et al., and Whiffin et al., 

suggesting result overlap that further undermines uniqueness and novelty here. While not cited as 

such, it appears that these manuscripts are available on Biorxiv (in my opinion, “in preparation” or 

“data not shown” citations are intrinsically inhibitory to meaningful review and should not be 

used). After reading these related Biorxiv documents, it is clear that these manuscripts as a group 

overlap extensively with one another, even beyond the fact that they are all derived from the 

same underlying genome/exome data. Consider the following (non-comprehensive) examples: 

 

1. LOFTEE is a core method in this manuscript, Cummings et al, and Minikel et al., being used to 

provide the refined data product (collections of error-depleted pLOF variants) that drives key 

conclusions across all three manuscripts. 

 

2. Much of the text in Cummings et al. is thematically highly consistent with key results in this 

manuscript, namely expression levels and distribution in relation to pLOF variation, both real and 

erroneous. Note, for example, content overlap between Cummings Figure 3 and Karczewski 4b-c 

and overlap between Cummings Figure 4 and Karczewski 2a. 

 

3. Figure 1 from Minikel et al. is similar to Figure 2 in this manuscript, drawing from the same data 

and presenting very similar results (e.g., compare Minikel 1c with Karczewski 2c-d). Minikel Figure 

1 furthermore appears to be very similar to Extended Figure 5 f-h in this manuscript; all these 

panels are scatter plots showing observed and expected counts of variants, subset by the same 

variant types using the same coloring scheme, and whose key conclusion is to indicate gene or 

transcript-level constraint differences on different categories of variation. 

 

4. Collins Figure 6b and Karczewski 3b both appear to use the same data and lead to similar 

results, namely the correlation between rates of structural variant observation and constraint on 

pLOF SNVs. 

 

While these examples of overlap are not plainly duplicative of one another, they tend to provide 

only mildly different perspectives on the same data and ultimately lead to similar high-level 

conclusions. In general, there are extensive redundancies across these five manuscripts, including: 

shared raw, intermediate, and endpoint datasets; shared methods for variant calling and filtration; 

similar individual results and figures; and shared high-level conclusions. 

 

Thus, while I understand that “lump/split” decisions for manuscripts stemming from large team-

driven genomic projects can be challenging, it is my opinion that the split decisions in this case 

resulted in a too thin manuscript that provides only incremental impact relative to both previously 

published and concurrently submitted papers. However, I find it likely that a more comprehensive 

manuscript that combines key points here with those from the companion manuscripts would be 

both more reader-friendly and more impactful. It could benefit from elimination of the 

redundancies and better highlighting of those results which are truly new. It would also provide a 

more cohesive description of GnomAD, the conclusions one can derive from it, and the impact it 

can have as a resource. 

 

Minor technical comments: 

 



 

Additional details on the “established gene lists” that drive key results are needed. While  a github 

link is provided, precise descriptions of how they were defined need to be in the manuscript or 

supplement, along with a discussion about how their ascertainment may influence the correlations 

and trends observed. This is particularly true to the extent that there are any manual curation 

steps and to the extent that there may exist implicit or explicit circularities. If, for example, data 

from a previous generation of ExAC were used to define a given list of genes, then the results 

presented here might be at least partially tautological. On a related note, who performed these 

curations and to what extent did they also perform the analyses presented here? I do not doubt 

the general veracity of these results. However, to the extent that this manuscript is refining 

methods/data and not providing conceptually new approaches, precisely estimating the actual 

magnitude of individual refinements is particularly important; thus, any relevant biases in the use 

of these gene lists as a measure of performance should be removed or controlled for. Ideally, gene 

lists defined and curated by an independent group and in the absence of ExAC data would be used 

as validation (e.g., those used in Petrovski et al., which predate these analyses and, I believe, the 

existence of ExAC as a public resource). 

 

Similar question relates to the process by which OMIM genes were defined as being discovered 

from WES/WGS vs linkage. Was this work done manually? How does it compare to other efforts (if 

any)? What about cases in which a combination of both linkage and WES/WGS were used? As per 

above, the effects of circularity are relevant here given the fact that ExAC has explicitly (e.g., by 

contributing to variant filtration) and implicitly (e.g., via use of intolerance scores in VUS 

evaluation) helped to identify some of the WES/WGS-discovered genes; this will likely be difficult 

to account for but clearly may confound the interpretation here. 

 

While I have not attempted to run the software or thoroughly check the documentation, I have  

little doubt about the quality and utility of the software; such work is, in fact, one area where this 

group has a strong record and clearly deserves a lot of credit. 

Author Rebuttals to Initial Comments: 

Referee #1 (Remarks to the Author): 

 

In this manuscript, Karczewski and colleagues describe the gnomAD resource -- aggregate variant 

calls derived from ~125K human exomes and ~15K human genomes that are already widely used by 

the research community. The manuscript focuses on predicted loss-of-function (pLOF) variants in 

particular. The paper is a follow up to the same groups’ ExAC resource, published a few years ago, 

with the overall cohort approximately doubling in size and with markedly better representation of 

human populations around the world. As general statements, the work appears to be well done 

from a technical perspective, the analyses thoughtfully conducted, and the material clearly 

presented. It’s obviously been an incredible amount of work to pull these data together, to reanalyze 

them in a coordinate fashion, and to serve them up to the community in a useful format.  

 

That praise notwithstanding, I do have some high-level as well as more specific concerns. 

 



 

We thank the reviewers for their comments. We have incorporated most of the reviewers’ 

suggestions, which has improved the manuscript considerably. In particular, we have 

clarified many parts of the text and added Supplementary Figures and Tables to provide 

readers with some additional intuition behind the metrics developed and how they correlate 

with previous metrics of constraint (pLI). We have also added 11 Supplementary Datasets, 

including constraint summaries, downsampling summaries, and information on genes that 

are tolerant to homozygous inactivation and compare our metric to previous metrics of 

variant intolerance. 

 

Major comments 

 

1. The relatively narrow focus on pLOF variation results in some real missed opportunities 

here. Virtually nothing is said about missense variation, non-canonical splice site variation, or 

constraint in the non-exome 98% of the genome, for which there are a respectable ~15K genomes 

available for analysis. My inference is that at least some of these analyses are being slated for other 

manuscripts, but to be frank I would have preferred an at least modestly more expanded scope. The 

consequence of this relatively narrow focus on pLOF variants is that the emphasized novelty here, 

apart from the substantially larger N (as well as what seems to be improvements in methodology 

throughout, which are not really emphasized), lies with the shift from pLI scores (a continuous 

metric, but one directed at predicting haploinsufficiency, a binary concept) to LOEUF scores (a 

continuous metric that reflects the upper bound on a confidence interval for the observed/expected 

ratio of pLOF variants), together with some of the specific analyses that are performed. This is 

certainly progress, but it leaves something to be desired if only because feels like a lot is being left 

on the table in terms of all of the things that one might imagine doing with these data that have 

nothing to do with pLOF variants. 

 

2. Although the scope could be endless (and although I would love to see at least a bit on the 

most extremely constrained noncoding regions), the manuscript could be particularly strengthened 

by adding more content around missense variants in particular. Perhaps I should expect it from past 

papers, but I am quite surprised by EDF 6f-g in particular and suggest they be moved to the main 

figures. In particular, the fact that there are so few genes with substantial constraint for missense 

variants remains surprising to me. Given the considerably higher saturation of missense variants in 

gnomAD as compared to ExAC, can the authors consider adding regional missense constraint 

analyses ala the Samocha et al. 2017 paper? 

 



 

We agree with the reviewer about the wide variety of downstream analyses that can be 

performed with this data set, but we think that the focus on pLoF variants in this manuscript 

is important to ensure that the manuscript doesn’t become too broad and thus superficial (we 

note that Reviewer #2 agrees with this). There are indeed many interesting features of 

missense variation that have been previously discussed1,2: as missense variants are an 

order of magnitude more plentiful than pLoF variants, we believe that the sample sizes in 

these previous data sets have been generally sufficient to characterize constraint against 

missense variation at the gene- and sub-gene-level. However, we’ve now added 

Supplementary Figure 8 to describe how pLoF and missense variant expectations (genes 

with over 5, 10, 20, 50, 100 variants) increase with sample size. We found that the increase 

in sample size from ExAC to gnomAD provides a much more significant increase of pLoF 

than missense variants. 

 

With respect to non-canonical splice site variation, we characterize these in LOFTEE as 

“Other Splice” (OS) variants, but their relatively low occurrence and intermediate patterns of 

depletion in constrained genes (Extended Data Fig. 7d) precluded their inclusion in 

constraint calculations. 

 

Unfortunately, any attempts at constraint against non-coding elements will be underpowered, 

even with 15K genomes3. At these sample sizes, we do have the power to investigate 

subsets of non-coding variants with predicted large functional impact, and have a companion 

manuscript that looks at one such class within 5’UTRs4. However, any more comprehensive 

effort is complicated by the fact that the functional impact of the vast majority of non-coding 

variants is as yet unknown. 

 

3. While I’m on those panels (EDF 6f-g), it would be helpful if the extremes, particularly on the 

excess observed vs. expected, points in all three panels could be labeled and ideally discussed. Are 

there any genes for which significantly more synonymous, missense or pLoF mutations are observed 

than were expected? Are these technical artifacts or biologically meaningful outliers? 

 

We have also been interested in these outliers, and investigated them at various points in 

both the ExAC and gnomAD data sets. Unfortunately, in our exploration of the most extreme 

examples (synonymous z < -3.71), the vast majority of these genes appear to be technical 

artifacts: the worst offenders are AHNAK2, FLG, and many of the MUC genes, which are 

known to have mapping artifacts, and paralogous genes such as the HIST1 complex. We 

note that approximately 32% of them (126/392) have a mappability score < 0.9, compared to 

10% (1908/18839) of genes that are not outliers for number of synonymous variants. We 

have added a note to this effect in the Supplementary Information. Overall, while it is likely 

that there are interesting biological signals in these outliers, identifying those will require 

extremely careful filtering of all the noise resulting from a wide variety of technical errors, 

which we think falls outside the scope of this manuscript. 

 

4. The first two paragraphs, although well written, feel a bit misleading. They set up a 

strawman around the concept that breaking parts of a system can be useful for understanding it, but 



 

then mention Mendelian genetics almost as an afterthought. Understanding human biology through 

LoF mutations and their consequences has been the mainstay of human genetics for nearly a 

century. What is being done here builds directly on that foundation, rather than being consequent to 

a motivation drawn from the engineering field or from our inability to edit LoF mutations into 

humans. Describing this undertaking as the inverse of classical human genetics (i.e. genotype first, 

rather than phenotype first; looking for the absence of pLOF variants rather than their presence) 

would be a more honest representation of the field-specific context into which this work falls. 

 

We agree that we insufficiently credited the role of Mendelian genetics in creating our current body 

of knowledge about human LoF variants and gene function. We have strengthened the mention of 

Mendelian disease genetics in the introduction, and also added an additional point about forward 

and reverse genetics approaches in the discussion. 

 

5. A few things about the LOEUF metric remain unclear to me: 

 

a. No justification is provided for using the upper bound of the confidence interval rather than 

simply using the o/e ratio itself. I can understand the argument that might be made, but I can also 

imagine counterarguments. In any case, thought process by which this decision was made should be 

laid out. The confidence intervals seem to be quite wide? (I’m inferring this from the fact that the 

median o/e of 48% jumps to a median LOEFF of 0.962). 

 

We have clarified the use of this ratio in the text: “At current sample sizes, this metric 

enables the quantitative assessment of constraint with a built-in confidence value, 

distinguishing small genes (e.g. those with observed = 0, expected = 2; LOEUF = 1.34) from 

large genes (e.g. observed = 0, expected = 100; LOEUF = 0.03), while retaining the 

continuous properties of the direct estimate of the ratio (see Supplementary Information).” At 

significantly larger sample sizes, these values will converge and the direct use of the o/e 

ratio will be more intuitive, but it will likely require ~1 million individuals before we approach 

this point (estimated at 75% of genes with expected LoFs > 50; 3 million individuals to reach 

90% of genes with expected LoFs > 50). These data are added as Supplementary Fig. 8. 

 

b. Unless I missed it, you show histograms of o/e and LOEUF scores, but no comparison of the 

metrics to one another. Related to point (a) above, it would be helpful to present scatter plots of o /e 

vs. LOEUF, and also o/e vs. pLI and LOEUF vs. pLI, to provide the reader with a better view on the 

extent to which they differ? 

 



 

This is a great suggestion - observing the relationship between these variables really 

highlights the continuity of LOEUF compared to pLI (which, though it is a value between 0 

and 1, is not an appropriate metric to use in a continuous fashion). Further, this reiterates the 

point above that the confidence interval provides confidence around the value, which for 

large genes (and eventually at large sample sizes for smaller genes), converges at the o/e 

value. We have added these scatterplots as Supplementary Fig. 7. 

 

c. Many “summary plots” are presented, but I feel like I still lack a raw sense of how the wide 

the confidence intervals are for the o/e ratios that give rise to the LOEUF scores, as well as how 

these confidence intervals vary as a function of the o/e ratios. I suggest that you add a figure that 

shows the stacked means and confidence intervals for each gene, sorted by means (or a random 

subset of genes if the entire set can’t be presented). To phrase it another way – a plot where every 

gene has its own line, and the genes are ranked by o/e, and the o/e and confidence intervals for 

each gene are shown. 

 

We have added this plot to the new Supplementary Fig. 7. 

 

6. What are the considerations involved in estimating selection coefficients from the observed 

vs. expected data? Rather than deciles or this upper bound o/e value, it would be very helpful to 

have these estimates, particularly in light of arguments made in this recent paper from Fuller et al. 

(https://www.nature.com/articles/s41588-019-0383-1) which I urge the authors to cite and discuss 

in relation to the shift from pLI to LOEUF (and ideally to motivate just going ahead and estimating 

the strength of selection on heterozygotes on the basis of the updated data in gnomAD).  

 

We agree that accurate selection coefficients would be helpful for interpretation, but 

generating robust and well-calibrated selection coefficients (as well as the associated 

uncertainties) would be a non-trivial exercise, and we are concerned about the many ways 

that such estimates could be miscalculated without a thorough analysis that would (we think) 

exceed the scope of this paper. In addition, our primary pragmatic goal is the prioritization of 

disease genes, and we have not yet seen evidence that selection coefficients improve this 

(our analysis of the s_het metric from Cassa et al. (2017) actually shows slightly worse 

performance for the classification of haploinsufficient disease genes than pLI, using ExAC 

data for both; we do not yet have corresponding values from gnomAD data). 

 

We do agree that the Fuller et al. manuscript provides extremely important caveats 

regarding the interpretation of constraint-based metrics. We had previously cited this 

manuscript as a preprint in the discussion, but we have now updated the citation to its 

current published form. We also thoroughly agree that the estimation of well-calibrated 

selection coefficients would be very useful for understanding the properties of constraint 

against LoF variants - we hope that other groups will use the publicly available gnomAD data 

set to generate and explore such metrics. 

 



 

7. There are many instances where the authors provide highly significant p-values but no 

corresponding information about the corresponding difference or effect size. As the authors well 

know, miniscule effects can have large p-values. I noticed this in particular in the paragraph 

beginning on line 284 (Biological properties…). However, if the authors could review the full paper 

for similar instances and provide corresponding effect sizes or fold differences or whatever is 

appropriate along with the p-values, that would be helpful. 

 

We have added effect sizes and/or the relevant statistics (e.g. means for each group in a t-

test) to all p-values. 

 

8. My inference throughout is that when the authors are calculating things such as the 

proportion of observed variants out of all possible variants, they are including all possible 

substitutions (3 per site). However, it would be helpful to include at least a bit of information on the 

extent of “site saturation”. For example, when you say 17.2M and 262M variants, is this approaching 

~50% of coding nucleotides and 10% of all nucleotides represented in the human genome, at which 

at least one of three possible single nucleotide changes is observed? Although the primary focus 

could/should remain w/ keeping all possible substitutions as the denominator, it would be helpful to 

know the per-site summary statistics as well. This is also relevant to the summary statistics provided 

at lines 166-169. 

 

We have now computed these statistics at the site-level, which are now in the 

Supplementary information: “The 14,078,157 SNVs in the exomes span 11,999,542 genomic 

positions, representing 20.1% of the 59,837,395 bases where calling was performed. When 

filtering observed and possible sites to a median of 30X coverage, we observe 21.9% of 

sites with at least one SNV. The 204,063,503 SNVs in the genomes span 192,608,400 

genomic positions, representing 6.8% of the 2,831,728,308 bases where calling was 

performed.” 

 

9. Variant calling & indels feel a bit swept under the rug, at least in the main text. I recognize 

that this is covered in the supplementary figures and methods (and I’m not asking for anything new 

to be done here; generally convinced), but it would be helpful to have at least a paragraph 

summarizing the key take-homes from EDFs 2-3. 

 

We have now added a paragraph summarizing EDFs 2 and 3 in the main text. 

 

10. It’s not clear how the statement at lines 410-412, that 30% of coding genes are insufficiently 

powered for detection, is justified. I infer that you are using a cutoff of 10 pLOF mutations expected 

as the definition of sufficiently powered, but where does this come from? On a related point, at line 

230, you state that the increased N from ExAC to gnomAD increases this proportion from 63% to 

72%. The relatively marginal increase from doubling the N leads one to wonder – what population 



 

sizes are required to get this even higher? I guess my broader point is that a more formal analysis of 

power as a function of population size, even if you have to project a bit based on the existing data, 

would be very helpful (and justify the cutoff of 10 or whatever alternative is chosen). What 

population size would it take to get to 95% of genes with at least 10 pLOF mutations expected? 

 

The cutoff of 10 was initially described in the supplemental information: “For many of the 

analyses in this manuscript, we filter the dataset to genes where we expect over 10 pLoF 

variants. This cutoff was chosen as the minimum number of expected pLoF variants that can 

result in membership in the most constrained bin (11.1 expected) or pLI > 0.95 (9.43 

expected).” We have added a reference to this in the main text. Additionally, and more 

importantly, we have now added Supplementary Fig. 8 and Supplementary Dataset 12 that 

describes the proportion of genes with at least N pLoFs expected as a function of sample 

size. Based on these calculations, it would require ~625,000 samples to achieve 95% of 

genes with at least 10 pLoF mutations expected. 

 

Additional comments: 

 

11. The claim is made towards the end of the introduction that the metric “improves rare 

disease diagnosis” – is this actually done in the paper? It seems like this should be rephrased to be 

more in line with what is actually described in the manuscript (unless I missed something, which is 

possible). 

 

We have clarified this sentence to “this metric improves interpretation of genetic variants 

influencing rare disease”. 

 

12. For LOEUF, is is the 95% CI that is used? I assume so, but it should be stated.  

 

We use the upper bound of the 90% CI - this is now more prominently noted in the main text. 

 

13. More could be said, or at least a citation added, for the data points in Fig. 2E that might be 

explained by hypo-methylated CpGs giving rise to a lower rate of % observed? On a related point, in 

EDF 4b, is it possible to partition CpG sites on those that are broadly methylated vs. those that are 

not? (i.e. is it possible that you are completely saturating those that are consistently methylated?)  

 

We have now split Fig. 1e and Extended Data Fig. 4b by methylation status and added these 

as Supplementary Fig. 5. 

 



 

14. It would be helpful if the authors review the manuscript specifically to look gene lists that 

might be useful to readers, and to actually provide those as supplementary tables. For example, at 

line 216, a set of 1,752 genes that are likely to be tolerant to biallelic activation are referenced but a 

corresponding file/table not provided. 

 

We have now added the established gene sets as Supplementary Fig. 9, as well as the list of bi -allelic 

inactivated genes as Supplementary Dataset 7. Further we have compared this latter gene set with 

mouse and cellular knockout data, and added it as Supplementary Table 19: 

 

Supplementary Table 19 | Comparison of genes we observe homozygous deletion in 

gnomAD population with other gene lists. Fewer homozygous knockout tolerant genes 

are included in this comparison (n=1519 vs 1650) as 131 genes that did not have a unique 

gene symbol approved by HGNC. Further, we filtered out genes from the mouse and cell 

comparison sets that did not have LOEUF score. For gene set comparisons, the p-value was 

computed using a Fisher’s exact test (two-sided) and for LOEUF comparisons, a t-test (two-

sided) was used. 

 

 Mouse 

Heterozygous KO 
 Mouse 

Homozygous KO 
 

Cell Essential 
 

Mean 

LOEUF  Lethal Others  Lethal Others  Essential Others  

Homozygous 
KO tolerant 
genes  
(n=1519) 

12 1507  87 1432  6 1513  1.26 

Remaining 

genes 

(n=17675) 

383 17292  3647 14028  677 16998  0.91 

Odds Ratio 0.36  0.23  0.10   

p-value 6.8 x 10-5  9.1 x 10-57  1.5 x 10-17  < 10-100 

 

15. Line 161 – “all possible synonymous methylated CpG variants” – odd phrasing – do you 

mean all possible CG>TG changes? Or are you subsetting to sites that are consistently methylated? 

More clarity here would be helpful. 



 

 

We have edited this text to read “all possible consistently methylated CpG to TpG transitions 

that would create synonymous variants in the human exome”. 

 

16. Fig 3d – the notion of “cell essential” is a little strange. What cell type? Are these genes that 

are consistently essential across CRISPR screens? More clarity on what these are would be good to 

include rather than requiring the reader to look at the reference. 

 

This designation is pulled from the Hart et al., reference, but we have added a more detailed 

explanation in the supplementary text: “Specifically, in the study, Hart et. al. defined a set of 

essential genes using a strict Bayes Factor threshold, corresponding to  >90% posterior 

probability of being essential for more than six cell lines out of minimum 7 to maximum 12 

different screens in different cancer and immortalized cell lines. They defined nonessential 

genes based on low RNA expression level across 17 different cell lines, as well as curated 

shRNA screening results, and this was validated with CRISPR/Cas screening.” 

 

17. In Fig. 5c, there are few enough points above the cutoff that it would be better if you could 

find a way to just label them all. But on a related point, I think the corresponding section of the 

discussion is too bold. Unless I’m missing something, the last sentence of the results feels too bold. 

The results primarily follow from a few phenotypes, all related to brain function, and possibly 

conflated with one another. It would be better to restrict the claim to this subset of phenotypes 

rather than ‘many heritable polygenic diseases and traits’. 

 

With respect to Fig. 5c, we had tested layouts with all the points above the line labeled and 

could not find anything that was readable. However, we’ve now added Supplementary Table 

17, listing any trait with p < 1e-4 and their summary statistics, and the full dataset as 

Supplementary Dataset 13. We have revised the sentence to read: “and suggests that some 

heritable polygenic diseases and traits, particularly cognitive/psychiatric ones, have an 

underlying genetic architecture driven substantially by constrained genes”.  

 

18. Less a request than a suggestion, but I would love to see more discussion or at least some 

brief quantification of the proportion of top-decile LOEUF genes (i.e. most constrained; n = 1,920) in 

terms of what % are associated with a human phenotype, what % have an assigned function, what % 

have no known function, etc.  

 

We have found it quite difficult to rigorously define “assigned function” in a high-throughput 

way. However, we have characterized the % with no known ligands in Extended Data Fig. 

8a, and the % associated with a disease phenotype in Extended Data Fig. 9a-b. 

 



 

Referee #2 (Remarks to the Author): 

 

Summary 

In the manuscript entitled “Variation across 141,456 human genomes and exomes reveals the 

spectrum of loss-of-function tolerance across human protein-coding genes”, Karczewski and 

colleagues describe the Genome Aggregation Database (gnomAD). This is a substantial 

augmentation to the Exome Aggregation (ExAC) database, including additional exome data as well as 

adding 15,708 genomes. The authors describe the data contained within this resource, the quality 

control measures, and highlight a particular variant class, predicted loss of function (pLOF). They 

develop a metric termed LOEUF that is used to categorize genes with respect to their tolerance for 

loss of function variation. They then provide examples demonstrating how this information can be 

used in disease gene research. 

 

High level comments 

The impact that the gnomAD and ExAC resource has had on both the research and clinical genomics 

communities cannot be overstated. The dedication this group has to making this data available to 

the research and clinical communities is exemplary. This project has been a flagship for 

demonstrating how large-scale sequencing coupled with summary data release can be 

transformative for the field. 

With respect to this manuscript, the authors were wise to focus on a narrow aspect of this data and 

demonstrate how this specific variant type (pLOF) can contributes to disease gene research. The 

manuscript walks through how the LOEUF deciles are generated, and provides numerous analysis of 

how this can be used. However, the manuscript fails to connect this with specific biology that 

resonates in an impactful way. There are no specific examples pulled from the categories to make 

the data more meaningful. For example, when looking at figure 3, there is so much more 

information I want to know. This includes identifying specific genes that fall into expected LOEUF 

deciles, but also discussing the unexpected events. What are the haploinsufficient genes that are in 

the lower LOEUF deciles? Does any of this information confirm or refute known orthogonal data 

about genes in these bins? Perhaps even just noting where the ACMG59 fall in these deciles, or 

within these analysis would be useful. Though I understand that the ACMG59 may not be under the 

strongest constraint, a data set such as this could help guide the community about the best way to 

utilize this data. 

 

I do think there are some other missed opportunities for educating users around some issues of this 

analysis. While this manuscript focuses on global analyses, it is important to remember that many 

users will look at individual genes, and understanding how individual genes may be impacted by 

analytical decisions is important for ensuring the data are used correctly. 

 



 

We thank the reviewer for these comments. We completely sympathize with the desire to 

look at individual outlier genes for multiple analyses - indeed, this desire, and the fact that 

we often can’t predict which genes our users will find most interesting, has been a primary 

motivation for releasing the variant list in full to enable the community to perform their own 

analyses, and a browser for users to explore their favorite individual genes or gene sets.  

 

We have added a discussion of the haploinsufficient genes that are unconstrained to the 

Supplementary Information: “Of the haploinsufficient genes, 80% were found in the two most 

constrained deciles of the genome. There were two genes that are in the haploinsufficient 

gene list, but with little evidence of constraint (in the 8th decile): RNF135 (LOEUF = 1.44), 

which has limited support for pathogenicity5; and IKBKG (LOEUF = 1.37), which is poorly 

covered in gnomAD and whose first exon is lowly expressed, suggesting that the pLoFs in 

this gene are likely false positives.” In general, we think that the ACMG59 genes are a rather 

confusing comparator in these analyses, due to their ascertainment on the basis of clinical 

utility rather than any metric that might correlate with selective constraint (such as age of 

onset, inheritance mode, or phenotypic severity). However, we show the distribution of the 

LOEUF scores for these genes below. We also note that 5 out of the 59 are not powered for 

constraint detection (fewer than 10 pLoFs expected); these are noted in the supplement: 

SDHD, MYL3, VHL, MYL2, SDHAF2. 

 

 

 

More  detailed comments 

1. pLOF set definition: The authors are very well versed in the types of annotation errors that 

can lead to false variant calls, and understand the pLOFs are likely to be enriched in annotation 



 

errors. While I think the authors do a very commendable job of cleaning this dataset, I would urge 

the authors to review a recent manuscript from Tuladhar et al., 2019 

(http://dx.doi.org/10.1101/583138) which is focused on analyzing putative knockout alleles from 

CRISPR lines. In this manuscript, they find that 46% of edited lines marketed as knockouts, due to the 

presence of an indel, are not actually knockouts, but that some product is produced via other escape 

mechanisms. While I don’t think the authors need to any additional expe rimental work for this 

manuscript, this reference, plus additional caution that individual pLOF events need to be followed 

up with functional assays to confirm actual LOF is warranted. Particularly because the authors go to 

so much effort to produce a high quality dataset, users need to be reminded that while collectively, 

the data are of high quality, individual events should be verified. It might be interesting to run 

LOFTEE on the dataset in the Tuladhar manuscript to see how many of the ‘escapees’ are f lagged by 

LOFTEE. 

 

We’ve read this paper with great interest and agree that an exploration of further NMD-

escape modes is worthwhile. Unfortunately, the Tuladhar paper does not appear to include a 

list of variants on which we could run LOFTEE. Nevertheless, we have cited this paper as 

well as the “Genetic paradox explained by nonsense” paper mentioned by Reviewer 3, and 

discussed the implications of our work around these: “However, some additional error modes 

may still exist, and indeed, several recent experiments have proposed uncharacterized 

NMD-escape mechanisms6,7.” 

 

2. Variant identification: There are two points to be raised here. The authors do a great job of 

trying to eliminate false positives, even at the expense of potentially losing true positives. However, 

the authors don’t mention the impact of false negatives. For example, STRC has very poor coverage 

of exons 19-25 due to the presence of a paralogous sequence in the genome, complicating 

alignment and leading to low or no coverage. What percentage of the genome, particularly the 

clinically relevant genome, falls into this category? Does gnomAD do better/the same/worse in 

difficult regions such as those as described in Mandelker et al., 2016 

(https://doi.org/10.1038/gim.2016.58)? Does the genome data help in some of these cases? Also, do 

the authors have any comments on the impact of genome data vs. exome data in terms of variant 

identification? What are the technical advantages/disadvantages of genome vs. exome? For 

example, when looking at PKD2 in the gnomAD browser, it looks as if genome data rescues poor 

coverage of the first exon as seen in exome data. How often does this sort of thing occur? 

 

We thank the reviewer for this comment (and reviewer #3 for a similar comment). This analysis is 

somewhat complicated as gnomAD has aggregated data sequenced over a long period of time, 

spanning different capture kits / sequencing technologies. To evaluate the performance of those 

different platforms in the coding regions of the genome, we have now computed for each gene the 

proportion of bases that are well-covered (20x in at least 80% of the samples). We have added a 

section in the Supplementary Material showing that ~80% of protein-coding genes are well-captured 

by all technologies, whole-genome sequencing captures ~8% additional genes well, and about 2.5% 

of the genes are not captured by either. Further, we also showed that the majority of genes that 



 

aren’t well captured by whole-genome sequencing have poor mappability. We break these analyses 

down further by capture platform and sequencing technology in Supplementary Figures 3 and 4. 

Finally, we added a table with per-gene, per-platform coverage summary statistics as Supplementary 

Dataset 1 and for download at https://storage.googleapis.com/gnomad-public/papers/2019-

flagship-

lof/v1.1/summary_gene_coverage/gencode_grch37_gene_by_platform_coverage_summary.tsv.gz 

 

3. More details on specific genes: There are a few places that summary data is provided, and 

what I really want  are the details.  For  example, on line 216, there is a statement about 1752 genes 

that are likely intolerant to biallelic activation- what are these genes? I expected a supplementary 

table, but there is none (though apologies if I missed this). I had the same reaction to Supplementary 

table 15- I would love to see a giant table, one row for each gene with the classification (column 

headers in this table) and LOEUF decile. This would really let me dig into some interesting stuff. Are 

there any surprising genes in these deciles (lines 245-249). In fact, some of the disease genes that 

unexpectedly fall into the lower LOEUF categories would be some of the first ones I’d want to test 

for an escape mechanism leading to expression despite the prediction of LOF.  

 

We have now added Supplementary Dataset 3 with a list of the genes tolerant of 

homozygous inactivation, and Supplementary Dataset 11 with all the constraint and 

summary metrics for each gene in the genome. While Supplementary Table 15 (now 17) has 

too many genes to list in a table, we have added Supplementary Figure 9, a high-resolution 

figure, where readers can zoom in to see specific genes/gene sets. 

 

4. Figures and data in general: I found the availability of numbers and consistent metrics that 

support data figures was inconsistent. Ideally, these numbers would be contained within the figures 

or at least the figure legend (for example, every time there is a correlation, I’d like to see the 

correlation values in the figure or legend, not just in the text). I found myself having to go back and 

forth between the text and figures a lot, and occasionally I thought I found inconsistencies, though 

I’m not always sure if the data are inconsistent, or I’m just having trouble matching the text to the 

appropriate figure. For example, line 225-226 notes ‘the variation in the number of synonymous 

variants observed is accurately captured (r2=0.958)’. The data in extended figure 6f, which states 

r=0.9791- so consistent use of either r or r2 would be appreciated. Even just ensuring that numbers 

are in figure legends, if not the figure, is useful for more easily interpreting the figures. Please review 

that legends and colors are clear. For example, what do the colors in figure 5c mean? I spent an 

embarrassing amount of time looking for the ‘circles’ in extended Data Figure 1, to realized the 

rounded corner squares were what I should look for.  

 

We have now fixed the text to consistently use r rather than r2, and fixed these and many of 

the other areas where statistics were missing or inconsistent. We have also clarified the use 

of color and shapes in the aforementioned figures. 

 



 

5. Assembly information: While I am sympathetic to the needs to use the woefully old GRCh37 

assembly (I myself had to do this for a recent manuscript) it is useful to explain to users why this very 

old reference is used (page 3 of the supplement) and what the shortcomings are. While I fi rmly 

believe the reference assembly version used will not impact the overall findings of this paper, it may 

impact the information at any given locus. For example, a big focus of the GRCh38 update was to 

improve clinically relevant genes (for example, adding in 3 missing coding exons of Shank3, and 

adding a new paralog of KCNE1 which means many of the variants called in GRCh37 may actually be 

paralogous sequence variants) and users should understand these caveats. This also impacts the 

pLOF variant curation, as regions known to be different between GRCh37 and GRCh38, as well as 

known assembly problems from the GRC would likely be useful in this analysis (supplemental page 

32). Lastly, please use consistent nomenclature when referring to the assembly. The off icial 

assembly name is GRCh37, but there are various distribution ‘flavors’. And while I weep that this is 

the case, it is important to note the data source (hg19 specifically implies data from UCSC for 

example) so that these slight variances can be taken into account. 

 

The underlying data used for this manuscript (the exome and genome callsets) are now 

more than three years old, having been produced in 2016 (with most of the read mapping 

having been performed in 2015 or prior). While the GRCh38 assembly had already been 

produced at the time, the GRCh37 assembly was still the field standard. We agree that in 

2019, producing large genomic resources based on the GRCh38 assembly is imperative, 

and is therefore what we plan to do for future versions of gnomAD. We have fixed all 

references to be GRCh37 rather than hg19. 

 

6. Variant annotation and constraint modeling: The supplement sections read as if they are 

stand alone sections. I understand why this happens and in many cases this is not a problem, but I 

had some trouble understanding where variant annotation, and some of the gene level metrics stop 

and the constraint modeling starts.  As I was reading the main text, I was curious as to how regions 

of   low coverage (and thus potential false negatives) impacted the LOEUF and gene level metrics. 

Does something look more intolerant to LOF because no variants are called because of low 

coverage? The constraint modeling section of the supplement explains how coverage is taken into 

account, but the variant annotation section, which has some information on gene level metrics, does 

not. My general assumption is that these two sections really work together in a way that is not 

entirely clear to me from reading the text, but perhaps I am wrong about that. It would be nice to 

clarify some of these metrics with some examples- i.e what calculating the data looks like on a well 

covered gene versus a genes like STRC, SMN1 and IKBKG (thank you for the lovely browser that 

made looking these examples up relatively straightforward!). Additionally, Figure 2D highlights that 

30% of coding genes in the genome are still underpowered to detect constraint- how many ClinVar 

or ACMG59 genes fall into this category? 

 



 

The reviewer is correct about the treatment of coverage throughout the manuscript. For the 

purposes of tallying the *observed* number of variants (both for constraint and gene 

metrics), we require a genotype to have a depth of at least 10. Only in the constraint section 

do we explicitly model the mean coverage across individuals at a site in order to accurately 

estimate the expected number of pLoFs for genes with low coverage, which feeds into the 

LOEUF calculation. Thus, a gene will not look more intolerant to LoF simply because of low 

coverage, but instead, this would lead to a decrease in detection power, which is the desired 

behavior. Indeed, this does mean that the aggregate pLoF frequency metrics may be 

deflated at these genes; however, we have no way to explicitly correct for this as these are 

summary metrics derived straight from the data. 

 

Of the ~28% of genes that are underpowered for constraint detection, these are - perhaps 

unsurprisingly - depleted for disease-associated genes. We have added a note to this effect 

in the Supplementary Information: “At present, 72.1% of genes (13841/19197) have > 10 

pLoFs expected, including 86.5% of disease-associated genes from OMIM (2888/3340; OR 

= 0.45; Fisher’s p < 1 x 10-100). Of the 59 genes satisfying ACMG criteria for reporting of 

secondary findings, only five are underpowered, or have fewer than ten pLoFs expected 

(SDHD, MYL3, VHL, MYL2, SDHAF2).” 

 

7. Exon level metrics: Have the authors considered calculating these metrics at the exon level 

rather than the gene level? Would this provide even more fine grained information? If a gene  only 

has a small number of exons under constraint, could it end up in one of the higher LOEUF deciles 

depending on gene size? Could this potentially improve variant interpretation? Or would doing this 

require significantly more samples? There would likely be utility in doing this at the exon level if 

statistically achievable. 

 

Unfortunately, the calculation of these metrics at a per-exon level would be highly 

underpowered: even at the gene level, we only reach 10 expected pLoFs for ~70% of genes, 

and breaking this down by exon would reduce this number accordingly. However, the code 

provided can compute constraint against arbitrary bases, and thus will be usable when 

sample sizes grow. In the meantime, we have described a method that removes bases 

within exons with little to no evidence of transcript expression
8
 that shows the power of this 

approach. 

 

Referee #3 (Remarks to the Author): 

 

In their manuscript entitled ‘Variation across 141,456 human exomes and genomes reveals the 

spectrum of loss-of-function intolerance across human protein-coding genes’ Karczewski et al. 

present the largest human exome/genome dataset published to date. 

This is without a doubt a very valuable resource to the field of human genetics/genomics; clinical 

researchers, diagnostics, etc. Using a set of >440k high confidence pLoF variants, i.e. a set that is 

more than double the size of ExAC and by applying an improved model (utilizing methylation-base-



 

pair level coverage correction and LOFTEE) they classified the level of LoF intolerance of all protein 

coding genes. 

This expands beyond the use of ExAC for many aspects, which increases the usability to novel 

reads/users, e.g.: 

-          More than double sized dataset 

-          More populations represented 

-          Exomes plus genomes included 

-          Options to use dataset with or without certain sub-cohorts (e.g. non-cancer cohorts) 

-          Isoform refinement 

The power of this dataset is confirmed by: a) constraint metric correlated with biological relevance 

(PPI; gene expression; disease association); b) the constraint metrics reflect model animal and 

cellular KO phenotypes; c) constraint can assist disease gene finding (ratio 15 higher likelihood for de 

novo mutations in developmental disease genes in LOEUF decile).  

 

There are however several major aspects that require refinement, and several new aspects 

could additionally boost the scientific value, add novel insights or increase the usability even 

more. 

 

1.)    It would be interesting to the readers, in which aspects the authors improved over previous 

work: MacArthur et al. Science (2012) (DOI: 10.1126/science.1215040); Lek et al. Nature (2016)(DOI: 

10.1038/nature19057); and which of the previous conclusions may have been falsified since then. 

 

We have added Supplementary Fig. 10 and 11, which both give a good sense of the 

increase in power for assessing constraint as sample sizes increase. We’re not aware of any 

major conclusions from previous papers that have since been falsified, but we are now able 

to give a more refined estimate of the average number of LoF variants per individual 

(Supplementary Table 16, and Supplementary Datasets 8-9) - this number has stayed 

surprisingly consistent since the 2012 paper, despite substantial changes in sequencing 

accuracy and gene model curation over that period. 

 

2.)    The authors should discuss their findings in light of the recent set of work on ‘Genetic paradox 

explained by nonsense’; https://www.nature.com/articles/d41586-019-00823-5 

 

https://www.nature.com/articles/d41586-019-00823-5


 

We’ve read this paper with great interest, but unfortunately the proposed mechanism cannot 

be assessed using genetic data alone. We have added a note about this paper to the 

discussion: “However, some additional error modes may still exist, and indeed, several 

recent experiments have proposed uncharacterized NMD-escape mechanisms6,7.” 

 

3.)    Add a paragraph how many LoF allele human individuals carry on average, per population per 

frequency range 

 

We have added a summary of this information as Supplementary Table 16, and a full 

breakdown in Supplementary Datasets 8-9. 

 

4.)    The author should consider flagging genes for which the  majority of pLoF variants appear in a) 

smaller allelic fractions indication somatic/mosaic state; b) in >average aged individuals. Both would 

be very indicative for ‘drivers of clonal hematopoeisis’; and may prevent false interpretations of 

pLoF in genes like DNMT3A, ASXL1, TET2 (which in germline may very well cause severe 

developmental diseases caused by AD mutations) as well as flagging up novel genes with a similar 

mechanism and biology.  

 

This is a great suggestion. We have previously shown that pLoF variants in ASXL1 are very 

clearly found in older individuals and at lower allele balances in ExAC9, but haven’t 

systematically explored the impact of CHIP using gnomAD. We have now performed a full 

analysis of this phenomenon and added a section to the supplementary information, “Genes 

affected by clonal hematopoiesis“. We searched for genes in which LoF variants were 

present at lower allele balances in older individuals compared to synonymous variants. This 

analysis confirmed that significant signals of clonal hematopoiesis of indeterminate potential 

(CHIP) are present in the known CHIP-associated genes DNMT3A, ASXL1, and TET2, but 

did not reveal any novel genes passing a genome-wide significance threshold with a similar 

mechanism. 

 

5.)    Can the authors describe for which genes/exons the WGS vs WES data improve sensitivity (‘dark 

areas’ of exomes)? 

 

Another great suggestion - this prompted us to look into how genomes add power even within 

protein-coding regions. We have now computed for each gene the proportion of bases that are well -

covered (20x in at least 80% of the samples) for each of the sequencing platforms in gnomAD. We 

have added a section in the Supplementary Material explaining how this was computed, showed 

overall results in Supplementary Figures 4-5, and have released a file with coverage summary for 

each gene and each platform (https://storage.googleapis.com/gnomad-public/papers/2019-flagship-

lof/v1.1/summary_gene_coverage/gencode_grch37_gene_by_platform_coverage_summary.tsv.gz).  



 

 

6.)    Can the authors provide data on compound heterozygous state of pLoF variants in individuals? 

This would be very informative for a) adding sensitivity that gene that can/cannot tolerate complete 

Kos; b) show alleles for which frameshifting variants are rescued by other frameshifting in cis in 

order to restore the reading-frame. 

 

Analyses of compound heterozygosity require large-scale inference of variant phase, which 

is a worthwhile analysis, but one that will require substantial dedicated work and that we 

believe falls outside the scope of this paper.  

 

However, we completely agree that the degree to which frameshifting variants are rescued 

by other frameshifting variants in cis is worthwhile, and we have generated the list of such 

indel pairs up to 30 bp distance each other. These have been made available at 

https://storage.googleapis.com/gnomad-public/release/2.1/frame_restoring_indels.tsv. As we 

felt these analyses were better suited to our companion manuscript on multi-nucleotide 

variants10, we have also added a figure set to that manuscript to describe the basic property 

of such indel pairs, such as: 

- The proportion of in-phase indel pairs is very low when the distance is >30 bp  

- The most common pattern of frame-restoring indels results in 0bp insertion/deletion (e.g. 

4bp deletion + 4bp insertion) 

- such indel pairs are most commonly found in HLA genes 

 

https://storage.googleapis.com/gnomad-public/release/2.1/frame_restoring_indels.tsv


 

 

Figure S3 (of the gnomAD MNV paper) 10. Properties of frame-restoring indel pairs 

a, The number of indel pairs (orange = all, blue = phased) is shown as a function of distance between 

the indels. We set the threshold distance to be 30 as there are relatively few indel pairs past this 

distance. b, The distribution of the distance between indel pairs resulting in frame restoration 

(exome only, same for c~h). c, The distribution of the resulting insertion or deletion length for frame-



 

restoring indel pairs. d, The number of frame-restoring indel pairs per gene, and the list of genes 

with more than six such variants. e-f, The allele count distribution of frame-restoring indels (e) and 

the distribution of allele counts divided by the maximum allele count of constituent SNVs (f). The 

value is exactly 1 (implying LD r2 = 1) for 81.5% of overall frame-restoring indel pairs, suggesting that 

majority of such indel events are likely the result of one mutational event. g-h, The mean LOEUF 

(constraint) score (g) and the fraction of LoF-constrained genes for frame-restoring indel pairs (h), 

per combination of LOFTEE filters of the constituent indels. 

 

7.)    Next to the CNV/SV dataset in preparation (Collins et al.); have the authors compared LOEFF 

decile genes for overlap with CNV morbidity map (Eichler lab; Cooper et al and Coe et al.); and HI 

scores by the Hurles lab? 

 

The SV companion manuscript11 has a comparison of the SV calls with the CNV morbidity 

map, and we have previously compared our constraint metrics to the HI scores from the 

Hurles lab and find a high correlation (Supplementary information of 1). 

 

8.)    It would be very interesting to understand whether there are genes that are exclusive or 

enriched for certain types of pLoF. E.g. are there genes that show stop-gains only but no frameshifts 

or essential splice site pLoF? 

 

Most genes, especially highly constrained genes, have fewer than 5-10 observed pLoF 

variants per gene, and thus, a systematic comparison within a gene across the three classes 

of pLoF variants is likely to be underpowered for most genes. For genes with many pLoF 

variants, many of these are likely to be false positives and a systematic assessment would 

yield primarily signals related to false positives (especially enrichment of indels at repetitive 

sites). While this analysis would be interesting, we think it will require a larger sample size 

and further improvements in variant filtering before the results are meaningful. 

 

9.)    Are there any specific pLoF alleles that are significantly enriched in certain populations? E.g. are 

there any population specific PCSK9-like alleles? 

 

There are many pLoFs that are private to each population and it is quite difficult to assess 

the biological importance of enrichments of any given variant in the absence of associated 

phenotype data. The vast majority of pLoF variants are rare, found in one or only a few 

individuals (typically from the same population). Thus, the QQ plot for enrichments would be 

hyper-inflated, the multiple testing burden of such an analysis exorbitant (0.5M variants * 7 

populations), and the interpretation of results very difficult. 

 

10.) How many isoform specific effects are (not) re-solved by transferring from hg19 to hg38? 



 

  

As this analysis was performed on hg19, we have not yet assessed the improvements added 

by alignments to hg38. The next gnomAD dataset will be natively aligned to hg38, which will 

enable comparisons of the two references. 

  

Minor issues that may further improve the manuscript: 

1.)    Line 56: “model of human mutation” isn’t this rather “mutation rate” 

2.)    Line 91: Mention somatic events (and differences in tissues source) as a source of ‘false positive 

germline events’ 

3.)    Line 161: Please add an explanation and citation to the synonymous methylated CpG variants – 

as the most mutable site of the human genome. 

 

Thank you - these are now all corrected (the last of these is now: “These variants reflect the 

expected patterns of variation based on mutation and selection: we observe 84.9% of all 

possible consistently methylated CpG to TpG transitions that would create synonymous 

variants in the human exome (Supplementary Table 14), indicating that at this sample size 

we are beginning to approach mutational saturation of this highly mutable and weakly 

negatively selected variant class”). 

 

4.)    Line 169 (and ext. fig 4): The authors should be able to model the amount of exomes/genomes 

required to robustly reach saturation across all mutational contexts. 

 

This is definitely possible, and in fact we have previously described a method of modeling 

and predicting variant saturation at different sample sizes (up to 500K) and applied it to 

ExAC data (see 12, and especially Figure 1b).  

 

5.)    Lines 237-238: Could the author define how much the refined model and the increased sample 

size to the improved power? 

 

Unfortunately not - while we agree that it would be useful to understand the relative impact of 

these two factors, it would be very expensive in computation and reformatting labor to re-run 

the new model on older data or vice versa. 

 

6.)    Line 475: change “sex aneuploid” to “sex chromosome aneuploid”.  

7.)    Figure 6b: define “mu” in legend. 

 



 

These are now spelled out. 

 

8.)    Supplement: page 4; why was coverage capped at 100x, and are there any adverse effects 

expected for capping? 

 

The coverage was capped at 100X for efficiency of computing coverage; we have now 

added a note to this effect in the supplement. With respect to adverse effects, the effects of 

coverage on constraint calculations is shown in Extended Data Fig. 6e, and there is very 

little effect even above 50X. 

 

9.)    Supplement: page 46: some references are not formatted correctly at first citation (Hamdan; 

Lelieveld). 

 

Thank you - these are now corrected. 

 

Referee #4 (Remarks to the Author): 

 

In, “Variation across 141,456 human exomes and genomes reveals the spectrum of loss-of-function 

intolerance across human protein-coding genes“, Karczewski et al. describe a compilation of variants 

in exome and genome sequence data from over 100,000 individuals assembled from a variety of 

projects.  They focus on predicted loss-of-function (pLOF) variants inferred to eliminate protein 

production, and describe pipelines to effectively remove erroneous pLOF variants.  They then 

quantify the extent of observed pLOF variation across populations and genes, asses the relationship 

between pLOF and transcript expression, and define pLOF gene-level tolerance scores for application 

in human disease genetics. 

 

In general, this work is of high technical quality (a few minor comments are provided below).  

Further, the authors are to be commended for their efforts to not only make the data public and 

usable but also to publish software to generate/parse/filter/etc.  GnomAD/ExAC has been a highly 

impactful resource and this iteration is likely to continue in that regard.  

 



 

However, my high-level opinion is that while the underlying resource is impressive, this 

manuscript is a narrow one documenting only incremental advances over previous work.  

The novelty here is largely due to the increased sample size and in refinements to the 

methods, e.g., the machine learning approaches to filter variants and the model to infer 

mutability, but the key concepts and conclusions have been previously published.  For 

example, a key message in this paper, i.e., that mutational tolerance scores usefully 

separate genes according to phenotypic relevance, is similar to that of Petrovski et al., 

published in 2013.  The distributional shifts presented here in Figures 3a,c,d and 5a, are 

similar to those shown in Petrovski et al. Figures 2 and 3; in fact, Petrovski et al. used nearly 

identical types of genes to make the same point (i.e., haploinsufficient, mouse-lethal, OMIM-

dominant, OMIM-recessive, and neurodevelopmental-disorder genes).  This manuscript is 

part of a large group of studies that use related methods and lead to similar conclusions 

about the inference of selective tolerance as a means to identify pathogenic variation (non-

comprehensive examples beyond Petrovski et al. include Fu et al. 2013, Samocha et al. 

2014, and Gussow et al. 2017). 

 

Thus, the difference between this and previous work is of degree not kind.  Towards that end, this 

analysis does not systematically and precisely measure improvement over previous work, nor is 

there a systematic delineation of the effects of the various sources of improvement described.  For 

example, while sample size is analyzed in relation to variant saturation, no comparison of LOEUF 

gene group separation efficiencies (e.g., haploinsufficient, essential, ID/DD, etc) at various sample 

sizes is demonstrated.  Similarly, the variant filtering and mutability models developed here are not 

contrasted with other models provided the same input data (e.g., RVIS on the same set of pLOF 

variants), nor are the effects of the differing refinements described here measured as isolated 

components (e.g., LOEUF on VQSR vs machine-learning-filtered variants or a simple mutability model 

vs a CpG/methylation/etc-defined model).  While I find it highly likely that the results described here 

are non-trivially more powerful for separating genes known to be relevant to phenotype from those 

that are not, the improvements are likely to be modest; the more important, pragmatic effect on 

gene discovery per se is likely to be even smaller given that there is not a strict monotonic 

correlation between the distributional separations benchmarked here and novel disease gene 

prioritization effectiveness.   



 

 

While the overall concepts of LoF annotation and constraint have been previously described, 

we have added substantial variant filtration improvements (e.g. the RF filtering process and 

LOFTEE) and methodological improvements (such as changes to the underlying mutational 

expectation model, and the development of LOEUF, a continuous form of the previously 

published concepts; e.g. pLI).  In combination with more than doubling the underlying 

sample size, these changes have considerably increased the resolution for the detection of 

LoF constraint in human genes. 

 

A systematic assessment of the relative impact of each of the filtering and model 

components (and their combinations) would be extremely time-consuming. However, we 

have added a comparison of LOEUF to RVIS, which is described in the Supplementary 

Figure 10: while we could not find the RVIS code to run on the exact same set of pLoF 

variants, we used the publicly available set of RVIS scores on gnomAD variants that was 

available at http://genic-intolerance.org (RVIS_Unpublished_ExACv2_March2017.txt 

downloaded on July 15, 2019). Further, we computed the effect of increasing sample size on 

LOEUF, which is now shown in Supplementary Figure 11. 

 

Comparison to previous metrics of essentiality 
We compared LOEUF to previous metrics of genic essentiality, including pLI and RVIS. pLI 

was computed on the gnomAD exome variants in this manuscript as described previously1 and RVIS13 
scores for gnomAD were downloaded from http://genic-intolerance.org/ 
(RVIS_Unpublished_ExACv2_March2017.txt downloaded on July 15, 2019). We selecte d two gold 
standard datasets for comparison: 1) the haploinsufficient gene list described in “Gene list 
comparisons”, and 2) a union of the mouse heterozygous lethal and “cell essential” gene lists 
described in “Mouse and cell model comparisons.” Using these genes as “true positives” and all 
other genes as “negatives,” we created receiver operator characteristic (ROC) curves for each 
method and computed the area under the curve (AUC) as a performance assessment. LOEUF 
substantially outperforms RVIS for both gold standard sets, and performs similarly to pLI for 

identifying haploinsufficient genes and outperforms pLI for essential genes (Supplementary Fig. 10).  

http://genic-intolerance.org/
http://genic-intolerance.org/


 

Supplementary Figure 10 | Comparison to other gene essentiality metrics. ROC curves 
for each gene essentiality metric, for discerning haploinsufficient genes (a) or mouse 
heterozygous lethal or cell essential genes (b). 

 
Performance as a function of sample size 

We repeat the ROC process described above for each of the computed LOEUF scores for 
each downsampling of gnomAD and find that the performance of LOEUF is dependent on sample 

size and not yet saturated for identifying haploinsufficient genes (Supplementary Fig. 11).  

Supplementary Figure 11 | Performance of LOEUF by sample size. Area under ROC 

curve (AUC) for LOEUF computed for various downsamplings of gnomAD, for discerning 
haploinsufficient genes (a) or mouse heterozygous lethal or cell essential genes (b). 

 

 

Other key results, such as those related to the contribution of errors to pLOF variants and the 

relationship between nonsense variants and expression are also conceptually similar to previously 



 

published studies, including some by many of the authors here (e.g., MacArthur et al. 2012, Bartha 

et al. 2015, Rivas et al. 2015, Balasubramanian et al. 2017, Ganna et al. 2018).  

 

As the reviewer previously noted, we are committed to rapid, open-source release of 

methods. This manuscript describes in detail the LOFTEE filtering strategy and software 

package, which, while it was used in previous work due to being freely available for years 

ahead of publication, has not yet been published in its current form. While LOFTEE 

implements many of the filters previously described, there are a number of optimizations, 

including a conservation-weighted base truncation scheme, splice-rescue variants, as well 

as the inclusion of non-canonical splice variants, that have not been previously described. 

We have now added a note about the splice rescue variants in the main text, and these are 

described in Extended Data Figure 7 and Supplementary information. 

 

The preexisting literature on de novo variation in ID/DD, another highlighted result in this 

manuscript, is too extensive to concisely summarize or cite here, but it is safe to say that the key 

results here (e.g., Figure 5a) have already been seen in numerous studies that use related 

approaches and similar data. 

 

While we agree that the enrichment of de novo variants in DD/ID patients has been 

previously described, the enrichments here are stronger than those in previous works, partly 

as the continuous nature of LOEUF permits the finer-grained exploration of highly-

constrained genes. 

 

I am not arguing that this manuscript offers nothing distinctive relative to the other cited 

manuscripts (and the other uncited manuscripts like them). Indeed, I find it likely that there are 

benefits to the increased sample size and methodological refinements described here.  However, 

these differences are not systematically and precisely quantified, and even if they were I do not 

believe they would be conceptually or pragmatically large. 

 

There are also some key details and points outsourced to accompanying manuscripts cited as being 

in preparation, including Cummings et al., Collins et al., Minikel et al., and Whiffin et al., suggesting 

result overlap that further undermines uniqueness and novelty here.  While not cited as such, it 

appears that these manuscripts are available on Biorxiv (in my opinion, “in preparation” or “data not 

shown” citations are intrinsically inhibitory to meaningful review and should not be used).  After 

reading these related Biorxiv documents, it is clear that these manuscripts as a group overlap 

extensively with one another, even beyond the fact that they are all derived from the same 

underlying genome/exome data.  Consider the following (non-comprehensive) examples:  

 



 

While all of the manuscripts in the gnomAD package are now available on bioRxiv, they 

were not live (and thus couldn’t be fully cited) at the time of submission of this manuscript. 

We respectfully disagree with the proposed examples of redundancies between the papers 

(see below for specific responses). In fact, we find it a strength that the dataset can be used 

in different fashions and achieve consistent and consistently powerful results with multiple 

complementary approaches. 

 

1. LOFTEE is a core method in this manuscript, Cummings et al, and Minikel et al., being used to 

provide the refined data product (collections of error-depleted pLOF variants) that drives key 

conclusions across all three manuscripts.   

 

In these three papers, we describe three different strategies with different datasets and 

audiences. In Cummings et al., we describe the use of orthogonal expression (GTEx) data to 

improve variant, including pLoF, annotation. This is applied to the gnomAD dataset as it is 

the largest genetic variant dataset in existence, but is multi-purpose and could be adapted to 

any expression or genetic variant dataset. The methods described in Cummings et al. have 

almost no overlap with the methods described here, as they relate primarily to gene 

expression analysis. Meanwhile, Minikel et al. uses some of the data and results described 

in this paper to perform a detailed exploration of the use of pLoF variation for drug target 

discovery and validation, which falls well outside the scope of this manuscript. The fact that 

the same underlying data set and harmonized quality control and filtering approaches were 

used in these three papers to perform conceptually distinct analyses is, we would argue, a 

strength of this manuscript package rather than redundancy. 

 

2. Much of the text in Cummings et al. is thematically highly consistent with key results in this 

manuscript, namely expression levels and distribution in relation to pLOF variation, both real and 

erroneous.  Note, for example, content overlap between Cummings Figure 3 and Karczewski 4b-c 

and overlap between Cummings Figure 4 and Karczewski 2a. 

 

Fig. 3 in Cummings et al. describes the MAPS score for variants in genes falling into each 

LOEUF decile, which is then split out by the proportion expressed of the variants. Fig. 4b in 

this work describes the proportion of tissues where the genes falling into each LOEUF 

decile, while 4c describes the percent of expression that derives from the constrained 

transcript (vs unconstrained transcripts). There is no overlap in these figures except the x-

axis in the former, and the words “proportion” and “expressed” in the latter. 

 

Fig. 4 in Cummings et al. and Fig. 2a here show the proportion filtered by variant 

classification by different methodologies. While these are conceptually similar, showing that 

a method filters more common variation than gold standard disease variation is a common 

way to assess the performance of a metric for binary metrics (as ROC curves are for 

quantitative metrics). 

 



 

3. Figure 1 from Minikel et al. is similar to Figure 2 in this manuscript, drawing from the same 

data and presenting very similar results (e.g., compare Minikel 1c with Karczewski 2c-d).  Minikel 

Figure 1 furthermore appears to be very similar to Extended Figure 5 f-h in this manuscript; all these 

panels are scatter plots showing observed and expected counts of variants, subset by the same 

variant types using the same coloring scheme, and whose key conclusion is to indicate gene or 

transcript-level constraint differences on different categories of variation. 

 

Fig. 1 in Minikel et al. was indeed similar to Extended Data Fig. 5f-h, which is in turn similar 

to Extended Data Fig. 5 in 1. These are meant as orienting figures to illustrate the observed 

and expected models, which is why they are in the Extended Data Figures for the latter two 

cases. Minikel et al. has now been restructured in review, and this figure has been removed 

from that manuscript. 

 

4. Collins Figure 6b and Karczewski 3b both appear to use the same data and lead to similar 

results, namely the correlation between rates of structural variant observation and constraint on 

pLOF SNVs. 

 

Indeed, these figure panels do have a substantial overlap. However, in this manuscript, the 

panel is intended as a high-level summary of the SV result, and to orient readers that a 

companion manuscript describing structural variants is available, as the focus in this 

manuscript is SNVs and indels. In Collins et al., the result is further expanded on in 

comparison to other SV types and constraint metrics in order to draw conclusions about SVs 

that are not relevant to this manuscript. 

 

While these examples of overlap are not plainly duplicative of one another, they tend to provide 

only mildly different perspectives on the same data and ultimately lead to similar high-level 

conclusions.  In general, there are extensive redundancies across these five manuscripts, including: 

shared raw, intermediate, and endpoint datasets; shared methods for variant calling and filtration; 

similar individual results and figures; and shared high-level conclusions. 

 

Thus, while I understand that “lump/split” decisions for manuscripts stemming from large team-

driven genomic projects can be challenging, it is my opinion that the split decisions in this case 

resulted in a too thin manuscript that provides only incremental impact relative to both previously 

published and concurrently submitted papers.  However, I find it likely that a more comprehensive 

manuscript that combines key points here with those from the companion manuscripts would be 

both more reader-friendly and more impactful.  It could benefit from elimination of the 

redundancies and better highlighting of those results which are truly new.  It would also provide a 

more cohesive description of GnomAD, the conclusions one can derive from it, and the impact i t can 

have as a resource. 

 



 

This manuscript is intended as a flagship manuscript describing multiple advances, including 

of the gnomAD dataset, sample and variant filtration, variant filtration using LOFTEE, 

improvements to the constraint process, and LOEUF. At its current length, it already includes 

a full manuscript, 26 figures, 21 tables, and 80 pages of supplementary material: lumping in 

the additional full-length manuscripts (which each have their own message and audience) 

would considerably increase the length and correspondingly, diffuse the focus of this 

manuscript. We also note that a degree of interdependency and consistency of ideas 

between papers is a necessary aspect of a manuscript package. 

 

Minor technical comments: 

 

Additional details on the “established gene lists” that drive key results are needed.  While a github 

link is provided, precise descriptions of how they were defined need to be in the manuscript or 

supplement, along with a discussion about how their ascertainment may influence the correlations 

and trends observed.  This is particularly true to the extent that there are any manual curation steps 

and to the extent that there may exist implicit or explicit circularities.  If, for example, data from a 

previous generation of ExAC were used to define a given list of genes, then the results presented 

here might be at least partially tautological.  On a related note, who performed these curations and 

to what extent did they also perform the analyses presented here? I do not doubt the general 

veracity of these results.  However, to the extent that this manuscript is refining methods/data and 

not providing conceptually new approaches, precisely estimating the actual magnitude of individual 

refinements is particularly important; thus, any relevant biases in the use of these gene lists as a 

measure of performance should be removed or controlled for.  Ideally, gene lists defined and 

curated by an independent group and in the absence of ExAC data would be used as validation (e.g., 

those used in Petrovski et al., which predate these analyses and, I believe, the existence of ExAC as a 

public resource). 

 

The gene lists used are the same as those in the ExAC paper, and thus predate the ExAC 

and gnomAD resources, and we have added a note to this effect in the Supplementary 

Information. The data were curated by other groups, and those who did the analysis here did 

not feed back results of these analyses to the curators. 

 

Similar question relates to the process by which OMIM genes were defined as being discovered from 

WES/WGS vs linkage.  Was this work done manually?  How does it compare to other efforts (if any)?  

What about cases in which a combination of both linkage and WES/WGS were used?  As per above, 

the effects of circularity are relevant here given the fact that ExAC has explicitly (e.g., by contributing 

to variant filtration) and implicitly (e.g., via use of intolerance scores in VUS evaluation) helped to 

identify some of the WES/WGS-discovered genes; this will likely be difficult to account for but clearly 

may confound the interpretation here. 

 



 

The genes were automatically curated as previously described14. This is now clarified in the 

supplement: “These genes were further filtered to those causal for monogenic conditions 

and divided (as in Chong et al., 201514) into those discovered by whole-exome/whole-

genome sequencing (WES/WGS) or previous techniques, such as mapping using linkage or 

large recurrent chromosomal microduplication/microdeletions, followed by candidate gene 

sequencing.” We are aware of no other efforts to curate OMIM data in this manner 

(OrphaNet does not record any information about discovery). With respect to circularity, 

these data were not shown in the original manuscript, but we note that the decrease in 

LOEUF scores begins in 2012 and remains for years afterwards, predating ExAC (first 

released in October 2014) and especially its widespread use, as can be seen in this figure 

below. A further analysis of this curated dataset shows a post-WES/WGS era enrichment for 

gene-disease relationships attributable to de novo variants, supporting our claim here 

[Bamshad et al., 2019; AJHG in press]. 

[redacted]  
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Reviewer Reports on the First Revision: 

Referee #1: 

 

Overall the authors were responsive to my comments, and the manuscript is much improved. 

 

My remaining major comment is that I continue to struggle with LOEUF as a metric. I don’t believe 



 

that it fully sunk in for me on my first read how conflated LOEUF is with gene length. I understand 

why you are doing it this way (i.e. using LOEUF instead of o/e), but there needs to be more 

transparency and care on this point. pLI may be disguising variability in intolerance, but LOEUF is 

disguising gene length as a confounder on confidence, and that needs to be discussed more 

explicitly. 

 

First, you need to show the relationship, e.g. as a box plot of gene lengths for LOEUF deciles. 

Ideally this would be a main text panel. 

 

Second, the fact that short genes tend to be given low LOEUF scores just because they are short 

needs to be made more explicit. The new sentence at line 273-275 is poorly written, and 

practically should be its own paragraph (that cites the above requested figure). I can see low 

LOEUF telling you something about constraint. But high LOEUF doesn’t seem to tell you much of 

anything, as it conflates “not under constraint” and “too short to say anything meaningful”. I 

would really like to see a main text full paragraph acknowledging and quantifying this limitation 

and its consequences. 

 

Third, you do take care to control for length in some but not all of the subsequent analyses that 

use LOEUF. For example, throughout Fig. 3 (and Fig. 5 as well, perhaps?; possibly other figures, 

I’m just using these as examples), I recognize that the result is very likely to hold up, but it seems 

relevant to state whether or not there are differences in the gene length distribution between the 

classes of genes being compared. This would also help reinforce the point to the readers that 

paying attention to gene length is key. The authors should carefully go through the manuscript 

and make sure that all LOEUF-dependent analyses control for gene length. 

 

Minor: 

 

79 – “many of which” should be “most of which” or “the vast majority of which”. 

 

268 – It may be worth emphasizing more that the shape of EDF7a suggests a  flattish rather than 

dichotomous distribution of o/e, which argues for o/e (or LOUEF) over pLI. 

 

 

Referee #2: 

 

In this manuscript version, Karczewski and colleagues make substantial improvements to the 

original manuscript. I think the authors have done an outstanding job responding to the comments 

of four reviewers, who clearly all came at this manuscript with different perspectives. I am 

especially pleased with the quality of the figures in this version of the manuscript. They are much 

clearer and easier to follow. I support publication of this article. Below, I note a couple of very 

minor issues. 

 

line 236: Perhaps this was just me, but I had to read this sentence a few times to grok what was 

going on. I think it may benefit from clarifying that the 1,555 was in all populations (I think). 

 

ED Figs. 4 and 6: I think these figures could benefit from a bit more padding between figures. The 

x-axis labels on the top graphs start to blend into where titles might be for the lower graphs. It 

took me a few minutes to orient here, and I think a bit of extra padding would help with this. 

 

Supplement p. 4: “We mapped reads onto the human genome build 37...” Please specify the 

source for this specific set of FASTAs, as well as the decoys (if any) that were used for the 

alignment. And, thank you for clarifying assembly name usage (GRCh37) throughout the 

manuscript. 

 

Supplement p. 51: Apologies if I missed this, but I didn’t see a reference to a figure or data table 



 

this section was referencing. You seem to have this in other parts of the supplement, and it is very 

useful to have that reference when going through this material. 

 

 

Referee #3: 

 

In their revised manuscript the authors have addressed most of my concerns and have 

significantly improved their manuscript during revision. They have also addressed valuable points 

raised by other reviewers, which again has led to an overall improved manuscript. 

 

In particular, they have added valuable data following my suggestions: 

 

- Suppl. Figs. 10 and 11 to show the increased power of the current dataset; 

 

- Suppl. Table 17 (and respective datasets) show #pLoF per individual; 

 

- The novel analysis on CHIP (Suppl. Table 16 and accompanying datasets) are valuable new 

data/analysis; 

 

- A comparison of the added value of WGS over WES even for coding regions, summarized in 

Suppl. Figs. 3 and 4 (not as stated in rebuttal letter SF 4 and 5); also the provided list of 

coverages per gene (https://storage.googleapis.com/gnomad-public/papers/2019-flagship-

lof/v1.1/summary_gene_coverage/gencode_grch37_gene_by_platform_coverage_summary.tsv.gz

) is valuable to the community; 

 

- The authors have added ‘allele rescue by subsequent frameshifts’ to the accompanying paper on 

MNVs. 

 

While the overall quality has further improved, I see further improvements opportunities, i.e. here 

a few suggestions for minor revisions: 

 

- It would be interesting to state in the main text that the number of LoF variants per individual is 

constant since the 2012 paper. This should be further specified in: total # pLoF, of which so many 

common, rare and private (as now shown in Suppl. Datasets 8-9; incorrectly stated in rebuttal 

letter to also be contained in Suppl. Table 16 – which in fact contains the CHIP data; should be 

Suppl. Table 17). (refers to rebuttal point 3.) 

 

- Concerning the CHIP analysis (Suppl. Table 16) the authors should mention that 

missense/activating mutations have not been subject of the current study, but are a known 

important contributor to the CHIP phenomenon. The authors should also clarify that the age used 

was ‘last known age of the individual’ rather than ‘age at sampling’. The authors conclude that no 

novel genes have been identified as such strong candidates as ASXL1, DNMT3A, and TET2. This, 

however, is not expected, as these have been known to be the three strongest drivers of clonal 

hematopoiesis. The power of the current dataset, however, should pinpoint other important but 

less strong drivers. Can the authors comment on the genes that show significant KS test and 

Moods median test p-values (<1.4x10-6) but ‘only’ an age difference of 55 vs 50 years? These are 

e.g. SHROOM3, EPB41L4A, CYP4B1, AMPD1, OR5K2, ANKDD1B, FAM58A, KRTAP4-8. (refers to 

rebuttal point 4.) 

 

- While I agree with the authors that true compound heterozygosity requires large-scale inference 

of variant phase, it is, however, safe to assume that every individual that carries 2 pLoF variants in 

the same gene has a 50% chance that this is in cis or trans. Already having the information 

whether 2 rare/private LoFs are from the same or two independent individuals can be very useful; 

and this could significantly enrich the list of genes for which homozygous KOs have been (never) 

observed. (refers to rebuttal point 6.) 



 

 

- While I can understand that the power is lacking to distinguish the three classes of pLoF, adding 

a simple ratio of stop, fs, splice-site would be useful to the reader. (refers to rebuttal point 8.) 

 

 

Referee #4: 

 

I have read through the response to reviewers. In general, the authors have been thoughtful and 

responsive to reviewer comments; there are no major concerns about the technical quality of the 

data, and the impact of the resource as a whole has been and will continue to be high. 

 

However, I still am not convinced that the narrow focus on LOF variation is the most effective 

choice for presenting this work; within the current scope of this manuscript, the conceptual novelty 

is minimal and the technical novelty is modest (e.g., Supp. Fig. 10). I continue to think that the 

key results here should be combined with the distinct key results from the other GnomAD-related 

papers. I simply don’t agree that the three overlapping papers use “different strategies with 

different datasets and audiences”; the redundancies, ranging from nearly literal duplication to 

conceptually similar even if technically distinct, remain extensive. While I understand the authors’ 

concern that the current manuscript is already long, my concern is not related to length but 

novelty and impact. Further, a combined manuscript that highlighted the truly distinct parts of 

each paper and collapsed the redundant components would be substantially more concise than the 

summed length of the current collection of manuscripts. So the net effect would be to shorten 

rather than extend, in addition to better highlighting the truly novel elements. 

 

That said, the nature and structure of the Nature-published form of these manuscript(s) is an 

editorial consideration about which I am happy to state my opinion and move on; I don’t see a 

need for further rounds of revision or review. 

 

 

Referee #5: 

 

The manuscript by Karczewski et al. entitled "Variation across 141,456 human exomes and 

genomes reveals the spectrum of loss-of-function intolerance across human protein-coding genes" 

describes an impressively large-scale catalog of harmonized genetic data that was used to catalog 

predicted loss of function (pLoF) variants that may underlie rare diseases. This review focuses 

more on the software and code behind the manuscript than on the manuscript itself. The authors 

have done a laudable job of making all the code and data publicly available and provided ample 

documentation; however, I have two concerns: the authors do not have a unit tests in their 

python- and perl-based GitHub repositories that can be used to automatically review their code, 

and my attempts to reproduce the figures in R were unsuccessful due to a number of warnings and 

errors. I believe these concerns can be quickly resolved and will greatly improve the ability of 

others to reuse or reproduce the data and the analyses. It is worth noting that my lack of 

experience using the Google Cloud Platform Dataproc cluster limited my ability test Hail and the 

LOFTEE software in the cloud, so an additional review by someone who is familiar using these tools 

on the Google platform might be worthwhile. 

 

Specific comments 

 

The gnomAD browser (https://gnomad.broadinstitute.org/) accompanying the manuscript has a 

very nice user interface. I was able to easily view pLoF and other variants in my favorite genes. 

This web-browser is an excellent resource for those who wish to use a GUI to explore the data 

(e.g. clinicians, teachers, students, members of the who lack the computational expertise to sift 

through the raw data). 

 

As described in the manuscript, all data processing and analyses were performed using Hail 



 

(https://hail.is/), which is an open-source, Python-based library. The documentation for Hail 0.2 is 

very thorough, and I was able to successfully follow the local installation instructions and the 

GWAS tutorials with relative ease. This speaks very well for the potential to reproduce the 

analyses described in the manuscript. However, I was not able to install Hail on the HPC system I 

normally use (Stampede 2 at the Texas Advanced Computing Facility) nor was I able to install it 

the Cloud Platform Dataproc cluster (https://cloud.google.com/dataproc/) used by the authors. I 

am a first time Google Cloud user, so this doesn’t really surprise me. 

 

The hyperlink on p. 30 is a dead end. “The filtering frequency described previously13 is 

implemented in Hail 

(https://hail.is/docs/0.2/experimental.html#hail.experimental.filtering_allele_frequency). 

 

In addition to the detailed supplementary materials, some of the co-authors wrote a blog post 

(https://macarthurlab.org/2018/10/17/gnomad-v2-1/) that provides a detailed walk-through of 

the scripts and the variables used to generate many of the figures in the manuscript. This is also a 

valuable resource for anyone wishing to reproduce the analyses. 

 

I am concerned that none of the three repositories listed in the "code and software checklist" have 

clearly marked tests that could be used to automate the process of code review. I did find tests in 

https://github.com/macarthur-lab/gnomad_hail; however, this repository was not listed as critical 

to the manuscript. Also, it appears that these error messages are sent to a slack channel, which 

would be highly useful if you were a member of the slack channel but not so useful to someone 

outside the McArthur lab group. I am aware that the authors consider these repositories to be a 

collection of scripts rather than a software package; however, because the README files 

encourage others to use and modify the code, it would be very useful if the authors could add 

continuous integration (like Travis-CI (https://travis-ci.com/), which would allow automated 

testing when changes to code are made, and the addition of a badge (or shield) to the repo’s 

README would give new users confidence that the code is working as expected. 

 

The ̀ gnomad_qc` repository is well organized, and the functions are well documented. This 

workflow describes in the repository corresponds nicely to the “Sample QC” section of the 

supplementary materials, so I could identify which functions correspond to steps outlined in the 

methods section. This repository also corresponds to ED Fig. 1, but I find this figure to be more 

confusing than helpful. It’s not immediately obvious that the terse bullet points map onto the 

arrows between boxes. It would be more useful if panel 1a was broken down into panels 1a-g and 

if each arrow was labelled with the function(s) that is used to perform that action. By giving each 

step its own label, you can remove the text in the middle and more precisely refer to read to that 

specific part of the figure when describing the workflow in the methods section. 

 

In `gnomad_qc/sample_qc/apply_hard_filters.py` on line 13, the authors use “cutoff of F<0.5 for 

females and F>0.8 for males for genomes”; however, on p. 8 of the suppl. methods, the authors 

state “For genomes… samples with F > 0.8 were classified as male and samples with F < 0.2 were 

classified as female.” Which is correct: 0.2 or 0.5 for females? 

 

In `gnomad_qc/sample_qc/apply_hard_filters.py` on line 31, the authors refer to a metadata file 

that by given to them by a colleague. Is this metadata public? Can it be referred to by a DOI? How 

does this comment about the peculiarity of the metadata affect the ability for someone else to 

remix or reuse this pipeline? 

 

The R code in ̀ gnomad_lof/R` is also well written and well documented. I especially like that all 

the libraries, custom aesthetics, custom functions, and aliases use are located in ̀ constants.R`. 

This file does need to be sourced in ̀ all_figures.R` for the contents to be loaded in the 

environment before generating the figures. 

 

Of the 30+ R packages used, I had to install about 10 libraries. One way to make this repository 



 

more reproducible would be to use Binder to create a shareable, interactive environment in the 

cloud following the instructions described at 

https://mybinder.readthedocs.io/en/latest/sample_repos.html#specifying-an-r-environment-with-

a-runtime-txt-file. 

 

`figure1()` did not return a figure. The error message was: 

 

``` 

Error in download.file(url, fname) : 

cannot open URL ' https://storage.googleapis.com/gnomad-public/papers/2019-flagship-

lof/v1.0/summary_results/observed_possible_expanded_exomes.txt.bgz ' 

``` 

I went directly to that link in a browser and was told there was “No such object”. 

 

`figure2()`, ̀ efigure5()`, ̀ efigure6()` did return pdf files, but they had not content. There was 

no 

 

`figure3()` did not return a figure. The error and warning messages were ̀ Error: ̀ by` required, 

because the data sources have no common variables  ̀and ̀ Unknown levels in ̀ f`: all_ar, all_ad`. 

For this figure, I was able to manually run the code inside the functions well enough to partially 

generate Fig. 3a (because for some reason my gene_list only contains olfactory genes, so they 

were the only genes plots, rather than all three). Additionally, I think traced the  error to 

`left_join(load_all_gene_list_data())` because, in my environment, both ̀ gene_data` and 

`gene_lists` have a column called ̀ gene` that could be used for joining, but something is going 

awry. 

 

`figure4()` did not return a figure but did return a few warning messages. There first said “we 

couldn't map to STRING 0% of your identifiers`, which I think means all 100% of the strings were 

mapped, but the double negative is a little confusing. The second message occurred twice and 

said, “At centrality.c:2784 :closeness centrality is not well-defined for disconnected graphs”. 

 

`figure5()` almost caused R studio to crash (as predicted in the README), but my session 

powered through. I did get a pop-up message saying “some updates could not be installed 

because RStudio interrupted restart. I also don’t know how to interpret this, but it might help you 

debug. As with Fig. 2, a pdf file was created but there were no pages. 

 

`efigure2()` and ̀ efigure3()` ran successfully and produced png and pdf files that look exactly 

like the figures in the manuscript. I also like that the authors use ̀ ggarrange()` and ̀ get_legend` 

to reproducibly label and arrange the figures and create a shared legend. On that note, I checked 

to see base R and/or all the R packages used were cited, and I did not find any citations for the 

software. I don’t believe that there is a page limit to the supplementary materials, so it would be 

nice to acknowledge these open-source software packages. You can get these from the command 

line using, for example, ̀ citation("cowplot")`. 

 

I could not source “efig4_downsamplings.R” because https://storage.googleapis.com/gnomad-

public/papers/2019-flagship-

lof/v1.0/summary_results/observed_possible_expanded_exomes.txt.bgz was not found. 

 

`source('efig7_constraint.R')` overloaded my ram to the extent that I couldn’t even use the 

mouse or keyboard to quit R, so I chose to shut down my computer after a few minutes of 

listening to it work at max capacity. This is not good. One solution is to put a disclaimer in a 

comment next to this line to warn the user. A second solution would be to optimize the code, but I 

do not have a suggestion. 

 

`source('efig8_biology.R')` returned the following error: ̀ Error in .local(drv, ...) : Failed to 



 

connect to database: Error: Unknown database 'tcrd520'`. 

 

The GitHub repository ̀ konradjk/loftee` contains the perl-based, Loss-Of-Function Transcript 

Effect Estimator (LOFTEE) package or Hail plugin that is used to filter and flag Loss -of-function 

mutations in conjunction with a clinical variation (ClinVar) dataset containing four hundred 

thousand variants and a SNV dataset with eight billion variants to annotate the 125,748 exomes. I 

do not know how to read PERL, so I can’t evaluate the quality of the code, but the repo is well 

organized, and the README thoroughly describes the functions. Given the requirements 

(SAMtools, human genome, PhyloCSF) I did not even attempt to install the software locally. I 

usually run SAMtools on Stampede 2 at the Texas Advanced Computing, so I was going to test it 

there, but I couldn’t install HAIL on Stampede. I also attempted to test Hail and LOFTEE on the 

Google Cloud Platform Dataproc cluster, but I’m a first-time user, and I wasn’t able to overcome 

installation problems. For review purposes, it would be ideal if someone with Google Cloud 

expertise reviewed the software. For training purposes, creating a tutorial (video or blog post) 

about how to use LOFTEE with Hail on Google would be very valuable to those looking to use these 

tools for new analyses or to reproduce the analyses described in Karczewski et al. 

Author Rebuttals to First Revision: 

We thank all five reviewers for their comments, and have addressed them below. We believe this 

has improved the manuscript and especially the usability of the code now and for future projects. 

 

In the process of manuscript revisions we identified an issue with undercalling of some homozygous 

genotypes due to low levels of contamination in a subset of gnomAD individuals. This issue, which 

affects a small fraction of genotypes at <2% of the variant sites in gnomAD, is spelled out in more 

detail in a separate preprint [Karczewski et al., 2019]. The affected variants have been flagged in the 

gnomAD browser and data release, and permanent fixes will be made in a future gnomAD release.  

 

While a complete fix would require reprocessing the entire gnomAD data set, which is not viable for 

this manuscript release, we have thoroughly reviewed the impact of this error mode on all of the 

analyses presented in the gnomAD preprints. Fortunately, since the vast majority of our analyses rely 

only on site accuracy (which is unaffected) or allele frequencies (which are only very slightly altered), 

this impact is extremely modest. We have added a caveat to the two analyses that are non-trivially 

affected by this error mode: the curation of homozygous LoF-tolerant genes (for which some true 

LoF-tolerant genes may have been missed) and the generation of the composite LoF allele 

frequency, or CAF, genome-wide (will have been very slightly underestimated at a subset of genes). 

We believe the remainder of the paper is not materially affected by this error mode.  

 

Referee #1 (Remarks to the Author): 

 

Overall the authors were responsive to my comments, and the manuscript is much improved.  

 



 

My remaining major comment is that I continue to struggle with LOEUF as a metric. I don’t believe 

that it fully sunk in for me on my first read how conflated LOEUF is with gene length. I understand 

why you are doing it this way (i.e. using LOEUF instead of o/e), but there needs to be more 

transparency and care on this point. pLI may be disguising variability in intolerance but LOEUF is 

disguising gene length as a confounder on confidence, and that needs to be discussed more 

explicitly. 

 

We thank the reviewer for these comments - unfortunately, all constraint metrics are confounded at 

least in some part by gene length. To make this clear for readers, we have added the relationship 

between LOEUF and gene length as an Extended Data Figure panel, clarified this in the text, and 

repeated all analyses with coding sequence length as a covariate, which have all remained highly 

significant. 

 

First, you need to show the relationship, e.g. as a box plot of gene lengths for LOEUF deciles. Ideally 

this would be a main text panel.  

 

We have now added this as a figure panel to Extended Data Fig. 7, as we don’t have any main figures 

describing the technical process of LOEUF. 

 

Second, the fact that short genes tend to be given low LOEUF scores just because they are short 

needs to be made more explicit. The new sentence at line 273-275 is poorly written, and practically 

should be its own paragraph (that cites the above requested figure). I can see low LOEUF telling you 

something about constraint. But high LOEUF doesn’t seem to tell you much of anything, as it 

conflates “not under constraint” and “too short to say anything meaningful”. I would really like to 

see a main text full paragraph acknowledging and quantifying this limitation and its consequences.  

 

We have added a new paragraph to discuss this caveat. We have also added some text to the 

supplement discussing Extended Data Fig. 7d, outlining the approaches we’ve taken to reduce the 

impact of confounding by gene length on the analyses throughout the paper (described in more 

detail below): “LOEUF is correlated with coding sequence length (beta = -1.07 x 10-4; p < 10-100; 

Extended Data Fig. 7d): as a result, we have adjusted for gene length or removed genes with fewer 

than 10 expected pLoFs in all analyses.” 

 

The new paragraph reads: 

 



 

“We note that the use of the upper bound means that LOEUF is a conservative metric in one 

direction: genes with low LOEUF scores are confidently depleted for pLoF variation, whereas genes 

with high LOEUF scores are a mixture of genes without depletion, and genes that are too small to 

obtain a precise estimate of the o/e ratio. In general, however, the scale of gnomAD means that 

gene length is rarely a substantive confounder for the analyses described here, and all downstream 

analyses are adjusted for coding sequence length or filtered to genes with at least 10 expected pLoFs 

(see Supplementary Information).” 

 

Third, you do take care to control for length in some but not all of the subsequent analyses that use 

LOEUF. For example, on throughout Figure 3 (and Figure 5 as well, perhaps?; possibly other figures, 

I’m just using these as examples), I recognize that the result is very likely to hold up, but it seems 

relevant to state whether or not there are differences in the gene length distribution between the 

classes of genes being compared. This would also help reinforce the point to the readers that paying 

attention to gene length is key. The authors should carefully go through the manuscript and make 

sure that all LOEUF dependent analyses control for gene length. 

 

This is entirely fair - our early analyses made us confident that the LOEUF results described in the 

paper weren’t driven by confounding, but this was not adequately formally demonstrated in the 

paper. We have now reviewed all analyses described in the paper to investigate any impact of 

confounding by gene length. Our overall finding is that while gene length is indeed correlated with a 

variety of biological metrics, the correlations between LOEUF and these metrics is generally far 

stronger, and is not materially driven by gene length confounding. We have now added a coding 

sequence length adjustment to the supplement for the main and extended data figures where 

appropriate. These additions are enumerated below: 

 

Fig. 3a: There was no statistical test done previously, but we have now added one to the 

supplement: “Membership in the haploinsufficient gene class is highly predicted by LOEUF (logistic 

regression beta = -4.3; p = 1.57 x 10-33), even when adjusted for coding sequence length (p = 0.18 for 

the contribution of gene length in the joint model). Likewise, membership in the olfactory gene class 

is positively correlated with LOEUF (logistic regression beta = 3.4; p = 2.5 x 10-85), even when 

adjusted for gene length (p = 0.023 for the contribution of gene length in the joint model).” 

 

Fig. 3b: We have now adjusted for gene length and added this to the supplement: “The SV -derived 

observed:expected ratios are correlated with LOEUF (r = 0.13; p = 3.5 x 10-71), after adjusting for 

gene length (p = 7.5 x 10-6 for the contribution of gene length).” 

 

Fig. 3c-d: We have added statistical tests to the supplement, adjusting for gene length, for the 

mouse knockout and cell essential/non-essential genes: “Overlap with mouse heterozygous lethality 



 

was significantly associated with LOEUF (logistic regression beta = -2.27; p = 3.3 x 10-52), even when 

adjusted for coding sequence length (beta = 3.3 x 10-5; p = 0.028). LOEUF is also correlated with cell 

essentiality (logistic regression beta = -1.71; p = 1.7 x 10-65; coding sequence length: beta = 2.5 x 10-4; 

p = 2.4 x 10-12) and non-essentiality (beta = 1.45; p = 3.8 x 10-71; coding sequence length: beta = -5.9 x 

10-6; p = 0.84).” 

 

Fig. 4b: We have added to the supplement: “Overall, the number of tissues in which a canonical 

transcript is expressed is correlated with LOEUF (linear regression beta = -1.07; p < 10-100) when 

adjusted for gene length (beta = -9.9 x 10-4; p = 10-53 for the contribution of gene length).” 

 

Fig. 5a and Extended Data Fig. 9c: In this analysis, we have clarified in the supplement that “Genes 

were filtered to those with at least 10 expected pLoF variants.” 

 

Extended Data Fig. 8a: We had not previously performed an explicit statistical test for this analysis, 

but we have now added a set of tests for each category: “Each of these categories is significantly 

correlated with LOEUF in a joint logistic regression model with coding sequence length: Tclin (beta = 

-0.78; p = 4 x 10-18; cds length: beta = 2 x 10-6; p = 0.89), Tchem (beta = -0.63; p = 8 x 10-30; cds length: 

beta = 5 x 10-6; p = 0.68), Tbio (beta = -0.99; p < 10-100; cds length: beta = 1.6 x 10-5; p = 0.07), Tdark 

(beta = 1.17; p < 10-100; cds length: beta = 2.7 x 10-5; p = 0.009).” 

 

Extended Data Fig. 8b: In a similar fashion to Fig. 4b, we repeated this analysis for all transcripts: 

“Similarly, the number of tissues in which a transcript is expressed is correlated with the transcript’s 

LOEUF (linear regression beta = -5.2; p < 10-100) when adjusted for gene length (beta = -9.4 x 10-5; p = 

0.01 for the contribution of gene length).” 

 

Extended Data Fig. 9a: We have added a logistic regression model to the supplement for OMIM vs 

LOEUF adjusting for gene length: “In a logistic regression model with coding sequence length as a 

covariate, LOEUF is correlated with OMIM status (beta = -0.69; p = 4 x 10-61; gene length beta = 1.3 x 

10-4; p = 1.2 x 10-33).” 

 

Extended Data Fig. 9b: We have added a logistic regression model to the supplement for NGS status 

vs LOEUF adjusting for gene length: “Within OMIM genes, LOEUF is correlated with discovery by 

WES/WGS compared to conventional approaches (beta = -0.69; p = 2 x 10-14) when adjusting for 

coding sequence length (beta = 7.8 x 10-6; p = 0.54 for the contribution of gene length). “ 

 



 

Extended Data Fig. 9d: We have now filtered this analysis to include only genes with at least 10 pLoF 

variants expected, which is now properly described alongside Fig. 5a and Extended Data Fig. 9c.  

 

Supplementary Fig. 10a-b: We have added a joint logistic regression model to the supplement: “In 

the logistic regression, LOEUF is highly correlated with membership in the haploinsufficient (beta = -

2.6; p = 4 x 10-5) and essential (beta = -1.4; p = 1.9 x 10-25) gene lists, in a joint model with pLI (beta = 

1.5; p = 3 x 10-4 and beta = 0.17; p = 0.15, respectively), RVIS (beta = -0.18; p = 0.05, and beta = -0.19; 

p = 1.5 x 10-5, respectively), and coding sequence length (beta = 4 x 10-6; p = 0.92 and beta = -8 x 10-5; 

p = 7 x 10-4, respectively).” 

 

Minor: 

 

79 – “many of which” should be “most of which” or “the vast majority of which” 

 

We have modified this statement to be “most of which”. 

 

268 – It may be worth emphasizing more that the shape of EDF7a suggests a flattish rather than 

dichotomous distribution of o/e, which argues for o/e (or LOUEF) over pLI 

 

We have added a clause in the main text “that the distribution of o/e is not dichotomous, but 

continuous”. 

 

Referee #2 (Remarks to the Author): 

 

In this manuscript version, Karczewski and colleagues make substantial improve- ments to the 

original manuscript. I think the authors have done an outstanding job responding to the comments 

of 4 reviewers who clearly all came at this manuscript with different perspectives. I am especially 

pleased with the quality of the figures in this version of the manuscript. They are much clearer and 

easier to follow. I support publication of this article. Below, I note a couple of very minor issues.  

 

line 236: perhaps this was just me, but I had to read this sentence a few times to grok what was 

going on. I think it may benefit from clarifying that the 1,555 was in all populations (I think). 

 



 

We have changed “have an aggregate pLoF frequency of at least 0.1%” to “have an aggregate pLoF 

frequency at least 0.1% across all individuals in the dataset”. 

 

EDF 4 and EDF 6: I think these figures could benefit from a bit more padding between figures. The X-

axis labels on the top graphs start to blend into where titles might be for the lower graphs. It took 

me a few minutes to orient here- and I think a bit of extra padding would help with this. 

 

We have added more padding in Extended Data Figures 4 and 6. 

 

Supplemental page 4: . “We mapped reads onto the human genome build 37. . . ”. Please specify the 

source for this specific set of FASTAs, as well as the decoys (if any) that were used for the alignment. 

And, thank you for clarifying assembly name usage (GRCh37) throughout the manuscript.  

 

We have added more description on the reference genome to the supplement: “The FASTA file can 

be found at ftp.ncbi.nlm.nih.gov/sra/reports/Assembly/GRCh37-

HG19_Broad_variant/Homo_sapiens_assembly19.fasta, which has 85 contigs including a decoy 

(NC_007605, 171823bp).” 

 

Supplemental page 51: Apologies if I missed this, but I didn’t see a reference to a figure or data table 

this section was referencing. You seem to have this in other parts of the supplement, and it is very 

useful to have that reference when going through this material. 

 

We apologize for not including a reference to this Figure. We have now edited the text and added 

the data file as Supplementary Dataset 13: “Supplementary Fig. 9 enumerates all the genes in 

Supplementary Table 18, which are also available as Supplementary Dataset 13.” 

 

 

Referee #3 (Remarks to the Author): 

 

In their revised manuscript the authors have addressed most of my concerns and have significantly 

improved their manuscript during revision. They have also addressed valuable points raised by other 

reviewers, which again has led to an overall improved manuscript. 

 

http://ftp.ncbi.nlm.nih.gov/sra/reports/Assembly/GRCh37-HG19_Broad_variant/Homo_sapiens_assembly19.fasta
http://ftp.ncbi.nlm.nih.gov/sra/reports/Assembly/GRCh37-HG19_Broad_variant/Homo_sapiens_assembly19.fasta


 

In particular, they have added valuable data following my suggestions: 

- Supplementary Fig 10 and 11 to show the increased power of the current dataset.  

- Supplementary Table 17 (and respective datasets) show #pLoF per individual. 

- The novel analysis on CHIP (Supplementary Table 16 and accompanying datasets) are valuable new 

data/analysis. 

- A comparison of the added value of WGS over WES even for coding regions, summarized in 

Supplementary Figures 3 and 4 (not as stated in rebuttal letter SF 4 and 5); also the provided list of 

coverages per gene (https://storage.googleapis.com/gnomad-public/papers/2019-flagship-

lof/v1.1/summary_gene_coverage/gencode_grch37_gene_by_platform_coverage_summary.tsv.gz) 

is valuable to the community. 

- The authors have added ‘allele rescue by subsequent frameshifts’ to the accompanying paper on 

MNVs.  

 

While the overall quality has further improved, I see further improvements opportunities, i.e. here a 

few suggestions for minor revisions: 

- It would be interesting to state in the main text that the number of LoF variants per individual is 

constant since the 2012 paper. This should be further specified in: total # pLoF, of which so many 

common, rare and private (as now shown in Suppl. Datasets 8-9; incorrectly stated in rebuttal letter 

to also be contained in Supplementary Table 16 – which in fact contains the CHIP data; should be 

Supplementary Table 17). (refers to rebuttal point 3.))  

 

We have added a note to this effect in the main text (“The number of pLoF variants per individual is 

consistent with previous reports3, and is highly dependent on frequency filters chosen 

(Supplementary Table 17).”), and expanded Supplementary Table 17 to include filters for rare and 

private variants. 

 

- Concerning the CHIP analysis (Supplementary Table 16) the authors should mention, that 

missense/activating mutations have not been subject of the current study, but are a known 

important contributor to the CHIP phenomenon. The authors should also clarify that the age used 

was ‘last known age of the individual’ rather than ‘age at sampling’. The authors conclude that no 

novel genes have been identified as such strong candidates as ASXL1, DNMT3A and TET2. This is 

however not expected, as these have been known to be the three strongest drivers of clonal 

hematopoiesis. The power of the current dataset however should pinpoint other important but less 

strong drivers. Can the authors comment on the genes that show significant KS test and Moods 

median test p-values (<1.4x10-6) but ‘only’ an age difference of 55 vs 50 years? These are e.g. 

SHROOM3, EPB41L4A, CYP4B1, AMPD1, OR5K2, ANKDD1B, FAM58A, KRTAP4-8. (refers to rebuttal 

point 4.)) 



 

 

We have added a discussion point to the supplement that “We focused our analysis on signals of 

pLoF variants though notably, CHIP can also be characterized by the accumulation of missense 

variants which would not have been revealed using our methods; future work to filter high-impact 

missense variants will enable a more complete understanding of CHIP.” Additionally, we have added 

clarification that “Cohorts vary in their reporting of age information. For example, some report age 

at diagnosis whereas others report the age at of the last patient visit. Age is therefore defined as the 

last known age of the individual and is not necessarily the age at sampling.” and have added a note 

to the Table legend to mention that this is the “last known age of the individual.” With respect to the 

genes that are significant but with small effect size, we note that residual technical artifacts 

(especially annotation errors at common pLoF variants) may skew the distributions and result in an 

inflated significance with small effect, and thus, wanted to focus on the genes with high impact.  

However, we release the full dataset as Supplementary Dataset 6 with all summary statistics and p-

values for others to explore further. 

 

- While I agree with the authors that true compound heterozygosity requires large -scale inference of 

variant phase. It is however safe to assume that every individual that carries 2 pLoF variants in the 

same gene has a 50% that this is in cis or trans. Already having the information whether 2 

rare/private LoFs are from the same or two independent individuals can be very useful; and this 

could significantly enrich the list of genes for which homozygous KOs have been (never) observed. 

(refers to rebuttal point 6.)) 

 

We are also interested in this question, but it would require extensive analysis to properly address, 

and will also benefit substantially from later gnomAD versions with larger numbers of whole 

genomes. As such, we believe that this work falls beyond the scope of this manuscript and will need 

to be a future focus. 

 

- While I can understand that the power is lacking to distinguish the three classes of pLoF; adding a 

simple ratio of stop, fs, splice-site would be useful to the reader. (refers to rebuttal point 8.)).  

 

We have now added the distribution of these classes of variation in Supplementary Table 17.  

 

Referee #4 (Remarks to the Author): 

 



 

I have read through the response to reviewers. In general, the authors have been thoughtful and 

responsive to reviewer comments, there are no major concerns about the technical quality of the 

data, and the impact of the resource as a whole has been and will continue to be high.  

 

However, I still am not convinced that the narrow focus on LOF variation is the most effective choice 

for presenting this work; within the current scope of this manuscript, the conceptual novelty is 

minimal and the technical novelty is modest (e.g., Supp Fig 10). I continue to think that the key 

results here should be combined with the distinct key results from the other GnomAD-related 

papers. I simply don’t agree that the three overlapping papers use “different strategies with 

different datasets and audiences”; the redundancies, ranging from nearly literal duplication to 

conceptually similar even if technically distinct, remain extensive. While I understand the authors’ 

concern that the current manuscript is already long, my concern is not related to length but novelty 

and impact. Further, a combined manuscript that highlighted the truly distinct parts of each paper 

and collapsed the redundant components would be substantially more concise than the summed 

length of the current collection of manuscripts. So the net effect would be to shorten rather than 

extend, in addition to better highlighting the truly novel elements.  

 

That said, the nature and structure of the Nature-published form of these manuscript(s) is an 

editorial consideration about which I am happy to state my opinion and move on; I don’t see a need 

for further rounds of revision or review. 

 

 

Referee #5 (Remarks to the Author): 

 

The manuscript by Karczewski et al. entitled "Variation across 141,456 human exomes and genomes 

reveals the spectrum of loss-of-function intolerance across human protein-coding genes" describes 

an impressively large-scale catalog of harmonized genetic data that was used to catalog predicted 

loss of function (pLoF) variants that may underlie rare diseases. This review focuses more on the 

software and code behind the manuscript than on the manuscript itself. The authors have done a 

laudable job of making all the code and data publicly available and provided ample documentation; 

however, I have two concerns: the authors do not have a unit tests in their python- and perl-based 

GitHub repositories that can be used to automatically review their code, and my attempts to 

reproduce the figures in R were unsuccessful due to a number of warnings and errors. I believe these 

concerns can be quickly resolved and will greatly improve the ability of others to reuse or reproduce 

the data and the analyses. It is worth noting that my lack of experience using the Google Cloud 

Platform Dataproc cluster limited my ability test Hail and the LOFTEE software in the cloud, so an 

additional review by someone who is familiar using these tools on the Google platform might be 

worthwhile. 



 

 

We thank the new reviewer for their comments on the code. We have fi xed the code and file hosting 

so that all the figures may be reproduced, except Extended Data Figure 9 for which we could not 

share some external data files. We have additionally created a Docker image 

(konradjk/gnomad_lof_paper:0.2) and verified that it also recreates all the figures. We address the 

comment about unit tests below. 

 

Specific comments 

 

The gnomAD browser (https://gnomad.broadinstitute.org/) accompanying the manuscript has a very 

nice user interface. I was able to easily view pLoF and other variants in my favorite genes. This web-

browser is an excellent resource for those who wish to use a GUI to explore the data (e.g. clinicians, 

teachers, students, members of the who lack the computational expertise to sift through the raw 

data). 

 

As described in the manuscript, all data processing and analyses were performed using Hail 

(https://hail.is/), which is an open-source, Python-based library. The documentation for Hail 0.2 is 

very thorough, and I was able to successfully follow the local installation instructions and the GWAS 

tutorials with relative ease. This speaks very well for the potential to reproduce the analyses 

described in the manuscript. However, I was not able to install Hail on the HPC system I normally use 

(Stampede 2 at the Texas Advanced Computing Facility) nor was I able to install it the Cloud Platform 

Dataproc cluster (https://cloud.google.com/dataproc/) used by the authors. I am a first time Google 

Cloud user, so this doesn’t really surprise me.  

 

The hyperlink on page 30 is a dead end. “The filtering frequency described previously13 is 

implemented in Hail 

(https://hail.is/docs/0.2/experimental.html#hail.experimental.filtering_allele_frequency) 

 

This has now been fixed to: 

https://hail.is/docs/0.2/experimental/index.html#hail.experimental.filtering_allele_frequency 

 

In addition to the detailed supplementary materials, some of the co-authors wrote a blog post 

(https://macarthurlab.org/2018/10/17/gnomad-v2-1/) that provides a detailed walk-through of the 

scripts and the variables used to generate many of the figures in the manuscript. This is also a 

valuable resource for anyone wishing to reproduce the analyses.  

 

https://hail.is/docs/0.2/experimental.html#hail.experimental.filtering_allele_frequency
https://hail.is/docs/0.2/experimental/index.html#hail.experimental.filtering_allele_frequency


 

We thank the reviewer for their comments, and are glad the browser and blog posts have been 

useful. 

 

I am concerned that none of the three repositories listed in the "code and software checklist" have 

clearly marked tests that could be used to automate the process of code review. I did find tests in 

https://github.com/macarthur-lab/gnomad_hail; however, this repository was not listed as critical to 

the manuscript. Also, it appears that these error messages are sent to a Slack channel, which would 

be highly useful if you were a member of the slack channel but not so useful to someone outside the 

McArthur lab group. I am aware that the authors consider these repositories to be a collection of 

scripts rather than a software package; however, because the README files encourage others to use 

and modify the code, it would be very useful if the author could add continuous integration (like 

Travis-CI (https://travis-ci.com/) which would allow automated testing when changes to code are 

made, and the addition of a badge (or shield) to the repo’s README would give new users  

confidence that the code is working as expected. 

 

We agree that unit tests are extremely important for production code, but a few things conspire to 

make this difficult. First and foremost, as we continue to build new large datasets, we are constantly 

working on making these functions more generic, and thus, their interface is regularly changing. 

These repos represent a snapshot of the current analysis, but we are factoring out many to create a 

generalizable toolkit for large-scale data analysis in Hail. We are building this out as we go, but it is a 

substantial effort that we will not be able to do in a reasonable timeframe for this manuscript. Many 

of the specific functions would require large test datasets (e.g. run_pca_with_relateds would require 

a full dataset), and so, are difficult to write comprehensive tests, and similarly, many of the funct ions 

require sample-level metadata that cannot be shared.  

 

Note that while we did not write unit tests for these scripts, we did run many sanity checks on the 

data that was released, which is provided in ̀ prepare_data_release.py` which was a form of test on 

the release file that helped us catch many bugs along the way. In particular, we checked the 

following: 

- The fraction of filtered variants, broken down by allele type (SNV, indel) and site type (bi-

allelic, multi-allelic), followed our general expectations (overall filtering numbers, SNV 

generally more confident than indels and bi-allelic sites overall more confident than multi-

allelic sites. 

- For all samples and for each of the subsets we created, that the allele count and allele 

number (and by definition allele frequency) for unfiltered samples was greater than 0 for all 

variants and was always smaller or equal to that of filtered samples. 

- That the sum of allele count, allele number and number of homozygotes for all populations 

equals the total allele count, allele number and number of homozygotes respectively. 

- For all samples, subsets and each (sub)population, that: 

- Allele count in males + allele count in females = total allele count 



 

- Allele number in males + allele number in females = total allele number 

- Homozygote count in males + Homozygote count in females = total Homozygote 

count 

- That allele count and allele number on the Y chromosome were all 0 in females  

- That all males were counted as hemizygous on the non-pseudoautosomal parts of 

chromosomes X and Y 

- That all the quality metrics we annotated the data with did not have unexpected 

missingness 

 

In summary, we agree that unit tests are valuable, and plan to incorporate these into future versions 

of the pipeline, but do not believe that it is necessary or feasible to include them in the codebase for 

this manuscript. 

 

The gnomad_qc repository is well organized, and the functions are well documented. This workflow 

describes in the repository corresponds nicely to the “Sample QC” section of the supplementary 

materials, so I could identify which functions correspond to steps outlined in the methods section. 

This repository also corresponds to extended Data Figure 1, but I find this figure to be more 

confusing than helpful. It’s not immediately obvious that the terse bullet points map onto the arrows 

between boxes. It would be more useful if panel 1a was broken down into panels 1a-g and if each 

arrow was labelled with the function(s) that is used to perform that action. By giving each step its 

own label, you can remove the text in the middle and more precisely refer to read to that specific 

part of the figure when describing the workflow in the methods section.  

 

We thank the reviewer for this idea - we have added a mapping between the steps in Extended Data 

Fig. 1a and the sample QC code in the Supplementary information, and believe this has clarified our 

process: 

 

“The pipeline is available in its entirety at https://github.com/macarthur-lab/gnomad_qc and is 

summarized in Extended Data Fig. 1a, where numbered steps correspond to the following scripts in 

the code repository: 

1. Hard filtering: apply_hard_filters.py 

2. Relatedness inference: joint_sample_qc.py 

3. Ancestry inference: joint_sample_qc.py, assign_subpops.py 

4. Platform inference: exomes_platform_pca.py 

5. Population- and platform-specific outlier filtering: joint_sample_qc.py 

6. Finalizing release callset: finalize_sample_qc.py” 

 

In gnomad_qc/sample_qc/apply_hard_filters.py on line 13, the authors use a “cutoff of F<0.5 for 

females and F>0.8 for males for genomes”; however, on page 8 of the supplementary methods, the 

https://github.com/macarthur-lab/gnomad_qc
https://github.com/macarthur-lab/gnomad_qc


 

authors state “For genomes… samples with F > 0.8 were classified as male and samples with F < 0.2 

were classified as female.” Which is correct: 0.2 or 0.5 for females? 

 

Thank you for catching this - indeed it should be 0.5 and this has now been fixed in the 

supplementary text. 

 

In gnomad_qc/sample_qc/apply_hard_filters.py on line 31, the authors refer to a metadata file that 

by given to them by a colleague. Is this metadata public? Can it be referred to by a DOI? How does 

this comment about the peculiarity of the metadata affect the ability for someone else to remix or 

reuse this pipeline? 

 

Unfortunately, this metadata file contains sample-level information which cannot be released to the 

public. This part of the code is provided only for reference and would need to be edited for use by 

others as it depends on the particular upstream processing steps of the QC pipeline. 

 

The R code in gnomad_lof/R is also well written and well documented. I especially like that all the 

libraries, custom aesthetics, custom functions, and aliases use are located in constants.R. This file 

does need to be sourced in all_figures.R for the contents to be loaded in the environment before 

generating the figures. 

 

Of the 30+ R packages use, I had to install about 10 libraries. One way to make this repository more 

reproducible would be to use Binder to create a shareable, interactive environment in the cloud 

following the instructions described at 

https://mybinder.readthedocs.io/en/latest/sample_repos.html#specifying-an-r-environment-with-a-

runtime-txt-file 

 

We thank the reviewer for this suggestion to ensure a reproducible environment. We have updated 

all the code to use the newest versions of all included libraries and have also created a Docker image 

to ensure that the code and data are in the same place and produce the desired output. We have 

tested this Docker on a Macbook Pro with 16 GB of RAM and it now creates all the figures without 

error. 

 

figure1() did not return a figure. The error message was: 

Error in download.file(url, fname) :  

https://mybinder.readthedocs.io/en/latest/sample_repos.html#specifying-an-r-environment-with-a-runtime-txt-file
https://mybinder.readthedocs.io/en/latest/sample_repos.html#specifying-an-r-environment-with-a-runtime-txt-file


 

cannot open URL ' https://storage.googleapis.com/gnomad-public/papers/2019-flagship-

lof/v1.0/summary_results/observed_possible_expanded_exomes.txt.bgz ' 

I went directly to that link in a browser and was told there was “No such object”. 

 

We apologize for the inconvenience. We had identified a minor issue with this file, regenerated it, 

and moved it over to a new versioned directory. We have now updated the code to auto-detect 

which version is available and this should work now with the newest one. 

 

figure2(), efigure5(), efigure6() did return pdf files, but they had not content. There were no error 

messages in the standard output that I could use to debug. 

 

We apologize for the lack of figures generated. When the commands are run one-by-one, output is 

created, but the wrapper functions and scripts are missing crucial print functions that would 

generate the output when ̀ source`d. We have now added these and this should generate output for 

all figures. 

 

`figure3()` did not return a figure. The error and warning messages were ̀ Error: ̀ by` required, 

because the data sources have no common variables` and ̀ Unknown levels in ̀ f`: all_ar, all_ad`. For 

this figure, I was able to manually run the code inside the functions well enough to partially generate 

figure 3a (because for some reason my gene_list only contains olfactory genes, so they were the only 

genes plots, rather than all three). Additionally, I think traced the error to 

`left_join(load_all_gene_list_data())` because, in my environment, both ̀ gene_data` and ̀ gene_lists` 

have a column called ̀ gene` that could be used for joining, but something is going awry.  

 

This function relied on a specific location of gene list data, and silently produced no output rather  

than erroring(!). We have now added some of the gene lists to the repo, and added a call to 

download the others if they don’t exist. Thank you for spotting this.  

 

figure4() did not return a figure but did return a few warning messages. There first said “w e couldn’t 

map to STRING 0% of your identifiers”, which I think means all 100% of the strings were mapped, but 

the double negative is a little confusing. The second message occurred twice and said, “At 

centrality.c:2784 :closeness centrality is not well-defined for disconnected graphs”. 

 

This figure should work now as well (the warnings are from STRINGdb and are unrelated). 



 

 

figure5() almost caused R studio to crash (as predicted in the README), but my session powered 

through. I did get a pop-up message saying “some updates could not be installed because RStudio 

interrupted restart. I also don’t know how to interpret this, but it might help you debug. As with 

figure 2, a pdf file was created but there were no pages. 

 

This one is a mystery to us. We have fixed the printing issue, but we do not see the update message. 

This function also works inside the Docker. 

 

efigure2() and efigure3() ran successfully and produced png and pdf files that look exactly like the 

figures in the manuscript. I also like that the authors use ggarrange() and get_legend to reproducibly 

label and arrange the figures and create a shared legend. On that note, I checked to see base R 

and/or all the R packages used were cited and I did not find any citations for the software. I don’t 

believe that there is a page limit to the supplementary materials, so it would be nice to acknowledge 

these open-source software packages. You can get these from the command line using, for example, 

citation("cowplot"). 

 

We have enumerated and added citations for many of the packages used: “All analyses were done 

using R 3.6.1 with packages including tidyverse62, broom63, magrittr64, readxl65, plotROC66, meta67, 

STRINGdb68, and tidygraph69. All visualizations were plotted in ggplot270, and aided by scales71, 

ggridges72, egg73, ggpubr74, ggrastr75, cowplot76, ggrepel77, and ggwordcloud78.” 

 

I could not source “efig4_downsamplings.R” because https://storage.googleapis.com/gnomad-

public/papers/2019-flagship-

lof/v1.0/summary_results/observed_possible_expanded_exomes.txt.bgz was not found. 

 

The fix applied for Figure 1 has also fixed this one as well.  

 

source('efig7_constraint.R') overloaded my ram to the extent that I couldn’t even use the mouse our 

keyboard to quit R, so I chose to shut down my computer after a few mi nutes of listening to it work 

at max capacity. This is not good. One solution is to put a disclaimer in a comment next to this line to 

warn the user. A second solution would be to optimize the code, but I do not have a suggestion.  

 

We have reduced the heavy computational burden by pre-computing the metrics in this script. We 

now load that data explicitly (but have retained the initial metric-generation code for reference). 



 

 

source('efig8_biology.R') returned the following error: Error in .local(drv, ...) : Failed to connect to 

database: Error: Unknown database 'tcrd520'. 

 

We have replicated this error. The Pharos database was updated in the meantime and we had hard -

coded the version available at the time. We have instead downloaded the data needed into the repo 

to avoid the dependence on this database (and left the download code as-is for future reference). 

 

The GitHub repository ̀ konradjk/loftee` contains the perl -based, Loss-Of-Function Transcript Effect 

Estimator (LOFTEE) package or Hail plugin that is used to filter and flag Loss-of-function mutations in 

conjunction with a clinical variation (ClinVar) dataset containing four hundred thousand variants and 

a SNV dataset with eight billion variants to annotate the 125,748 exomes. I do not know how to read 

PERL, so I can’t evaluate the quality of the code, but the repo is well organized, and the README 

thoroughly describes the functions. Given the requirements (SAMtools, human genome, PhyloCSF) I 

did not even attempt to install the software locally. I usually run SAMtools on Stampede 2 at the 

Texas Advanced Computing, so I was going to test it there, but I couldn’t install HAIL on Stampede. I 

also attempted to test Hail and LOFTEE on the Google Cloud Platform Dataproc cluster, but I’m a 

first-time user, and I wasn’t able to overcome installation problems. 

For review purposes, it would be ideal if someone with Google Cloud expertise reviewed the 

software. For training purposes, creating a tutorial (video or blog post) about how to use LOFTEE 

with Hail on Google would be very valuable to those looking to use these tools for new analyses or 

to reproduce the analyses described in Karczewski et al. 

 

The Hail website contains extensive documentation on using it in Google cloud, as well as running 

VEP (which includes LOFTEE by default). The software is updated very frequently, so a blog post or 

video would likely become out of date rather quickly; however, the Hail documentation is kept up -

to-date with the code (e.g. VEP and LOFTEE documentation at 

https://hail.is/docs/0.2/methods/genetics.html#hail.methods.vep) and its usage on Google cloud 

(https://hail.is/docs/0.2/hail_on_the_cloud.html). 
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Reviewer Reports on the Second Revision: 

Referees' comments: 

 

Referee #1: 

 

I apologize for my delayed reply here. I've finally had a chance to review the authors' responses to 

my last round of (additional) comments. They have been addressed very well, and I have no 

further concerns. 

 

 

Referee #3: 

 

The authors have addressed all my points satisfactorily, hence I would recommend this manuscript 

for publication now. 

 

 

Referee #5: 

 

I have reviewed the response to the reviewers' comments and the revised updated code and 

software. 

 

I am very impressed and satisfied with the revision. The authors updated the R scripts, and I can 

confirm that I was able to reproduce all the figures (except for Ext. Data Figs. 8 and 9) as 

expected. Also, the authors' changes to satisfy other reviewer comments have greatly improved 

the figures themselves. I agree with the authors' rebuttal that unit tests are not suitable for the 

software, and I am very pleased that they have provided a docker image with all the data and 

code. I appreciate the extra effort they put into the revision, and I am confident that the readers 

of this paper will as well. 

 

As a side note, the pdf that links directly to Ext. Data Fig. 1 is a new and improved figure; 

however, the merged file with the manuscript and figures has an old version of Ext. Data Fig. 1. 

 

 


