Supplementary Information

Spatio-molecular domains identified in the mouse subthalamic nucleus and neighboring glutamatergic and GABAergic brain structures

Supplementary figures: 6

Supplementary tables: 3

Supplementary Figure 1 related to Figure 1

Supplementary Figure 1 related to Figure 1: Information related to the sorting layout and sorting parameters. (a) FACS methodology and gating parameters. (b) Statistics cytometer showing percentage of sorted population.

Supplementary Figure 2 related to Figure 1: Quality control of snRNASeq experiment. (a) Quality control of the two experimental plates with histograms of percent uniquely mapping (Unique), Spike-in detection (ERCC), Spike-in ratio (ERCC-ratio), percent mapped to exons (Exons), detected genes with RPKM>1 (RPKM) and highest correlation to another cell (Max correlation). Nuclei which failed cutoffs are colored in red. (b) Violin plots showing the number of detected genes of each nuclei (5384) across the two experiment plates according to Seurat unsupervised clustering. (c) Violin plots showing the average number of transcripts (354578) across the two experiment plates. (d) Identification of highly variable genes (out of 18697 genes 1776 selected as variable). The dispersion of the genes (variance/log-average expression) is plotted against the average expression (normalized log-expression, on x-axis). The minimum threshold to be considered highly variable was set at a dispersion of 1 on the y-axis.

Supplementary Figure 3 related to Figure 2

Supplementary Figure 3 related to Figure 2: Identification of 6 different glutamatergic *Pitx2*-positive subpopulations. (a) t-SNE plot with 6 clusters (orange, purple, green, red, blue and yellow). (b) Number of detected genes per nuclei (expression levels ranging from light grey (low) to black (high). (c) Heatmap showing the top ten genes considered unique for and characterizing each cluster (d-i) Violin plots of 5 of the top 10 identified discriminatory markers of each cluster.

Supplementary Figure 4 related to Figure 2

Supplementary Figure 4 related to Figure 2: t-SNE of previously established markers for the developing STN. (a) t-SNE plot with 6 clusters (purple cluster0; green cluster1; light-green cluster2; red cluster3; orange cluster4 and blue cluster5). **(b-h)** Expression levels of *Lmx1a*, *Lmx1b*, *Foxa1*, *Foxp1*, *Foxp2*, *Barhl1* and *Epha3*, genes previosuly associated with the STN (References 1-3), visualized in the t-SNE plot.

Supplementary Figure 5 related to Figure 2

Supplementary Figure 5 related to Figure 2: Dotplot of upregulated genes across each cluster (a-f) Dotplots of up to 25 significantly upregulated genes of each cluster *vs* the rest using MAST R package.

Supplementary Figure 6 related to Figure 2

Supplementary Figure 6 related to Figure 2: t-SNE-plots of selected genes showing gradient of expression. (a) *Rtn1* (b) *Tmem130* (c) *Pcsk1n* (d) *Caly* (e) *Gaa* (f) *Fxyd6* showing gradient of expression along the t-SNE-2 axis.

Supplementary Table 1: PCR primer sequences used for genotyping of transgenic mice employed in the study.

Transgene	Direction PCR primer sequence	
Pitx2-Cre	Fw	5'-ACGAGTGATGAGGTTCGCAAGA-3'
Pitx2-Cre	Rev	5'-ACCGACGATGAAGCATGTTTAG-3'
R26-Rpl10a	Fw (mutant) 5'- TAC ACC ATC GTG GAA CAG TAC -3'	
R26-Rpl10a	Rev (mutant)	5'- GTA GTT CTT CAG GCT GAT CTG -3'
R26-wt	Fw (WT)	5'- GCG GAT CAC AAG CAA TAA TA -3'
R26-wt	Rev (WT)	5'- TTT CTG GGA GTT CTC TGC TG -3'

Supplementary Table 2: Table of NM accession number and primer sequences for riboprobe synthesis of mRNAs selected for analysis in mouse brain tissue by fluorescent *in situ* hybridization (FISH)

PCR Primer Name	PCR Primer Sequence	NM	bases
Pitx2-S-T3	AATTAACCCTCACTAAAGGGACCCCGCCCAACTCCAT CTCA NM 00104		792-
Pitx2-AS-T7	TAATACGACTCACTATAGGGTCCTTTGCTCGCAAGCG AAAAATC	2504.2	1579
Nmbr-S-T3	AATTAACCCTCACTAAAGGGACCCCAGGTCTCTCTCC AACC NM_00870 TAATACGACTCACTATAGGGCTCAGAACCCGGGCCA 3.3		348- 1280
Nmbr-AS-T7			
Col24a1-S-T3	AATTAACCCTCACTAAAGGGAAGGGACCTCCTGGCAC TGAG	NM_02777 0.3	3722- 4593
Col24a1-AS- T7	TAATACGACTCACTATAGGGGCCGTCGACTCCAGGG TATC		
Kcnab3-S-T3	AATTAACCCTCACTAAAGGGAGCAGCTGCCTGAGCTC TACC	NM_01059	1228-
Kcnab3-AS-T7	TAATACGACTCACTATAGGGCAGGCAGGAGGCAGGA GTC	9.4	2184
Stxbp2-S-T3	AATTAACCCTCACTAAAGGGAATGCCAACGTGCAGTC GTACA	NM_00135	1342- 1907
Stxbp2-AS-T7	TAATACGACTCACTATAGGGGGGGAAGACAGAAGGGA AGCGTTT	7168.1	
Baiap3-S-T3	AATTAACCCTCACTAAAGGGAGACCACGACTGGCTGT CCAC	NM_00116	3415-
Baiap3-AS-T7	TAATACGACTCACTATAGGGGAGCCCTTCAGCCTGGT 3270.1		4384
Cacna2d3-S- T3	AATTAACCCTCACTAAAGGGATGGTGAGGTGGAAGG AGCTG	NM_00978	2731-
Cacna2d3-AS- T7	TAATACGACTCACTATAGGGGGGCCTGAAGACTCGATG CAC	5.1	2750
Synpr-S-T3	AATTAACCCTCACTAAAGGGACTAGATGACTATTTGAT GAATCACATCATGCATGC	NM_02805	1453-
Synpr-AS-T7	TAATACGACTCACTATAGGGATAACTTTATTGAGGTCA AATAGATATCACAGTACAGG	2.4	2458
Nxph4-S-T3	AATTAACCCTCACTAAAGGGACTCCCGGAATGGCTCC TCT	NM_18329	137-
Nxph4-AS-T7	TAATACGACTCACTATAGGGCTGCACCAGTTTGTAGT CAAAACTGAGG	7.2	991
Fgf11-S-T3	AATTAACCCTCACTAAAGGGACTAATCAGTACTGAAC GGATCAAGAACCACT	NM_01019	2205- 3005
Fgf11-AS-T7	TAATACGACTCACTATAGGGAGCCCCTCCCTTAGGAC CTC	8.3	
Glra3-S-T3	AATTAACCCTCACTAAAGGGAGGAGATTCTGGCTCTT GGACCTAGT	NM_08043	43-692
Glra3-AS-T7	TAATACGACTCACTATAGGGGAGGACCTTTGAAGTTG GGTCTGATTCT	8.3	
Adcyap1-S-T3	AATTAACCCTCACTAAAGGGAGCTTCCCTGGGATCAG ACC	NM_00962	547-
Adcyap1-AS- T7	TAATACGACTCACTATAGGGAGCCTGCCCCAGACTCA GA	5.3	1510
Nxph1-S-T3	AATTAACCCTCACTAAAGGGAACTACAACTATCACAG TGACACACCTTACTTC NM 00875		1008-
Nxph1-AS-T7	TAATACGACTCACTATAGGGAAGATAAGACAGACACT TATAACTTACATGGTGTCTGC	1.5	1783

Htr2c-S-T3	AATTAACCCTCACTAAAGGGAGCAGGTGACCAGAATG AGGCACA	NM_00831	2456-
Htr2c-AS-T7	TAATACGACTCACTATAGGGGAGAGCAGCAGGCCCA CGAA	2.4	3446
Calb2-S-T3	AATTAACCCTCACTAAAGGGACGCAGCAGCAGCCCC CTTAC	NM_00758	90 702
Calb2-AS-T7	TAATACGACTCACTATAGGGTGGTGAGCTGTTGGATG TTCATCTCC	6.1	00-793
Vglut2-S-T3	AATTAACCCTCACTAAAGGGACCTTGGGCAGACCCTG AGGAA	NM_08085	
Vglut2-AS-T7	TAATACGACTCACTATAGGGGGGGGGGGAGCATGGAGCA TACCC	3.3	2315- 3244
Gad1-S-T3	AATTAACCCTCACTAAAGGGACACGCCTTCGCCTGCA ACCT	NM_00807	284-
Gad1-AS-T7	TAATACGACTCACTATAGGGGGGTGACCTGTGCGAACC CCG	7.5	819

Supplementary Table 3: Full names of mRNAs analyzed in mouse brain sections by fluorescent *in situ* hybridization (FISH)

Abbreviation, mRNA	Full name
Adcyap1	Adenylate Cyclase Activating Polypeptide 1
Baiap3	BAI1 Associated Protein 3
Cacna2d3	Calcium Voltage-Gated Channel Auxiliary Subunit Alpha2delta 3
Calb2	Calbindin 2
Col24a1	Collagen Type XXIV Alpha 1 Chain
Fgf11	Fibroblast Growth Factor 11
Gad1	Glutamate decarboxylase 1
Glra3	Glycine Receptor Alpha 3
Htr2c	5-Hydroxytryptamine Receptor 2C
Kcnab3	Potassium Voltage-Gated Channel Subfamily A Regulatory Beta Subunit 3
Nmbr	Neuromedin B Receptor
Nxph1	Neurexophilin 1
Nxph4	Neurexophilin 4
Pitx2	Paired Like Homeodomain 2
Pvalb2	Parvalbumin
Stxbp2	Syntaxin Binding Protein 2
Synpr	Synaptoporin
Tac1	Tachykinin Precursor 1
Vglut2	Vesicular glutamate transporter 2

Supplementary References

1. Skidmore, J. M., Cramer, J. D., Martin, J. F. & Martin, D. M. Cre fate mapping reveals lineage specific defects in neuronal migration with loss of Pitx2 function in the developing mouse hypothalamus and subthalamic nucleus. Mol. Cell. Neurosci. 37, 696–707 (2008).

2. Gasser, E., Johannssen, H. C., Rülicke, T., Zeilhofer, H. U. & Stoffel, M. Foxa1 is essential for development and functional integrity of the subthalamic nucleus. Sci Rep 6, 38611 (2016).

3. Kee, N. et al. Single-Cell Analysis Reveals a Close Relationship between Differentiating Dopamine and Subthalamic Nucleus Neuronal Lineages. Cell Stem Cell 20, 29–40 (2017).