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1. NUMERICAL SIMULATIONS OF FECAL MICROBIOTA TRANSPLANTATION

This section describes the details of FMT simulations presented in the main text. Consider a meta-
community of N species following the Generalized Lotka-Volterra (GLV) model with an interaction
matrix A and an intrinsic growth rate vector r. Without loss of generality, we label species-1 as C.
difficile.

Step 1. Generate the interaction matrix A and the intrinsic growth rate vector r. The global eco-
logical networkG(A) of the metacommunity can be constructed using a directed Erdős–Rényi
random graph model with N nodes and connectivity C (i.e., there is a directed edge between
any two ordered species with probability C). To generate the interaction matrix A = [aij] ∈
RN×N from this ecological network, for each edge (j → i) ∈ G(A) with j 6= i, we draw
aij from a normal distribution N (0, σ2) with σ = 0.2. All other entries of A are set to be
zero. Additionally, we add a negative self loop aii = −1 to each node to ensure stability of the
system. To generate the intrinsic growth rate vector r = [ri] ∈ RN , we draw each of its entries
ri from a uniform distribution U [0, 1]. The parameters used to generate ecological networks
for the simulations in Fig.3ef, Fig.4, Fig.5 and Fig.6cd of the main text are the following:
N = 100, C = 0.4, aii = −1, aij ∼ N (0, 0.22), ri ∼ U [0, 1].

Step 2. Generate healthy local communities corresponding to the gut microbiota of the donor
and the initial healthy gut microbiota of the recipient. We generate local communities
by randomly selecting a subset of species from the metacommunity. To define a given local
community as “healthy”, we need to check if its species richness is sufficiently large and if
it resists the invasion of C. difficile. To achieve that, we first make sure C. difficile is part
of each local community. Then, we set the initial abundance profile x0 ∈ RN by choosing
x0,i ∼ U [0, 1] if species i is present in the local community, and x0,i = 0 if it is not. As
explained in the main text, to simulate the population dynamics of local communities we
consider two cases:

a. Universal dynamics: local communities have the same GLV population dynamics as the
metacommunity, characterized by the pair (A, r). That is, the only difference between
different local communities is the collection of species that are initially present.

b. Non-universal dynamics: each local community has its own population dynamics spec-
ified by a particular pair (Ã, r̃). Here, we assume the growth rate vector r̃ is different
between subjects. Thus, for each subject r̃i is redrawn from U [0, 1]. As explained in the
main text, to specify Ã for each local community we consider three sub-cases:
∗ Host-Dependency-I. In this case the ecological networks and interaction types (i.e.,

the sign pattern) of Ã andA are identical, but the interaction strengths are different.
For example, ãij 6= aij but sgn (ãij) = sgn (aij). To achieve that, for each non-zero
aij , we draw ãij from the normal distribution N (0, σ2). We then change the sign
of ãij , if it is different from the sign of aij .
∗ Host-Dependency-II. In this case, the structure (i.e., the zero/nonzero pattern) of
Ã and A are identical, but the sign of the interactions and the interaction strengths
may be different. To achieve that, for each non-zero aij , we just draw ãij from the
normal distribution N (0, σ2).
∗ Host-Dependency-III. In this case the structure, interaction types and interaction

strengths of Ã and A can be all different. To achieve that, for each aij , we draw ãij
from the normal distribution N (0, σ2) with probability p = 0.4 and set it to be 0
otherwise.

After choosing the model parameters (Ã, r̃) for each local community, we simulate its pop-
ulation dynamics using the initial condition x0 until the system reaches a steady state. If the
steady-state abundance of C. difficile is less than 10−5 and the species richness is larger than a
user-defined richness threshold, then we define the local community as “healthy”. Otherwise,
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it is discarded and Step 2 is repeated. For the results in the main text, we consider a meta-
community of N = 100 species. Each healthy local community should contain at least 60
species.

Step 3. Simulate the diseased state. Starting from a healthy local community generated in Step 2
with its associated population dynamics (Ã, r̃), we randomly remove part of its species (to
mimic the impact of antibiotics administration). Then we simulate its population dynamics
until the system reaches a steady state. If the steady-state abundance of C. difficile is larger
than a user-defined diseased threshold, then the community is considered to be a “diseased
state”. In our simulations, we set the diseased threshold as 0.5.

Step 4. Transplant the donor’s microbiota to the recipient’s diseased community. To simulate
the FMT process, we combine a diseased community with a healthy community by instantly
changing the abundances of their common species and those donor-specific species. Then
we simulate the population dynamics of the combined system (i.e., the post-FMT microbiota)
following the recipient’s microbial dynamics until the combined system reaches a new steady
state. The efficacy of FMT is defined by a dimensionless variable, called the recovery degree,
η = x(d)−x(p)

x(d)−x(h) , where x represents the abundance of C. difficile, and the superscripts (d), (p)
and (h) represent the diseased, post-FMT, and initial healthy state, respectively.

Remark 1.
Note that in the FMT simulation, we don’t have to forcibly set species abundance to zero based on

any threshold value. In other words, we don’t need to decide if a species will go to extinction asymp-
totically. This is because that any tiny residual species could recover to a high level of abundance after
transplantation. For example, as shown in Supplementary Figure 1e (note that Supplementary Figure
1a-d are the same as Fig.2d-g in the main text), C. difficile and species-1 display exponential decay in
the initial healthy microbiota. Interestingly, their abundances increase to very high levels after simu-
lated antibiotics. Finally, after the simulated FMT, their abundances display exponential decay again.
This result clearly implies that tiny residual species abundances do matter in our simulations.

Remark 2.
We emphasize that in the design of probiotic cocktails (see Supplementary Note 3), we do need

to tell if a candidate cocktail will decolonize C. difficile or not. In other words, we need to know
if C. difficile will go to extinction asymptotically. Mathematically, the structure of the ODEs in the
GLV model does not allow for natural extinction in any finite time, i.e., that a species with initial
abundance xi(0) > 0 reaches the value xi(T ) = 0 for some finite time T < ∞. Note that the case
of species eradication due to simulated antibiotic administration in our modeling framework certainly
doesn’t count as natural extinction. Therefore, during a natural evolution of the GLV model (without
any simulated “antibiotics”), for any finite time t > 0, the species abundance xi(t) would never be
exactly zero, unless it was absent at t = 0. This is because the coordinate planes (xi = 0) are invariant
manifolds for the GLV model, and since solutions of initial value problems for the GLV model are
unique, it follows that natural extinction cannot occur in any finite time [1]. Any trajectory of the
system with positive initial position remains in the first orthant for all time.

Supplementary Figure 2a,b showed that those initially present species might not co-exist in the long
run. Mathematically, this means that a certain subset of initially present species will go to extinction
asymptotically, i.e., their abundances vanish with time: limt→∞ xi(t) = 0. Such asymptotic extinc-
tions in the GLV model has been heavily studied before[1, 2, 3, 4, 5]. Those previous studies typically
focused on special interaction types (either predator-prey or competitive) so that the interaction ma-
trix A contains special sign patterns (either sgn(aij) = − sgn(aji) or sgn(aij) = sgn(aji) < 0 for
all i 6= j), and then derived algebraic criteria on the model parameters (r, A), which guarantee that
some species are driven to extinction asymptotically. Unfortunately, up to our knowledge, for general
interaction types (or arbitrary sign patterns of the interaction matrix A), there are no analytical results
to predict which species will be driven to extinction asymptotically.
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Here, to better identify those species that will go to extinction asymptotically, we propose a novel
approach, which is much better than arbitrarily choosing a threshold abundance.

(1) Theoretical Preparation.
We can prove that any asymptotical species extinction will end up with an exponential decay.
Consider that species-i will go to extinction asymptotically, i.e., limt→∞ xi(t) = 0, while all
other species will approach their equilibrium abundance x∗j = xj(∞) > 0. Note that species-i
has dynamics:

ẋi = xi(ri + aiixi +
∑
j 6=i

aijxj).

In the limit t → ∞, we are close to xi(t) = 0 and xj(t) = x∗j , we can get the first-order
approximation for species-i’s dynamics (by simply ignoring the second-order term aiix

2
i and

replacing xj(t) by x∗j ):

ẋi = xi(ri +
∑
j 6=i

aijx
∗
j) = −λixi,

where we have defined a constant λi = −(ri +
∑

j 6=i aijx
∗
j). Then it is clear that xi(t) will

decay exponentially, i.e., xi(t) ∼ e−λit with λi > 0. The above argument can be easily
extended to the case of multiple species going to extinction asymptotically. Using the same
simulated data (as shown in Fig.2a of main text), but plotting the y-axis (species abundance)
on the logarithmic scale, indeed we found that a few species’ abundances display exponential
decay, i.e., xi(t) ∼ e−λit (see Supplementary Figure 2c), which is fundamentally different
from the behavior of those co-existing species in the steady state.

(2) Numerical procedure.
First, to numerically distinguish exponential decay from steady-state behavior, we need to get
each species’ long-term abundance change rate λi, i.e., the slope of xi(t) ∼ e−λit in the semi-
log plot (see Supplementary Figure 2c,d), which can be obtained by fitting the asymptotical
behavior of species abundances.

Second, to avoid introducing a threshold value of λi, we rank those species based on their
λi values.

Third, we remove the top-K species one by one (based on the ranked λi values) from the
system until we find the residual system has a feasible equilibrium (i.e., all the residual species
have positive abundance in the steady state).
(i) In particular, each time we rearrange the species indices such that the (N −K) residual

species occupy the first (N−K) entries, resulting in a reduced interaction matrix A(K) ∈
R(N−K)×(N−K), and a reduced intrinsic growth vector r(K) ∈ R(N−K)×1.

(ii) We then calculate the equilibrium of the residual system, denoted as x∗(K), by solving the
linear equations:

x∗(K) = −A−1
(K) · r(K).

If all the (N−K) residual species have positive abundances at the equilibrium x∗(K) (cor-
responding to their steady-state abundances in the infinite time limit), then we conclude
that the top-K species will go to extinction asymptotically.

(3) Demonstrations.
Supplementary Figure 2e demonstrates the iteration process for the synthetic community
shown in Supplementary Figure 2a. Note that the initial step K = 0 corresponds to the
original system with all the N = 15 species present. When solving the linear equations for
equilibrium, we find negative abundances (highlighted in blue), suggesting that the N = 15
species cannot co-exist in the steady state. After we remove the species with largest λi (i.e.,
species-7), the residual system still does not allow for a feasible equilibrium. Until we remove
the top-5 species (i.e., species-7, 1, C, 15, 9), the resulting residual system permits a feasible
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equilibrium (i.e., all the residual species have positive equilibrium abundances). We conclude
that those top-5 species will go to extinction asymptotically.

Supplementary Figure 3 demonstrates the iteration process for a real microbial community
associated with mouse experiments of antibiotic-mediated CDI (see [6] for experimental de-
tails). The interaction matrix has already been presented in main text Fig.7a. Supplementary
Figure 3b showed that Barnesiella, und. Lachnospiraceae, and Enterococcus all display expo-
nential decay in the long run of the simulation time window. Their fitted λi values are much
larger than that of other taxa (Supplementary Figure 3c). However, the iterative process in
Supplementary Figure 3d indicated that just excluding und. Lachnospiraceae and Enterococ-
cus will already permit a feasible equilibrium for the residual system. Hence, we conclude
that und. Lachnospiraceae and Enterococcus (rather than any more taxa) will go to extinction
asymptotically. Note that the seemingly “large” decay rate of Barnesiella could be just due
to the fact the simulation time is not long enough to capture the true asymptotical behavior of
Barnesiella.

2. NETWORK EFFECT IN MICROBIAL COMMUNITIES

In the main text, we discussed the intriguing network effect, i.e., those species that directly inhibit
the growth of C. difficile might indirectly promote the growth of C. difficile through other “mediator”
species. The net or effective impact of a species on the growth of C. difficile is hence largely context
dependent. In this section, we systematically study the network effect in microbial communities. For
simplicity, we focus on the GLV model.

2.1. Net impacts. Here we consider a metacommunity of N species labeled as Ω = {1, · · · , N}.
We assume all local communities obtained from this metacommunity share universal population dy-
namics, hence different local communities just differ by their initial species collections.

Given a local community, denoted as ω, let us assume that its population dynamics is described by
the GLV model

(1)
dxi(t)

dt
= xi(t)[r

(ω)
i +

∑
j∈ω

a
(ω)
ij xj(t)], i ∈ ω,

where A(ω) = [a
(ω)
ij ] ∈ R|ω|×|ω| and rω ∈ R|ω| are the interaction matrix and intrinsic growth rate

vector of the local community ω, respectively. Here |ω| denotes the cardinality of the set ω. Note that
the interaction matrix A(ω) characterizes the direct ecological interactions (i.e., promotion, inhibition,
or null) between any two microbial species of the local community. More precisely, species j has a
direct promotion (inhibition or null) effect on species i’s growth in the local community ω if and only
if a(ω)

ij > 0 (< 0 or = 0, respectively).
Because species do not live in isolation but form a complex ecological system, the net effect of

species j on species i depends not only on their direct interactions, but also on indirect interactions.
For example, species j may directly inhibit species i and, at the same time, species j may directly
promote species k that directly promotes species i. In this example, it is not trivial to conclude if the
net effect of species j on species i is inhibition or promotion.

Consider two persisting species i and j (i.e., both species have non-zero steady-state abundances)
in a local community ω. To quantify the net impact of species j on species i in this local community,
we can calculate the contribution of species j on the steady-state abundance of species i, denoted as
s

(ω)
ij . Define the local contribution matrix S(ω) ≡ [s

(ω)
ij ] ∈ R|ω|×|ω|. In the next subsection, we will

analytically calculate the contribution matrix S(ω) for the GLV model.

2.2. Contribution matrix. Here we derive the contribution matrix for a local community ω ⊆ Ω
assuming it reaches a steady-state abundance x∗(ω). If some species in the community will go to
extinction asymptotically, those species should be excluded from the subsequent analysis.
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Under the two assumptions that the community follows GLV dynamics and permits a feasible
equilibrium, the equilibrium of Supplementary Equation 1 is given by

(2) x∗(ω) = −(A(ω))−1r(ω) = −adj(A(ω))

det(A(ω))
r(ω),

where adj(A(ω)) ∈ Rn×n is a square matrix with dimension n = |ω|, and its (i, j) entry is given by
[(−1)i+jM

(ω)
ji ] and M (ω)

ji is the (j, i)-minor of A(ω), i.e., the determinant of the (n − 1) × (n − 1)

submatrix by deleting j-th row and i-th column of A(ω).
This equation implies that the steady-state abundance of species i is given by

x
∗(ω)
i = − 1

det(A(ω))

∑
j∈ω

(−1)i+jM
(ω)
ji r

(ω)
j .

We define the contribution of species j on the steady-state abundance of species i in the local com-
munity ω as

(3) s
(ω)
ij := −

(−1)i+jM
(ω)
ji r

(ω)
j

det(A(ω))
.

Then naturally x∗(ω)
i is just the sum of the contributions from all species in the local community on

species i, i.e.,
x
∗(ω)
i =

∑
j∈ω

s
(ω)
ij .

In particular, species j has a net inhibition (promotion or null) effect on species i in the local
community ω if and only if s(ω)

ij < 0 (> 0 or = 0, respectively). In what follows we use the shorthand
x∗i = x

∗(Ω)
i .

Remark 3. We recall the following facts from the contribution matrix.
a. Here we assume all species in the local community ω can persist because Supplementary

Equation 3 only works for feasible communities, which require that x∗(ω)
i > 0 for i ∈ ω.

For an infeasible community, we should exclude the extinct species from the global collection
first, and form a new feasible local community. Then we can apply Supplementary Equation
3 for the new community to calculate the contribution matrix. Therefore, next subsection will
introduce a numerical method to detect extinct species from an infeasible community.

b. For the classical GLV model, the functional response corresponds to Holling Type I gLV (xi, xj) =
xj , which is linear in xj . We note that the other common functional responses are nonlinear in
xj , such as Holling Type II (gHII(xi, xj) =

c1xj
1+c1c2xj

), DeAngelis-Beddington (gDB(xi, xj) =
c1xj

1+c1c2xi+c3xj
), and Crowley-Martin (gCM(xi, xj) =

c1xj
(1+c1c2xi)(1+c3xj)

). For these more compli-
cated functional responses, quantifying the net effect of species j on the abundance of species
i remains an open question.

2.3. Comparing Net and direct impacts. Due to complicated network effect, the net impact of
species j on species i (denoted as s(ω)

ij ) can be significantly different from the direct impact of species
j on species i (denoted as a(ω)

ij ). There are three cases:

(1) normal: direct and net impacts share the same sign, sgn(s
(ω)
ij ) = sgn(a

(ω)
ij );

(2) bridging: direct impact is zero while net impact is not, s(ω)
ij 6= 0 but a(ω)

ij = 0;
(3) counter-intuitive: direct and net impacts have opposite signs, sgn(s

(ω)
ij ) = − sgn(a

(ω)
ij ) 6= 0.

In reality, two species that directly compete with (or benefit from) each other may effectively benefit
from (or compete with) each other via interactions with the third species. These phenomena can be
formalized as two special cases of the counter-intuitive case described above:
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(3.1) aij < 0, aji < 0 but sij > 0, sji > 0;
(3.2) aij > 0, aji > 0 but sij < 0, sji < 0.
To illustrate the difference between direct and net impacts, we consider two examples:

Example 1. As an elementary example, consider a three-species metacommunity in Supplementary
Figure 4a with species {C, 2, 3}. Consider that in the local community ω = {C, 3}, where species 3
directly promotes species C, leading to a large abundance of species C. Note that in this metacom-
munity, species 2 directly inhibits species C (i.e., aC2 < 0), but it also directly promotes species 3
(i.e., a32 > 0) and hence indirectly promotes species C. It is not guaranteed that adding species 2
will decrease the abundance of species C. The net impact of species 2 on species C depends on the
interaction strength a32. If a32 is weak, the direct interaction dominates and adding species 2 will
inhibit the growth of species C (blue curve in Supplementary Figure 4a). Otherwise, adding species
2 could increase the abundance of species C (red curve in Supplementary Figure 4a).

Example 2. Consider a more complicated metacommunity of 15 species shown in Supplementary
Figure 4b. For this community, we calculated the contribution sCi of each species i on species C (see
Supplementary Figure 4c). We found that many bridging cases (green dots below species index axis),
as well as one counter-intuitive case (red triangle below species index axis). The counter-intuitive
case exists because species 2 directly inhibits C (i.e., aC2 < 0), but its net effect is positive (i.e.,
sC2 > 0). Interestingly, calculating the contribution to species C using the subgraphs consisting of 1-
step neighbors of species C, 2-step neighbors of species C, and 3-step neighbors of species C shows
that the contribution values are dominated by the nearest neighbors (i.e., 1-step neighbors), see orange
and green areas in Supplementary Figure 4b. This result suggests that for calculating the contribution
matrix, instead of knowing the global network of the metacommunity, it is sufficient to know the local
network consisting of nearest neighbors of the target species C. In network science, such a network
is called the ego network of species C.

Here, to explicitly and systematically demonstrate the network effect using our ecological model-
ing framework based on ODEs, we performed extensive simulations to quantify the fractions of the
three cases (i.e., normal, bridging, and counter-intuitive), as well as the two special cases (3.1) and
(3.2), in synthetic ecological networks with GLV dynamics (see Supplementary Figure 5). In partic-
ular, we demonstrated the direct impact (encoded in the interaction matrix) in Supplementary Figure
5a, and the net impact (encoded in the contribution matrix) in Supplementary Figure 5b, for a com-
munity of N = 15 species. Note that in the contribution matrix, there are total 23 counter-intuitive
cases (highlighted in red boxes), and 6 of those cases are special cases (3.1) and (3.2) (filled with
stripe pattern). Supplementary Figure 5c systematically showed how the fractions of the three cases
change with the community size N . Interestingly, the fractions remain quite stable over increasing
community sizes. Even for a community of only N = 10 species, we already see the bridging and
counter-intuitive effects. Supplementary Figure 5d demonstrated the fractions of the three cases with
increasing connectance C of the microbial community. Here we find that the fractions change grad-
ually over increasing connectance. In particular, denser networks (larger C) tend to have a higher
fraction of counter-intuitive cases (shown in red) and a lower fraction of bridging cases (shown in
green). Supplementary Figure 5e and f showed the fraction of the two special cases (3.1) and (3.2)
with different N and C. We found that the two special cases are ubiquitous, especially in dense
networks with large C.

2.4. Graphical interpretation of the contribution matrix. To offer graphical interpretation of the
community matrix, let’s consider a small community with 3 species.

Example 3. Consider a three-species community Ω = {1, 2, 3} that follows the GLV model with the
following parameters:

A =

 a11 0 0
a21 a22 0
0 a32 a33

 , r =

 r1

r2

r3

 .
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We can directly calculate the steady state abundance of species 3 as

x∗3 =
−r1a21a32 + r2a11a32 − r3a11a22

a11a22a33

,

and note that x∗3 =
∑3

i=1 s3i if x∗3 > 0.
We also note that s3i can be interpreted in terms of paths in the ecological network (Supplementary

Table 1). For example, s31 contains a21a32 which is the product of the interactions in the path from
node 1 to node 3. Note also that sij may contain interactions that are not in the direct path (j → i).
For example, s32 contains the term a11.

1 2 3

Contribution value of s3i (i = 1,2,3) Mi3 (i = 1,2,3) Graph interpretation of s3i

1 2 3

1 2 3

SUPPLEMENTARY TABLE 1. Contribution of other species to the steady-state abun-
dance of species 3 in Example 3. The cross grain in the middle columns means the
deletion of the i-th (i = 1, 2, 3) row and the 3rd column from the A matrix.

We next show that the observation in Example 3 is general in the sense that the net impact can
be mapped into paths in the ecological network of a local community. To do this we first formally
introduce the directed graph (i.e., the ecological network) associated with the interaction matrix A. In
the analysis that follows, without loss of generality, we assume ω = Ω.

Definition 1. The directed graph G(A). Given the interaction matrix A = [aij] ∈ RN×N we
associate a directed graph G(A) = (V,E) with vertex set V and edge set E. In this graph, nodes
(or vertices) V = {x1, . . . , xN} := {v1, . . . , vN} correspond to species, and the direct edges E =
{(xj → xi)|aij 6= 0} correspond to direct ecological interactions (see Supplementary Figure 6a).

Definition 2. The bipartite graph H(A). For our analysis, we will use the fact that any directed
graph G(A) can be represented a bipartite graph H(A) = (V +

A ∪ V
−
A ,Γ). Here, V +

A = {x+
1 , . . . , x

+
N}

and V −A = {x−1 , . . . , x−N} are the set of vertices corresponding to the N rows and columns of the A
matrix, respectively (See Supplementary Figure 6a). The edge set Γ is defined as Γ = {(x+

i , x
−
j )|aij 6=

0}, which means that placing an edge (x+
i , x

−
j ) in the bipartite graph H(A) if there is a directed

edge (xj → xi) in the digraph G(A) (i.e., there is a non-zero element aij in the A matrix). See
Supplementary Figure 6b for an illustration.

Definition 3. The residual bipartite graph H(Āji). The key component in Supplementary Equation
3 is Mji, which represents the determinant of the (N − 1) × (N − 1) submatrix formed by deleting
the j-th row and i-th column from the A matrix. From the view of network science, this submatrix
corresponds to a residual bipartite graph H(Āji) obtained by deleting the nodes x+

j , x−i and their
associated edges form the graph H(A). More precisely, H(Āji) = (V +

A − {x
+
j } ∪ V −A − {x

−
i },Γ′)

where Γ′ is the subset of Γ by deleting the edges associated with nodes x+
j and x−i in Γ. Supplementary

Figure 6c indicates H(Ā12) which is the key to quantify M12 in Supplementary Figure 6a.

Remark 4. From the above definitions, we know that the graphical interpretation of sij is hidden in
the relations between Mji and H(Āji). Thus, we recall the following facts from matrix theory [7].



AN ECOLOGICAL FRAMEWORK TO UNDERSTAND THE EFFICACY OF FMT 9

a. The determinant of a matrix. The Leibniz formula for the determinant of an N ×N matrix
A is

det(A) =
∑
σ∈Θ

sgn(σ)
N∏
i=1

ai,σi .

Above, Θ denotes the permutation group and sgn(σ) is the signature of the permutation σ. In
matrix theory, the term

∏N
i=1 ai,σi is notation for the product of the entries at positions (i, σi),

where i ranges from 1 to N . For example, the determinant of a 3× 3 matrix A is∑
σ∈Θ

sgn(σ)
N∏
i=1

ai,σi

= sgn([1, 2, 3])
N∏
i=1

ai,[1,2,3]i + sgn([1, 3, 2])
N∏
i=1

ai,[1,3,2]i + sgn([2, 1, 3])
N∏
i=1

ai,[2,1,3]i +

sgn([2, 3, 1])
N∏
i=1

ai,[2,3,1]i + sgn([3, 1, 2])
N∏
i=1

ai,[3,1,2]i + sgn([3, 2, 1])
N∏
i=1

ai,[3,2,1]i

=
N∏
i=1

ai,[1,2,3]i −
N∏
i=1

ai,[1,3,2]i −
N∏
i=1

ai,[2,1,3]i +
N∏
i=1

ai,[2,3,1]i +
N∏
i=1

ai,[3,1,2]i −
N∏
i=1

ai,[3,2,1]i

= a1,1a2,2a3,3 − a1,1a2,3a3,2 − a1,2a2,1a3,3 + a1,2a2,3a3,1 + a1,3a2,1a3,2 − a1,3a2,2a3,1.
b. The determinant of a matrix associates with all the perfect matchings of its correspond-

ing bipartite graph. For a given A matrix,
∏N

i=1 ai,σi for σ ∈ Θ corresponds to the product
of one perfect matching of its corresponding bipartite graph H(A). Thus,

∑
σ∈Θ

∏N
i=1 ai,σi

consists of all the perfect matchings of H(A).

In summary, we can make the following observations:

Remark 5.
a. The determinant det(A) equals the sum of the weights of all perfect matchings multiplied by

their respective signatures. Thus, the perfect matchings reflect the relation between aij and
det(A) from a graph viewpoint.

b. Mji, the (j, i)-minor of matrix A, is the determinant of submatrix by deleting j-th row and
i-th column from the A matrix, which associates with all the perfect matchings of the residual
bipartite graph H(Āji).

c. The contribution value sij associates with all the perfect matchings of the residual bipartite
graph H(Āji).

Consider the microbial community of Supplementary Figure 7a. Here, the net impact of species 2
on species 1 is given by

s12 = −(−1)(1+2)M21r2

det(A)
=
a32a43a14a55r2

det(A)
.

The numerator M21 = a32a43a14a55 consists of the product of (N − 1) direct interactions correspond-
ing to the perfect matchings of H(Ā21) (see Supplementary Figure 7b). Each perfect matching in
H(Ā21) has two parts: the direct interactions in the path from species 2 to species 1 (green in Sup-
plementary Figure 7b), and the “supplementary” elements which are direct interactions disjoint to
such path (orange in Supplementary Figure 7b). Thus, these supplementary elements contain direct
interactions that are not part of the paths connecting species 2 and species 1.

Supplementary Figure 7c highlights the perfect matching of M21 in the original ecological network
using green edges and nodes (indicating the path from species 2 to 1) and the orange edge and node
(representing the supplementary element). Supplementary Figures 7d-f show more complicated ex-
amples. Here, due to the three perfect matchings in Supplementary Figure 7e, the expression for M21



10 Y. XIAO, M.T. ANGULO, S. LAO, ST WEISS, AND Y.-Y. LIU

consists of three terms, as shown in Supplementary Figure 7f, and each term corresponds to a path
from species 2 to 1 and their supplementary elements.

The above discussion shows that sij depends on both “direct” paths from j to i, and “supplementary
elements” that are not in those paths. The presence of supplementary elements is hard to predict using
a purely ecological reasoning, and they can only be revealed by a mathematical analysis.

2.5. Previous studies on net impacts. Several previous studies have analyzed the response of ecosys-
tems to the so-called “press perturbations” [8, 9, 10, 11]. These press perturbations capture how the
abundance of species iwill change in response to a change in the abundance of species j. For example,
in [10], the authors introduce the “net effect matrix” K = −A−1 as follows:

“Each element of−A−1 specifies the direction and magnitude by which the abundance
of the species in row i is expected to respond to a perturbation of the species in column
j.”

The net effect matrix and our contribution matrix have the same aim, that is, quantifying the im-
pact of one species on the abundance of another species. However, we emphasize three important
differences:

Remark 6.
a. The net effect matrix K quantifies the effect of an infinitesimal change in the abundance

of one species to other species in the community [10]. Namely, this matrix captures the
change in abundance during the process to reach new equilibrium after adding a small “press”
perturbation.

b. The contribution matrix S assesses the net impact of the presence of one species on the steady-
state abundance of another species. That is, we quantify the effects on the new steady-state
abundance after adding new species (e.g., due to a transplantation). Crucially, adding some
species do not necessarily result in a small perturbation to the steady-state abundance. Because
of this fact, the contribution matrix is more suitable for analyzing and designing FMT than the
net effect matrix.

c. The contribution matrix actually involves the growth rate vector r, while the net effect matrix
K is independent of r.

d. The sign of K equals to the sign of S, but the magnitude of each entry is in general different.
That is, sgn(S) = sgn(K) but, in general, sij 6= kij .

3. ALGORITHM FOR DESIGNING PERSONALIZED PROBIOTIC COCKTAILS

3.1. Using the global network. Given a metacommunity of N species and its global ecological
network G(A). Our aim is to identify a subset of species (called a probiotic cocktail) to effectively
promote or inhibit the growth of a target species in any “diseased” local community, where the target
species has abnormally low or high abundance. Here we describe the algorithm in the particular case
of inhibiting one species, i.e., C. difficile, but it can be easily generalized to inhibit or promote any
other species.
Step 1. Calculate the contribution matrix S from the interaction matrix A of the metacommunity,

quantifying the net impact between any two species.
Step 2. Consider both direct (aCj < 0) and effective (sCj < 0) inhibitors as the “global inhibitors”

from the metacommunity. Let the initial cocktail contain all those global inhibitors that are
not present in the diseased local community (i.e., the patient’s disrupted microbiota).

Step 3. If transplanting the initial cocktail to the patient microbiota will decolonize C. difficile, the
procedure terminates. If not, go to Step 4.

Step 4. Calculate the local contribution matrix using the new local community consisting of all species
in the patient’s diseased microbiota and all species in the initial cocktail. For each species in
the initial cocktail, we numerically test if it is an effective inhibitor (i.e., has a negative net
impact on the growth of C. difficile) in the restored local community. The species is kept in
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the cocktail if it is an effective inhibitor, and it is removed from the cocktail if it is not an
effective inhibitor.

Step 5. Repeat Step 4 until all the species in the cocktail are effective inhibitors in the local commu-
nity.

Step 6. Return the final cocktail as the personalized probiotic cocktail.

To better explain the workflow of our algorithm, we presented a schematic diagram of the algorithm,
shown in Supplementary Figure 8. Some remarks are in order:

Remark 7.
a. At the beginning, the algorithm assembles an initial cocktail with all global inhibitors. Thus,

the final personalized patient-specific cocktail is a subset of those global inhibitors.
b. Note that, in a community of N species, the complexity of a brute-force algorithm that test

if each possible species is an inhibitor is of the order O(2N−1). The contribution matrix
actually avoids this “curse of dimensionality”, allowing us to search only in a reduced pool of
candidates given by the initial cocktail of global inhibitors.

c. Note that, because of the network effects, an species may have different net impacts in dif-
ferent local communities simply because the species collections are different. Therefore, it is
necessary to check at each step that the possible candidates play the desired net impact in the
local microbial community.

d. Note that for a local community that doesn’t permit a feasible equilibrium, we first need to
exclude those species that are going to extinction asymptotically (which can be identified via
the approach discussed in Remark 2 of Supplementary Note 1). We end up with a new local
community with a feasible equilibrium. Then we calculate the contribution matrix of the new
community. Of course, those extinct species will not contribute to the equilibrium of the new
community.

3.2. Using the ego network. In Supplementary Figure 4c, we showed how the net impacts are domi-
nated by the subnetwork consisting of all species that are nearest neighbors of the target species. This
result suggests that just knowing the ego network of the target species is enough to calculate the net
impacts, instead of knowing the global ecological network.

The ego network of C. difficile consists of a focal node/species (“ego”, i.e., C. difficile), those
nodes/species to which C. difficile directly interacts with (they are called “alters”), the links/interac-
tions between C. difficile and its alters, as well as the links/interactions among the alters (see Sup-
plementary Figure 4b). The algorithm to suppress C. difficile using its ego network is almost same
with the previous algorithm using the global ecological network. The only difference is the first-step,
where we just use the ego network to calculate the contribution matrix. The rest steps are the same.

Some remarks are in order:

Remark 8.
a. In the above algorithm, we only use the information of the ego network of C. difficile.
b. The cocktails are personalized because different patients have different remaining species in

their diseased microbiota, and thus we will have different ego networks of C. difficile.
c. Our algorithm can be generalized to consider a k-step ego network instead of the 1-step ego

network used above. Using an ego network with slightly larger step may significantly improve
the efficacy of the designed cocktail. For example, as shown in Supplementary Figure 9, by us-
ing the 1-step ego network, our algorithm yields the cocktail Rego-1 = {10}. The performance
of this cocktail is worse than that of the cocktail Rglobal designed using the global ecological
network (see dashed line in Supplementary Figure 9). However, if we consider the 2-step
ego network, our algorithm yields the cocktail Rego-2 = {5, 10, 12, 13} whose performance is
almost identical to that of Rglobal (Supplementary Figure 9).
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SUPPLEMENTARY FIGURE 1. Temporal behavior of species abundances in the
simulated FMT process. We start from an initially “healthy” community (a), simulate
the impact of antibiotic administration by eradicating some species from the commu-
nity (b), restore the healthy community by transplanting species from another healthy
community (c). The simulation details of the FMT process is the same as shown in
Fig.2d-g of the main text. The simulated time series of species abundances with linear
(d) or logarithmic scale (e).



14 Y. XIAO, M.T. ANGULO, S. LAO, ST WEISS, AND Y.-Y. LIU

15

14

6

3

5

9

13

1

7

10

8

12
2

11

C

0 5 10 15 20 25 30
Time

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Ab
un

da
nc

e

a

b c

0 20 40 60 80 100
Time

10-60

10-40

10-20

100

Ab
un

da
nc

e

d e

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Species index

K = 0

1

2

3

4

5

-0.57 2.41 -0.05 0.66 0.08 -0.28 -1.62 0.54 -0.07 -0.06 1.65 0.49 -0.03 1.58 -0.33

-0.45 1.43 0.13 -0.3 -0.14 0.39 X 0.11 -0.08 0.08 1.81 0.79 0.22 0.94 -0.11

X 1.34 0.11 -0.36 0.04 0.36 X 0.11 -0.04 0.02 1.8 0.8 0.31 0.71 -0.04

X 1.22 0.06 X 0.17 0.36 X 0.25 -0.03 0.02 1.67 0.66 0.31 0.71 -0.04

X 1.21 0.06 X 0.18 0.36 X 0.25 -0.03 0.02 1.66 0.65 0.31 0.71 X

X 1.22 0.06 X 0.18 0.35 X 0.25 X 0.02 1.67 0.65 0.32 0.7 X

1 2 3 C 5 6 7 8 9 10 11 12 13 14 15
Species index

0

0.2

0.4

0.6

0.8

1

1.2

1.4

fit
te

d 



AN ECOLOGICAL FRAMEWORK TO UNDERSTAND THE EFFICACY OF FMT 15

SUPPLEMENTARY FIGURE 2. Asymptotic extinction in the generalized Lotka-
Volterra model. a. The ecological network of a microbial community with 15 species.
The ecological network is the same as shown in Fig.2a of the main text. Blue (or red)
edges represent the inhibition (or promotion) impacts between species. b. Starting
from an arbitrary initial condition, we can numerically solve the ODEs and obtain the
time series of species abundances. c. Plotting the species abundances on the logarith-
mic scale demonstrates that some species’ abundances decay exponentially in the long
run, i.e., xi(t) ∼ e−λit for large t. d. The decay rate λi obtained by fitting the as-
ymptotic behavior of each species’ abundance time series. We notice that species-1,C,
7, 9, and 15 display noticeable decay rate, suggesting that they will go to extinction
asymptotically. e. To avoid choosing a subjective threshold value of λi to identify
those species that will go to extinction asymptotically, we develop a heuristic method.
In particular, we rank those species based on their λi values. Then we remove the
top-K species one by one from the system until we find the residual system permits
a feasible equilibrium (i.e., all the residual species have positive abundances in equi-
librium). Here, the K-th row represents the equilibrium abundance profile calculated
by solving the linear equation x∗(K) = −A−1

(K) · r(K) for the residual system. Removed
species are highlighted by ‘X’, residual species with negative equilibrium abundances
are highlighted in blue.
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SUPPLEMENTARY FIGURE 3. Asymptotic extinction in a real microbial commu-
nity. The interaction matrix (inferred from the mouse experiments of antibiotic-
mediated CDI, see Ref.[69] of the main text) was presented in Fig.7a of the main text.
a. Starting from an arbitrary initial condition, we can numerically solve the ODEs and
obtain the time series of taxa abundances. b. Plotting the taxa abundances on the loga-
rithmic scale demonstrates that the abundances of Barnesiella, und. Lachnospiraceae,
Enterococcus decay exponentially, i.e., xi(t) ∼ e−λit for large t. c. The decay rate
λi obtained by fitting the asymptotic behavior of each species’ abundance time series.
Barnesiella, und. Lachnospiraceae, Enterococcus display noticeable non-zero decay
rate. d. The iterative process showed that excluding und. Lachnospiraceae and Ente-
rococcus can already permit the residual system to have a feasible equilibrium. This
suggests that und. Lachnospiraceae and Enterococcus will go to extinction asymptoti-
cally.
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SUPPLEMENTARY FIGURE 4. Network effect. a. Two ecological networks with the
same structure and sign-patterns, but different interaction strengths lead to different
net impacts of species 2 on species C. b. The ecological network of a metacommunity
with 15 species. We highlight the 1st-step and 2nd-step ego-networks of the target
species C in orange and green, respectively. c. The contributions of other species
to species C’s steady-state abundance calculated from the 1st-step and 2nd-step ego-
networks of C and the global ecological network, respectively.
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SUPPLEMENTARY FIGURE 5. The ubiquity of network effect in the GLV model.
a. The interaction matrix of a community with 15 species governed by GLV dynamics.
b. The contribution matrix of the community in a. Red boxes highlighted the counter-
intuitive cases, while red boxes with stripe patterns indicated the two subcases (3.1)
and (3.2). c. Fractions of the three main cases of network effect as functions of the
community size. We set the intra-species interaction aii = −1, the inter-species inter-
action aij ∼ N (0, 0.22), the connectance of ecological network C = 0.8 (the probabil-
ity that species-i interacts with species-j), the growth rate of each species ri ∼ U [0, 1].
For each N , we ran 20 different realizations. d. Fractions of the three main cases of
network effect as functions of the network connectance. We set N = 100, aii = −1,
aij ∼ N (0, 0.22), ri ∼ U [0, 1]. For each C, we ran 20 different realizations. e,f Frac-
tion of counter-intuitive cases of network effect as a function of community size (N )
or network connectance (C). Here, each bar represents the total fraction of counter-
intuitive cases, and the parts with filled-in stripe patterns indicate the fractions of the
two special cases (3.1) and (3.2).
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1 2

Bipartite graph: H(A)a b c Residual bipartite graph: 

SUPPLEMENTARY FIGURE 6. A matrix and its bipartite representation. a. An
illustration of how an A matrix can be represented by a directed graph with N nodes.
b. The corresponding bipartite graph H(A) of the A matrix in panel a. c. The residual
bipartite graph H(Ā12) corresponds to the submatrix by deleting the first row and
second column (the light nodes and edges) from the A matrix in panel a.
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SUPPLEMENTARY FIGURE 7. The graph interpretation of net impacts. a. The
ecological network of a metacommunity of 5 species. Here the term M21 involved in
s12 quantifies the net effect of species 2 on species 1. b. The bipartite graph of the
A matrix in panel a. Note that H(Ā21) corresponds to a residual bipartite graph by
deleting the 2nd row and 1st column in the A matrix. The light gray nodes and links
are deletions. The orange and green links represent the perfect matching of H(Ā21).
c. M21 is composed of the perfect matching of H(Ā21), which has two disjoint parts:
(i) the path from species 2 to species 1 (shown in green); and (ii) the supplementary
elements of this path (shown in orange). d. M21 in a metacommunity with a more
complicated network. e. There exists three perfect matchings in this residual bipar-
tite graph, i.e, a12a34a53a45, a12a33a44a55 and a32a13a44a55. f. M21 is composed of
three perfect matchings of H(Ā21). Similar with panel c, we highlight the three paths
from species 2 to species 1 (shown in green) and their corresponding supplementary
elements (shown in orange), respectively.
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SUPPLEMENTARY FIGURE 8. The workflow of our algorithm for the design of
personalized probiotic cocktail.
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SUPPLEMENTARY FIGURE 9. Rationally design probiotic cocktails to decolonize
C. difficile. The trajectories show the abundance of C. difficile in an initially healthy
microbiota, a disrupted microbiota, and the restored microbiota with probiotic cock-
tails designed using the global ecological network, 1-step and 2-step ego networks of
C. difficile, i.e., Rglobal, Rego-1 and Rego-2, respectively.
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SUPPLEMENTARY FIGURE 10. Donor-recipient compatibility issue matters. We
simulate the FMT process for each of the 100×50 (donor, recipient) pairs, and plot
the recovery degree in a 100×50 matrix, where rows (or columns) are sorted based
on the average recovery degree of each row (or column). The resulting healthy mi-
crobiota of those 100 donors contains 50∼55 (left column), 60∼65 (middle column),
and 70∼75 (right column) species. From top to bottom, the pre-FMT microbiota of
50 recipients contain 10∼15 (top), 20∼25 (middle), and 30∼35 (bottom) species, re-
spectively. In simulations, the underlying ecological network is generated from a di-
rected random graph model with connectivity 0.4, and the ecological interactions fol-
low aij ∼ N (0, 0.22)(i 6= j) and aii = −1.
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