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Supporting Information Text16

AdaPT conditional two-groups model17

This section provides a more detailed explanation of updating the rejection threshold st(xi) in the AdaPT procedure, expanding18

on the description from Methods in the main manuscript. As in the main text, this is essentially an explanation of the EM19

approach of (1). Note that for coherence some text is repeated from the main manuscript. (1) use a conditional version of the20

classical two-groups model (2) yielding the conditional mixture density,21

f(p|x) = π1(x)f1(p|x) + 1− π1(x), [1]22

where the null p-values are modeled as uniform (f0(p|x) ≡ 1). They proceed to use a conservative estimate for the conditional23

local false discovery rate, fdr(p|x) = f̂(1|x)/f̂(p|x), by setting 1− π1(x) = f(1|x).24

We model the non-null p-value density with a beta distribution density parametrized by µi,25

f1(p|xi) = h(p;µi) = 1
µi
p1/µi−1, [2]26

where µi = E[−log(pi)], resulting in a conditional density for a beta mixture model,27

f(p|xi) = π1(xi)
1
µi
p1/µi−1 + 1− π1(xi). [3]28

In this form, we can model the non-null probability π1(xi) = E[Hi|xi] and the effect size for non-null hypotheses µ(xi) =29

E[−log(pi)|xi, Hi = 1] with two separate gradient boosted tree-based models. The XGBoost library (3) provides logistic and30

Gamma regression implementations which we use for π1(xi) and µ(xi) respectively.31

There are two categories of missing values in these regression problems: Hi is never observed, and at each step t of the search,32

the p-values for tests {i : pi ≤ st(xi) or pi ≥ 1− st(xi)} are masked as p̃t,i. An expectation-maximization (EM) algorithm can33

be used to estimate both π̂1(xi) and µ̂(xi) by maximizing the partially observed likelihood. The complete log-likelihood for the34

conditional two-groups model is,35

l(π1, µ; p,H, x) =
n∑
i=1

{Hilog(π1(xi) + (1−Hi)log(1− π1(xi))}+
n∑
i=1

Hilog{h(pi;µ(xi))}. [4]36

During the E-step of the d = 0, 1, . . . iteration of the EM algorithm, conditional on the partially observed data fixed at step t,
(xi, p̃t,i)i∈[n], we compute both,

Ĥ
(d)
i = E

π̂
(d−1)
1 ,µ̂(d−1) [Hi

∣∣(xi, p̃t,i)i∈[n]] [5]

b̂
(d)
i = E

π̂
(d−1)
1 ,µ̂(d−1) [1(p′t,i = pi)

∣∣(xi, p̃t,i)i∈[n], Hi = 1], [6]

where b̂(d)
i indicates how likely p′t,i = min(p̃t,i) equals pi for non-null hypotheses. The explicit calculations of Ĥ(d)

i and b̂(d)
i for37

both the revealed, p̃t,i = p′t,i, and masked p-values, p̃t,i = {pi, 1− pi}, are available in the supplementary materials of (1).38

The M-step consists of estimating π̂(d)
1 and µ̂(d) with separate gradient boosted trees, using pseudo-datasets to handle the39

partially masked data. In order to fit the model for π1(xi), we construct the response vector y(d)
π = (1, . . . , 1, 0, . . . , 0) ∈ R2n and40

use weights w(d)
π = (Ĥ(d)

1 , . . . , Ĥ
(d)
n , 1− Ĥ(d)

1 , . . . , 1− Ĥ(d)
n ) ∈ R2n. Then we estimate π̂(d)

1 (xi) using the first n predictions from41

a classification model using y(d)
π as the response variable with the covariate matrix (xi)i∈[n] replicated twice and weights w(d)

π .42

Similarly, for estimating µ̂(d)(xi) we construct a response vector y(d)
µ = (−log(p1), . . . ,−log(pn),−log(1−p1), . . . ,−log(1−pn)) ∈43

R2n with weights w(d)
µ = (b̂(d)

1 , . . . , b̂
(d)
n , 1 − b̂(d)

1 , . . . , 1 − b̂(d)
n ) ∈ R2n, and again take the first n predicted values using the44

duplicated covariate matrix.45

The conditional local fdr is estimated for each p′t,i,46

fdrt,i = π̂1(xi)h(1; µ̂(xi) + 1− π̂1(xi)
π̂1(xi)h(p′t,i; µ̂(xi) + 1− π̂1(xi)

, [7]47

and we follow the procedure detailed in Section 4.3 of (1) to update the rejection threshold to st+1(xi) by removing test48

i∗ = arg max
i∈Rt

fdrt,i from Rt. A summary diagram of the EM algorithm is displayed in Figure S1.49

SCZ results with independent loci50

One potential concern regarding the assessment of performance of AdaPT is the impact of linkage disequilibrium (LD). In the51

Manhattan plots of Figures 2(B-C), the discoveries visually appear to be located close to one another. However, the visual52

appearance of genomic positions is somewhat misleading because our initial selection of eSNPs greatly reduces the number of53

SNPs commonly portrayed in Manhattan plots – many of these SNPs are not very close to each other in the genome and not in54

high LD, although the format of the Manhattan plot makes this feature hard to see. To take this analysis further we follow55

common practice for GWAS results by identifying the “best” or “lead” SNPs in a LD block/cluster, using a similar approach as56

(4), for each of the set of discoveries presented in Figure 2:57
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1. order the SNPs by the AdaPT -log10(q-value) in descending order,58

2. starting with the SNP with the largest value for the AdaPT -log10(q-value),59

• remove all SNPs with r2 ≥ 0.1 within a 500kb window,60

• move on to next SNP that is still remaining,61

3. return the retained SNPs as the LD-independent SNPs in low LD (r2 < 0.1). (Remark: this approach excludes SNPs62

whose contribution to the GWAS signal is partially independent of the lead SNP, but it has the advantage of simplicity.)63

We use the reference European sample genotype data from the 1000 Genomes project (5) to compute the r2 values between64

SNPs. In the GWAS setting this LD clumping procedure is typically applied to the reported SNP p-values, but because65

the ordering of SNPs varies between the different sets of discoveries (intercept-only versus use of covariates) we perform the66

operation separately with their respective q-values. For each of the different set of covariates considered, this results in reducing67

the 25,076 selected eSNPs down to the following number of “independent loci”:68

• Intercept-only: 3,95869

• BD z-stats: 3,96670

• BD z-stats + eQTL slopes: 3,96271

• BD z-stats + eQTL slopes + WGCNA (w/ interactions): 3,96372

• BD z-stats + eQTL slopes + WGCNA (w/o interactions): 3,95973

• WGCNA: 3,95474

The differences in counts are due to the different number of ties that take place between the resulting q-values for each75

considered set of covariates. Next, for the identified set of “lead” SNPs we observe how many have q-values less than the76

target FDR level α = 0.05 (i.e. associations detected at α = 0.05). The results are displayed in the Figure S2, including77

Manhattan plots Figures S2(A-B) of the q-values for the AdaPT intercept-only and BD z-stats + eQTL slopes + WGCNA (w/78

interactions) results, rather than using the actual p-values. The lead SNPs in each of the Manhattan plots are denoted by an X79

shape. In conjunction with Figures S2(C-D), the relative improvement in the set of independent loci within the discovery sets80

from AdaPT is analogous to the results presented in Figure 2, emphasizing the advantage of accounting for covariates and81

their interactions via gradient boosted trees. Additionally, Figure S3 further emphasizes that the improvement in power is not82

restricted to a particular section of the genome. As seen in Figure S4, we observe a similar improvement in the number of83

independent loci when ordering the SNPs with the observed 2014-only studies SCZ p-values.84

While we maintain FDR control on the original set of discoveries (see Figure 3 in Results), we do not retain any guarantees85

regarding the detected independent loci presented in Figure S2. In order to maintain FDR control on the set of discovered86

independent loci, an alternative approach or adjustment to the AdaPT algorithm is required. A simple alternative is to first87

apply LD pruning/clumping as initial step prior to applying AdaPT to a reduced set of lead SNPs. However, this encounters88

the challenge of defining lead SNPs without data “snooping” based on using the observed p-values. Future work will explore89

modifications for AdaPT, potentially exploring recent developments (6), to maintain FDR control on an independent subset of90

SNPs.91

SCZ variable importance and partial dependence92

We explore further the variable relationships from the gradient boosted trees. First, Figure S5 displays the change in variable93

importance for the non-null effect size (µ) at each model fitting iteration, with the top variables in the final model highlighted.94

The variable importance measures are relatively stable across all model iterations with the BD z-statistics and eQTL slope95

measures maintaining the highest level of importance. Figure S6 displays the partial-dependence plot at each AdaPT model96

fitting iteration for the estimated marginal relationship between the BD z-statistics and the non-null effect size µ, evaluated at97

the 0, 2.5%, 5%, . . . , 100% percentiles. The estimates reveal an increasing effect size as the BD z-statistics grow in magnitude,98

which is relatively stable across the model iterations. Figures S7(A-C) display the relationships for the probability of non-null99

model, while (D-F) display relationships for the effect size under the alternative. Although the partial dependence plots show100

considerable variability due to the high dimensional of the model, we can still see general trends consistent with the variable101

importance plots from Figure 3(A) and Figure S5.102

In Figure S8 we display the p-value distributions comparing the enrichment for membership in the different WGCNA103

modules reported by (7). While many of the WGCNA modules lack clear evidence or contain too few eSNPs, as denoted by104

their respective y-axes, the cyan and salmon modules display noticeable enrichment. Additionally, as mentioned previously,105

membership in the gray module displays a lack of enrichment versus no associated cis-eQTL gene affiliated with the unassigned106

WGCNA module.107

As additional context for the improved performance from using all covariates with interactions, Figures S9(A-B) display the108

change in partial dependence between the BD z-statistics and probability of being non-null π1 across the AdaPT search for109
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the AdaPT results using (A) BD z-statistics only and (B) all covariates without interactions. When compared to the results110

using all covariates with interactions in Figure Figure 3(B), we see that both versions of these results display relatively flat111

relationships near the end of the AdaPT search. This provides evidence of the importance of the interactions between other112

covariates and the BD z-statistics in retaining discriminatory power of the eSNPs near the end of the AdaPT search.113

Replication simulations114

We use simulations to empirically assess the observed nominal replication rate, percentage of discoveries with p-values less115

than 0.05 in holdout 2018-only studies, of 55.2% for the 843 SCZ discoveries from the 2014-only studies at target FDR level116

α = 0.05. We use the final non-null effect size model returned by the AdaPT, µ̂∗, to generate simulated p-values psim and117

nominal replication rates to compare the observed rate against. For the simulations, we assume that all 843 SCZ discoveries118

from the 2014-only studies are truly non-null, and we use the actual eSNPs, their observed standard errors σ14, σ18 from the119

2014-only and 2018-only studies respectively, as well as their actual covariates for generating psim. A single iteration of the120

simulation proceeds as follows:121

• For each of the RSCZ = 843 discoveries i ∈ RSCZ:122

1. Assume test status is non-null: Hi = 1.123

2. Generate effect size using final AdaPT model as truth:124

− log psimi |xSCZ
i ∼ Exp

(
1/µ̂∗(xSCZ

i )
)
. [8]125

3. Transform effect sizes to p-value psimi .126

4. Convert simulated p-value to z-statistic zsimi =
∣∣Φ−1(psimi /2)

∣∣.127

5. Calculate updated z-statistic to reflect observed reduction in standard error for 2018-only studies relative to128

2014-only,129

z∗,simi = zsimi · σ14

σ18
. [9]130

6. Convert updated z-statistic to p-value:131

p∗,simi = 2 · Φ(−|z∗,simi |). [10]132

• Calculate nominal replication rate using psim = (p∗,simi , . . . , p∗,simRSCZ
),133

Nominatl replication rate = |{i : p∗,simi ≤ .05}|
RSCZ

. [11]134

We repeat this process to generate ten-thousand simulated values for the nominal replication rate. The distribution of the135

simulated values ranges from approximately 51% to 63%, with an average and median of ≈ 57%, close to the observed rate of136

55.2%. Obviously, assuming that all of the 843 rejections are truly non-null is an overtly optimistic assumption given the use of137

FDR error control. Thus, the average simulated nominal replication rate of ≈ 56.6% is reassuringly close to the observed rate138

and likely higher than what would be expected if false discoveries were accounted for among the 843 considered eSNPs.139

SCZ results with all 2018 studies140

We generate the AdaPT results using the SCZ p-values from all-2018 studies to the same set of nSCZ = 25, 076 eSNPs with the141

same covariates xSCZ
i . As a comparison to the results displayed in Figure 2 using the 2014-only studies, Figures S10(A-D)142

display the same figures but with the results from all 2018 at target FDR level α = 0.05. In contrast to before, we see that due143

to the increase in power from the study size, the use of modeling the auxiliary information provides a much smaller increase in144

power with just an approximately 19% increase in discoveries from the intercept-only results (1,865 discoveries) to using all145

twenty-four covariates with interactions (2,228 discoveries).146

For comparison, we additionally examine the change in variable importance and partial dependence plots returned by147

AdaPT using all 2018 studies. Similar to before, Figures S11(A-B) display the change in variable importance plots for both148

the probability of being non-null π1 and effect size under alternative µ models using the SCZ p-values from all 2018 studies149

respectively. The results are similar to before, but with the complete sample eQTL slopes possessing the highest importance.150

The BD z-statistics are again highly important for all 2018 studies, displaying the similarly increasing relationships across the151

AdaPT models as seen in the partial dependence plots in Figures S12(C-D). The change in partial dependence plots for the152

different eQTL slopes summaries are seen in Figures S13(A-F). Figure S14 displays the levels of SCZ enrichment for all 2018153

studies, revealing modules that are consistent with the 2014-only studies such as cyan and salmon.154
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Type 2 diabetes results155

Using GWAS summary statistics for type 2 diabetes (T2D), unadjusted for BMI, available from Diabetes Genetics Replication156

And Meta-analysis (DIAGRAM) consortium (8), we applied our full pipeline outlined in Figure 1. Of the initial set of over157

twenty-three million SNPs available, we identified 176,246 eSNPs from eQTL variant-gene pairs from any GTEx tissue sample158

using the definition of the GTEx eSNPs explained in Data. Figure S15 displays the enrichment for these GTEx eSNPs compared159

to the original set of SNPs from the T2D GWAS results.160

We create a vector of covariates xT2D
i summarizing expression level information from GTEx for pancreas, liver, and two161

adipose tissues, subcutaneous and visceral (omentum). Specifically, we calculate β̃rT2D
i for each rT2D in the set of tissues:162

pancreas, liver, adipose - subcutaneous, adipose - visceral (omentum). Additionally, we generate WGCNA module assignments163

using protein coding genes for pancreas samples from GTEx. To generate the WGCNA results, we only consider protein coding164

genes identified using the grex package in R (9, 10). Additionally, all genes with expression levels of zero for over half of the165

provided samples were removed. This resulted in fourteen different module, including the unassigned gray module. Unlike the166

SCZ application, we do not use independent GWAS results from another phenotype.167

Using xT2D
i defined above, we applied AdaPT to the 176,246 GTEx eSNPs. However, we encountered an issue for this data168

where we were unable to discover any hypotheses at target FDR level α ≤ 0.05. This was due to the fact that 640 eSNPs169

had p-values exactly equal to one. While this can understandably occur with publicly available GWAS summary statistics,170

p-values equal to one will then always contribute to the pseudo-estimate for the number of false discoveries At during the171

AdaPT search (see Methodology overview). With a relatively high number of p-values equal to one, AdaPT is unable to search172

through rejection sets for lower α values. To overcome this challenge, we draw random replacement p-values for the 640 eSNPs173

from a uniform distribution between 0.97 and 1 − 1E−15, a value strictly less than one, to allow some leeway. We refer to174

this set of p-values as adjusted, while the original observed p-values are unadjusted. For comparison, Figure S16 shows the175

difference in the number of discoveries for the adjusted and unadjusted p-values across different target α values. Due to the176

similarity in performance for α values greater than 0.1, we use results for the adjusted p-values moving forward.177

At target FDR level α = 0.05, AdaPT yields 14,920 T2D discoveries using the adjusted p-values with covariates xT2D
i178

(compared to 14,693 intercept-only discoveries). The change in variable importance for the T2D AdaPT models are displayed179

in Figure S17. This set of eSNPs is associated with 5,970 cis-eQTL genes for which we then applied gene ontology enrichment180

analysis to (11, 12), identifying the gene enrichment for biological processes displayed in Figure 5.181

BMI results182

We also applied our pipeline of analysis to BMI, unadjusted for waist-to-hip ratio (WHR), using GWAS results for individuals183

of European ancestry available from the GIANT Consortium. Specifically, we approached BMI in the same manner as SCZ:184

apply AdaPT to GWAS results from earlier studies with a sample size of 322,154 individuals (13); then compare the nominal185

replication results on recently conducted studies with a sample size of approximately 700,000 individuals (14). As before, all of186

the 2015-only studies from (13) were included as a subset of all 2018 studies (14). Because both (13) and (14) use the inverse187

variance-weighted fixed effects approach for meta-analysis, we then compute statistics for the studies exclusive to 2018-only188

studies in (14). Additionally, to make this example more comparable to the SCZ use, we also use GWAS results for WHR (15)189

as a covariate (analogous to BD for SCZ). Following pre-processing steps (matching SNPs across studies and effect alleles190

in both WHR and BMI), we identified 47,690 GTEx eSNPs from a set of nearly two million SNPs, based on the definition191

explained in Data. Figure S18 displays the enrichment for the GTEx eSNPs compared to the original set of pre-processed192

SNPs for the 2015-only studies.193

Based on previous knowledge of BMI tissue expression associations (13), we create a vector of covariates xBMI
i summarizing194

expression level information from GTEx for brain and adipose tissues (both subcutaneous and visceral (omentum)). Specifically,195

we calculate β̃rBMI
i for each rBMI ∈ {GTEx brain tissues, adipose - subcutaneous, adipose - visceral (omentum)}, where we196

consider the following brain tissues: (1) amygdala, (2) anterior cingulate cortex BA24, (3) caudate basal ganglia, (4) cerebellar197

hemisphere, (5) frontal cortex BA9, (6) hippocampus, (7) hypothalamus, (8) nucleus accumbens basal ganglia, (9) putamen basal198

ganglia, (10) spinal cord cervical c-1, and (11) substantia nigra. We do not consider the available cerebellum cortex tissue199

samples from GTEx as these are duplicates of cerebellar hemisphere and frontal cortex BA9 respectively. We instead only use200

the samples taken the same time as the other brain sub-regions at the University of Miami Brain Endowment Bank, preserved201

by snap freezing (see GTEx FAQs).202

We also created an aggregate across Grnc
i , all cis-eQTL genes associated with eSNP i for each non-cerebellar hemisphere203

brain tissue region rnc,204

β̄nc
i = 1

|Grnc
i |

∑
g∈Grnc

i

|βr
nc
i,g |. [12]205

We did not include the cerebellum tissue samples in this aggregate due to the reported distinctness of the cerebellum relative to206

other brain tissue samples (16). Similarly, we computed an average across the two adipose tissues. As before, when calculating207

the various eQTL slopes summaries, if eSNP i was not an eQTL for a particular region then we impute a value of zero reflecting208

the lack of associated expression.209

Furthermore, WGCNA module assignments were generated using protein coding genes for three different sets of tissues:210

(1) all non-cerebellar hemisphere brain tissues, (2) cerebellar hemisphere only tissue, and (3) adipose tissues (using same211
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settings described previously in Type 2 diabetes results). Together with the WHR z-statistics and covariates accounting for the212

associations and WGCNA module indicators, xBMI
i contained 110 variables.213

For BMI eSPS, 376 have p-value exactly equal to one, leading to the same problem as we encountered in the T2D analysis.214

Again, we proceed by randomly drawing replacement p-values for these 376 eSNPs from a uniform distribution between 0.97215

and 1− 1E−15. Figure S19 shows how AdaPT fails to obtain any discoveries across the various α levels without making an216

adjustment to the p-values. With this limitation recognized, we proceed to focus on the discoveries returned by AdaPT using217

the adjusted p-values at α = 0.05.218

Unlike SCZ and T2D, AdaPT using all of the covariates (with the same tuning parameters as SCZ) detected fewer discoveries:219

1,383 eSNPs compared to 1,624 eSNPs discovered by the intercept-only AdaPT model at target FDR level α = 0.05. With220

further boosting regularization, beyond what is considered here, one could achieve the intercept-only results with gradient221

boosted trees. Of these 1,383 discoveries, approximately 83% (1,140 eSNPs) were nominal replications with p-values less than222

or equal to 0.05 in the independent 2018-only studies. Figure S20 displays the increasing smoothing spline relationship between223

the 2018-only p-values and the resulting 2015-only q-values from the AdaPT search on the log10 scale. The much higher224

observed nominal replication rate is not surprising given the well powered size of the BMI studies, as indicated by the y-axis of225

Figure S20, which reflects the level of enrichment for the 2018-only studies.226

Additionally, gene ontology enrichment analysis for the 1,383 discoveries using all covariates revealed no significant biological227

process enrichment at target FDR level α = 0.05. One concern is that a model with 110 variables is excessive, because the228

variable importance plots for the BMI AdaPT models in Figures S21(A-B), along with the partial dependence plots in Figures229

S22(A-B), emphasize the relative importance of the WHR z-statistics compared to other covariates. To test this conjecture, we230

explored two simpler models using (1) WHR z-statistics only and (2) WHR z-statistics with eQTL slope summaries. These231

produced 1,324 and 1,351 discoveries at the 0.05 level, respectively. We conclude that the available covariates do not provide232

sufficient additional information beyond the signal available with this immense sample and consequently including covariates in233

the AdaPT model does not increase the power of the procedure.234

CV tuning for SCZ, T2D, and BMI results235

Rather than fixing the parameter settings for the XGBoost gradient boosted trees, we use the CV algorithm (detailed in236

Methods) at two steps of the search to tune the models (see the following section for justification of using two CV steps). For237

our search space, we evaluate a small range of values for the number of trees P and limit the maximum tree depth D to result238

in reasonably shallow trees (referred to as nrounds and max_depth in the xgboost package (17)).239

First, for SCZ analysis, when exploring the improvement in discovery rate for the eSNPs by incrementally including more240

information, we used the following XGBoost settings:241

• BD z-stats: Combinations of P ∈ {100, 150}, D ∈ {1, 6},242

• BD z-stats + eQTL slopes: Combinations of P ∈ {100, 150}, D ∈ {3, 6},243

• BD z-stats + eQTL slopes + WGCNA: Combinations of P ∈ {100, 150}, D ∈ {2, 3},244

• WGCNA only: Combinations of P ∈ {100, 150}, D ∈ {1, 2, 3}.245

We explored different settings for the different possible covariates to address the types of variables included. For instance, when246

using the BD z-statistics only, we considered both single-split “stumps” as well as more depth with six splits to potentially247

handle the variable’s symmetric relationship. Once we have all three types of covariates (BD z-statistics, eQTL slope summaries,248

and WGCNA results), we limit the maximum depth to be at least two to ensure possible interactions can be captured.249

The selected number of trees P and maximum depth D for each of these sets of covariates is displayed in Table S1. When250

using only the BD z-statistics, as well as only including the eQTL slopes, the single-split settings were selected in the first CV251

step while the higher depth was selected in the second CV step. When using all covariates, the most complex settings (largest252

number of trees and largest depth) are selected in both CV steps. This agreement in selection is not surprising given the choice253

of the low starting threshold s0 = 0.05, which differs from the results displayed in Table S3 of the next section using s0 = 0.45.254

We evaluated the same possible settings for the various all 2018 results displayed in Figures S10(C-D): the same choices for P255

and D displayed in Table S1 were selected in both CV steps.256

For the T2D and BMI results with their full set of covariates, we evaluated four combinations: (1) P = 100, D = 2, (2)257

P = 150, D = 2, (3) P = 100, D = 3, and (4) P = 150, D = 3. For the BMI results using only WHR z-statistics, we varied258

over P ∈ {100, 150} and D ∈ {1, 6}; for the results using WHR z-statistics with the eQTL slopes, we used combinations of259

P ∈ {100, 150}, D ∈ {3, 6}. The selected number of trees P and maximum depth D for each of these sets of AdaPT results at260

both CV steps is displayed in Table S2.261

Selection of s0 and number of CV steps262

To justify the selection of both the starting threshold s0 and number of CV steps for the AdaPT search, we generated simulations263

from the first AdaPT models returned from the SCZ 2014-only results. While these models are based on AdaPT results with a264

starting threshold of s0 = 0.05 following one CV step, they are only from the first model and are not explicitly parametrized265

by s0 and the number of CV steps. We know, however, that these first models are the result of using P = 150 trees with a266

maximum depth of D = 3, as indicated in Table S1 of the previous section.267
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Let π̂∗1 and µ̂∗ be the first models for the probability of non-null and effect size under the alternative that AdaPT returns268

for the eSNPs using all covariates xSCZ
i . We use these models as the “truth” for generating data, in which a single iteration of269

the simulation proceeds as follows:270

• For each eSNP i ∈ [n∗SCZ]271

1. Generate test status: Hi|xSCZ
i ∼ Bernoulli

(
π̂∗1(xSCZ

i )
)
.272

2. Generate simulated effect sizes:273

− log pi|Hi, xSCZ
i ∼

{
Exp

(
1
)
if Hi = 0,

Exp
(
1/µ̂∗(xSCZ

i )
)
if Hi = 1.

[13]274

3. Transform to p-values pi.275

• Apply AdaPT to simulated study p-values with specified s0 and v CV steps with two candidate settings:276

1. number of trees P = 100 and maximum depth D = 2,277

2. number of trees P = 150 and maximum depth D = 3.278

• Compute observed power and FDP at range of target FDR α values.279

We generate one-hundred simulations this way for each possible threshold s0 ∈ {0.05, 0.25, 0.45} and v ∈ {1, 2, 5} CV steps.280

Figure S23 displays the average difference in power between the different starting threshold values by the number of CV steps.281

Although the differences are small, we see that using s0 = 0.05 results in higher power, on average, than both 0.25 and the282

recommended 0.45 value. Using this low starting threshold of s0 = 0.05, we then directly compute the difference in power283

between the different number of CV steps displayed in Figure S24. Unsurprisingly, while again the differences are small, only284

one CV step results in the lowest power, on average. Since the computational cost of AdaPT with CV tuning is reduced by only285

using two CV steps instead of a higher number, such as five, and the simulations demonstrate on average no difference in power286

at both α values of 0.05 and 0.10, we use the starting threshold of s0 = 0.05 with two CV steps in our applications of AdaPT.287

In the previous section, Table S1 displayed the selections in both CV steps with s0 = 0.05. For comparison, Table S3288

displays the selections using s0 = 0.45. Instead of selecting the same settings in both steps, the higher initial threshold selects289

the least complex settings (smallest number of trees and minimum depth) in the first CV step before flipping to the most290

complex settings in the second step. Intuitively, the higher initial threshold means more information is masked from the models,291

so it is not surprising to see less complex settings chosen. This further reinforces the use of the lower initial threshold s0 = 0.05:292

it starts with more revealed information and selects model settings corresponding to improved CV performance for tests with293

lower p-values of interest.294

Dependent p-value block simulation295

To demonstrate the performance of AdaPT in the presence of dependent tests, we construct simulations with a block-correlation
scheme to emulate LD structure for SNPs. We consider a setting with two independent covariates,

xi = (xi1, xi2),
where xi1, xi2 ∼ Uniform(0, 1).

For each test i ∈ [n], we define a linear relationship for the log-odds of being non-null using these covariates,

logit(π1,i(xi)) = β0 + β1xi1 + β2xi2.

Then, the resulting status of the test Hi is a Bernoulli random variable based on the probability π1,i(xi) where Hi = 1 indicates
the test i is non-null while Hi = 0 indicates a true null,

Hi ∼ Bernoulli(π1,i(xi)).

Given this test status, a vector of true effect sizes µ = c(µi, . . . , µn) is also generated as a function of the covariates,

µi(xi) =
{
max{µfloor, γ1xi1 + γ2xi2} if Hi = 1,
0 otherwise.

To simulate observed effect sizes, we construct an n× n covariance matrix Σ with B blocks of equal size n
B
. Each block

b ∈ [B] has constant correlation ρ between all tests within the block, while each block is independent of each other. This results
in constructing individual block covariance matrices, Σb, with ones along the diagonal and ρ for the off-diagonal elements.
Each of these individual matrices are placed along the diagonal of Σ, with the remaining off-diagonal elements set to zero so
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blocks are independent of each other. As an example, if each block contained only two tests they would be constructed in the
following manner,

Σb =
[

1 ρ
ρ 1

]
⇒ Σ =



[
1 ρ
ρ 1

]
0 ... 0

0
[

1 ρ
ρ 1

]
... ...

... ... ... ...

0 ... ...

[
1 ρ
ρ 1

]


Using this block-wise construction of the covariance matrix, we then proceed to generate the vector of observed effect sizes

z = (zi, . . . , zn) from a multivariate Gaussian distribution,
z ∼ Normal(µ,Σ).

We compute the resulting two-side p-value pi = 2 · Φ(−|zi|) for each test’s observed effect size.296

For each dataset generated using this process above, we compute both the observed FDP and power for the classical BH297

procedure and two different versions of AdaPT:298

1. intercept-only,299

2. gradient boosted trees with covariates: xi = (xi1, xi2).300

We fix both n = 10,000 and B = 500 blocks, resulting in 500 blocks of twenty tests each. Rather than force all non-301

nulls together in the same blocks, we first calculate the minimum number of blocks required to hold all non-null tests,302

B∗A = d|{i : Hi = 1}|/20e. The non-null tests are then randomly assigned to BA = d(500 +B∗A)/2e blocks, ensuring that there303

will be blocks containing both null and non-null tests. The |{i : Hi = 0}| tests are randomly assigned to available spots within304

the BA blocks as well as the remaining 500−BA strictly null blocks.305

In our simulations, we fix β0 = −3 and require that both β1 = β2 and γ1 = γ2. We vary the following settings in our306

simulations:307

1. block correlation ρ ∈ {0, 0.25, 0.5, 0.75, 1} where each block has the same value for ρ,308

2. β1, β2 ∈ {1, 2, 3},309

3. µfloor ∈ {0.5, 1, 1.5},310

4. γ1, γ2 ∈ {0.5, .75, 1}.311

We generate 100 simulations using the data generating process above, computing both the FDP and power for BH and the two312

different versions of AdaPT. For the covariate-informed version of AdaPT, we use gradient boosted trees via XGBoost with313

P = 100 trees and maximum depth D = 1. For both versions of AdaPT results, we start with the initial threshold of s0 = 0.45314

and update the model ten times throughout the search (rather than the recommended twenty for computational speed).315

Figures S25, S26, and S27 display points for the average observed FDP and power across the 100 simulations with plus/minus316

two standard errors bars for µfloor =0.5, 1, and 1.5 respectively, with target FDR level α = 0.05. The columns in each figure317

correspond to the different values considered for γ1 = γ2, while the rows correspond to β1 = β2. The x-axis for the figures318

displays the increasing block correlation ρ. Regardless of the simulation setting, we see that the AdaPT results when accounting319

for covariates (xi1, xi2) maintains valid FDR control at 0.05 similar to BH. This holds in the settings with greater effect sizes,320

as well as when the covariate information displays the best performance in terms of observed power (the bottom right panels321

of each figure). We can see that the intercept-only approach fails to achieve FDR control under block settings with perfect322

correlation, while the use of covariate information appears to inhibits such behavior. Our focus on positive correlation values is323

synonymous with the setting faced in genomics regarding LD structure. Further exploration of AdaPT’s performance in settings324

with arbitrary dependence structure presents an opportunity for future work, as well as accounting for covariate information325

that predict observed correlated noise.326

Simulations demonstrating effects of overfitting327

It is possible that flexible methods like gradient boosted trees can be overfit, especially on small data sets. This could potentially328

lead to concerns about their incorporation in AdaPT. To assess the effects of overfitting the gradient boosted trees in AdaPT,329

we constructed simulated datasets using the first models returned by AdaPT on the SCZ GWAS results, π̂∗1 and µ̂∗, with the330

actual covariates xSCZ
i for each of the n∗SCZ = 25,076 eSNPs. We then simulated data using these models in the same manner331

previously explained for choosing s0 and the number of CV steps, and computed the observed power and FDP over a range of332

number of trees P ∈ {100, 300, 500, 700, 900}.333

Figure S28(A) displays the distributions for fifty simulations of the observed FDP as the number of trees in the gradient334

boosted model increases. Regardless of the number of trees, we still maintain valid FDR control. However, Figure S28(B)335

shows as the number of trees increases, the method will overfit, resulting in a reduction in power. This reinforces that, although336

good model tuning can be important for power, the AdaPT method continues to maintain FDR control even as the model337

breaks down.338
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Fig. S1. Summary of AdaPT EM algorithm.
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Fig. S2. Manhattan q-value plots of SCZ AdaPT discoveries (orange) using (A) intercept-only model compared to (B) covariate informed model at target α = 0.05, with
lead SNPs for independent loci denoted by Xs. (C) Comparison of the number of independent loci for each discovery set at target α = 0.05 based on LD pruning with the
respective AdaPT q-values and (D) their resulting discovery set intersections.
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Fig. S3. Comparison of the number of independent loci in the AdaPT discovery sets by type for each chromosome.
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Fig. S4. Comparison of the number of independent loci for each discovery set at target α = 0.05, based on LD pruning with the with 2014-only SCZ p-values.
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Fig. S5. Change in variable importance for AdaPT non-null effect size µ model across search, with top variables in final model highlighted.
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Fig. S6. Change in partial dependence for non-null effect size µ and BD z-statistics across µ models in AdaPT search.
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Fig. S7. Change in partial dependence plots for probability of being non-null π1 in (A-C), and the effect size under alternative µ in (D-F), for each type of eQTL slope. Rugs
along x-axis denote distribution of values for each variable.
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Fig. S8. Comparison of SCZ p-value distributions from 2014 studies by whether or not the eSNP had an associated cis-eQTL gene in the module.
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Fig. S9. Change in partial dependence for BD z-statistics and probability of being non-null π1 for the AdaPT results using (A) only BD z-statistics and (B) all covariates without
any interactions.
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Fig. S10. Manhattan plots of SCZ AdaPT discoveries (in orange) with all 2018 studies using (A) intercept-only model compared to (B) covariate informed model at target
α = 0.05. (C) Comparison of the number of discoveries at target α = 0.05 for AdaPT with varying levels of covariates and (D) their resulting discovery set intersections.
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Fig. S11. Using all 2018 studies: change in variable importance for AdaPT (A) probability of being non-null π1 and (B) effect size under alternative µ models across search,
with top variables in final model highlighted.
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Fig. S12. Using all 2018 studies: change in partial dependence for BD z-statistics and AdaPT (A) probability of being non-null π1 and (B) effect size under alternative µ models
across search.
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Fig. S13. Using all 2018 studies: change in partial dependence plots for probability of being non-null π1 in (A-C), and the effect size under alternative µ in (D-F), for each type
of BrainVar eQTL slope. Rugs along x-axis denote distribution of values for each variable.
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Fig. S14. Using all 2018 studies: comparison of SCZ p-value distributions from 2014 studies by whether or not the eSNP had an associated cis-eQTL gene in the module.
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Fig. S15. A comparison of qq-plots revealing T2D enrichment for GTEx eSNPs compared to full set of SNPs.
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Fig. S16. Comparison of the number of discoveries by AdaPT for T2D by whether or not the adjusted or unadjusted p-values were used.
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Fig. S17. Change in T2D variable importance for AdaPT (A) probability of being non-null π1 and (B) effect size under alternative µ models across search, with top variables in
final model highlighted.
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Fig. S18. Comparison of qq-plots revealing BMI enrichment for GTEx eSNPs compared to full set of SNPs.
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Fig. S19. Comparison of the number of discoveries by AdaPT for BMI by whether or not the adjusted or unadjusted p-values were used.
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Fig. S20. Black line displays smooth relationship between BMI p-values from 2018-only studies and the AdaPT q-values from the 2015-only studies. Blue-shaded region
indicates AdaPT discoveries at α = 0.05 that are nominal replications, p-values from the 2018-only studies < 0.05 while red denotes discoveries which failed to replicate.
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Fig. S21. Change in BMI variable importance for AdaPT (A) probability of being non-null π1 and (B) effect size under alternative µ models across search, with top variables in
final model highlighted.
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Fig. S22. Change in BMI partial dependence for WHR z-statistics and AdaPT (A) probability of being non-null π1 and (B) effect size under alternative µ models across search.
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Fig. S23. Difference in simulation power between different initial thresholds s0 for AdaPT search by number of CV steps. Points denote averages with plus/minus two standard
error bars.
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Fig. S24. Difference in simulation power between the number of CV steps with s0 = 0.05. Points denote averages with plus/minus two standard error bars.
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Fig. S25. Comparison of average (A) FDP and (B) power with plus/minus two standard error bars for 100 simulations with µfloor = 0.5, and varying values for β1 (rows) and
γ1 (columns) and block correlation ρ.
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Fig. S26. Comparison of average (A) FDP and (B) power with plus/minus two standard error bars for 100 simulations with µfloor = 1, and varying values for β1 (rows) and
γ1 (columns) and block correlation ρ.
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Fig. S27. Comparison of average (A) FDP and (B) power with plus/minus two standard error bars for 100 simulations with µfloor = 1.5, and varying values for β1 (rows) and
γ1 (columns) and block correlation ρ.
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Fig. S28. Distributions of observed (A) FDP and (B) power for simulations as the number of AdaPT gradient boosted trees increases by target FDR level α. Points denote
averages with plus/minus two standard error intervals.
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Table S1. Selected boosting settings for number of trees P and maximum depth D with AdaPT CV algorithm by covariates for eSNPs in each
CV step.

Covariates m∗
1 m∗

2
BD z-stats P = 150, D = 1 P = 150, D = 6
BD z-stats + eQTL slopes P = 150, D = 3 P = 150, D = 6
BD z-stats + eQTL slopes + WGCNA P = 150, D = 3 P = 150, D = 3
WGCNA only P = 150, D = 3 P = 150, D = 3

Table S2. Selected boosting settings for number of trees P and maximum depth D with AdaPT CV algorithm by GWAS results in each CV
step.

GWAS results m∗
1 m∗

2
T2D P = 100, D = 2 P = 150, D = 3
BMI (all covariates) P = 100, D = 2 P = 150, D = 3
BMI (WHR z-stats only) P = 150, D = 1 P = 150, D = 1
BMI (WHR z-stats + eQTL slopes) P = 100, D = 3 P = 150, D = 3

Table S3. Selected boosting settings for number of trees P and maximum depth D with AdaPT CV algorithm by covariates for eSNPs with
s0 = 0.45.

Covariates m∗
1 m∗

2
BD z-stats P = 50, D = 1 P = 150, D = 1
BD z-stats + eQTL slopes P = 100, D = 1 P = 150, D = 2
BD z-stats + eQTL slopes + WGCNA P = 100, D = 2 P = 150, D = 3
WGCNA only P = 150, D = 3 P = 150, D = 3

SI Dataset S1 (adapt_gwas_results.xlsx)339

AdaPT discoveries using gradient boosted trees at target FDR level α = 0.05 for SCZ, T2D, and BMI. Sheets contain each340

unique combination of eSNP and associated cis-eQTL gene.341
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