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Methods 
State Laws. Our data on the implementation dates for the three classes of firearms legislation we 
analyzed were drawn from the RAND State Firearm Law Database (1). Table S1 contains data on 
the years over which each law type applied to each state. For the purposes of the present paper, 
we code a state as having a child access prevention (CAP) law if the law specifies either civil or 
criminal penalties for storing a handgun in a manner that allowed access by a minor. We code a 
state as having a stand your ground (SYG) law if the state has a law that permits the use of lethal 
force for self-defense outside of the defender’s home or vehicle, even when a retreat from danger 
would have been possible. Without such laws, individuals who use deadly force in self-defense 
may face criminal or civil penalties if they could have avoided the threat by leaving the situation or 
using non-deadly means for defense. We code a state as having a right to carry (RTC) law if 
concealed carry permits are issued whenever legally permissible without the discretion of law 
enforcement. Specifically, states that either prohibit concealed carry of firearms, or that “may 
issue” concealed carry permits are coded as not having a RTC law; states that either “shall issue” 
concealed carry permits to those who meet legal requirements or that allow concealed carry 
without any permit are coded as having a RTC law. Almost all the RTC laws being analyzed 
moved states from a regime in which concealed carry permits were issued to individuals only at 
the discretion of a law enforcement agency (May issue), into a regime in which all individuals who 
applied for a permit and met the legal requirements were issued a concealed carry permit (Shall 
issue).  

Empirically, these three laws are associated. The adoption of RTC laws is positively 
associated with SYG laws and negatively associated with CAP laws. For example, while 36% of 
all states have adopted a CAP law, among the 18 states that have both RTC and SYG laws, only 
18% have a CAP law. 

 
Analytic Covariates. The model includes covariates that were the first 17 principle components 
extracted from a larger set of time-varying state characteristics.  These characteristics have been 
found by other researchers to be associated with firearm deaths or are variables that are 
commonly used when analyzing state-level differences in health or crime. These variables are all 
taken from federal government sources and constitute descriptive statistics for each state for 
each year in the studied period. Additional information about each variable can be found in 
Schell, et al. (2). The 34 characteristics are shown in Table S2.  

The characteristics marked with * are plausibly the effects of gun control policies as well as 
possible confounds for estimating the policy’s effects. For this reason, they are lagged one year in 
the model; they predict firearm deaths in the subsequent year, rather than in the year they are 
measured. 

Prior to analysis, a few of these state characteristics were cleaned or transformed to 
mitigate undesirable distributional properties. Specifically, in a few cases in which values were 
missing for a given state-year, we imputed values using linear interpolation between the prior-
year and subsequent-year values for that state. For a few predictors with extreme outliers, we 
also applied modest transformations to limit the influence of outlier values. Specifically, we 
applied the minimal power transformation (e.g., square root) that ensured all values were within 
five standard deviations of the mean.  
Finally, we conducted additional transformations of the state characteristics to address the high 
degree of collinearity among some of these variables. We used dimension-reduction techniques 
to capture most of the information contained in the full set of correlated variables with a smaller 
number of orthogonal variables. To do this, we (a) removed from each covariate the variance that 
is collinear with the year effects that will be included in the models, and (b) used principal 
components analysis to linearly transform the matrix of standardized covariates into an ordered 
set of orthogonal variables (principal components). The models used the first 17 of these principal 
components, which were selected because those variables could explain more than 95 percent of 
the variance in the full matrix of state characteristics. Using this transformed matrix of covariates 
makes more efficient use of the available data; virtually all of the information contained in the 
original 35 state characteristics can be captured using only 17 model parameters. When included 
in the model, the 17 principal components were each standardized to mean = 0, standard 
deviation = 1. 
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Table S1. Implementation dates for CAP, SYG, and RTC laws by state. 
State CAP Law SYG Law RTC Law 

Alabama NA Jun 2006 to present NA┼ 
Alaska NA Sep 2006 to present Oct 1994 to present 
Arizona NA Apr 2006 to present Apr 1994 to present 
Arkansas NA NA Feb 1995 to present 
California Jan 1992 to present NA NA 
Colorado NA NA May 2003 to present 
Connecticut Oct 1990 to present NA NA 
Delaware Jul 1994 to present NA NA 
Florida Oct 1989 to present Oct 2005 to present Oct 1987 to present 
Georgia NA Jul 2006 to present Aug 1989 to present 
Hawaii Jun 1992 to present NA NA 
Idaho NA NA Apr 1990 to present 
Illinois Jan 2000 to present NA Jul 2013 to present 
Indiana NA Jul 2006 to present Jun 1983 to present 
Iowa Apr 1990 to present NA Jan 2011 to present 
Kansas NA Jul 2011 to present Jan 2007 to present 
Kentucky NA Jul 2006 to present Oct 1996 to present 
Louisiana NA Aug 2006 to present Apr 1996 to present 
Maine NA NA Sep 1985 to present 
Maryland Oct 1992 to present NA NA 
Massachusetts Oct 1998 to present NA NA 
Michigan NA Oct 2006 to present Jul 2001 to present 
Minnesota Aug 1993 to present NA Aug 2003 to present 
Mississippi NA Jul 2006 to present Jul 1990 to present 
Missouri NA Aug 2007 to present Feb 2004 to present 
Montana NA Apr 2009 to present May 1991 to present 
Nebraska NA NA Jan 2007 to present 
Nevada Oct 1991 to present Oct 2011 to present Jul 1995 to present 
New Hampshire Jan 2001 to present Nov 2011 to present NA┼ 
New Jersey Jan 1992 to present NA NA 
New Mexico NA NA Jan 2004 to present 
New York NA NA NA 
North Carolina Dec 1993 to present Dec 2011 to present Jul 1995 to present 
North Dakota NA NA Apr 1985 to present 
Ohio NA NA Apr 2004 to present 
Oklahoma NA Nov 2006 to present Jan 1996 to present 
Oregon NA NA Jan 1990 to present 
Pennsylvania NA Aug 2011 to present Jun 1989 to present 
Rhode Island Jun 1995 to present NA NA 
South Carolina NA Jun 2006 to present Aug 1996 to present 
South Dakota NA Jul 2006 to present Mar 1985 to present 
Tennessee NA May 2007 to present Oct 1996 to present 
Texas Sep 1995 to present Sep 2007 to present Jan 1996 to present 
Utah NA Mar 1994 to present May 1995 to present 
Vermont NA NA NA 
Virginia Jul 1992 to present NA Jul 1995 to present 
Washington NA NA NA┼ 
West Virginia NA Feb 2008 to present Aug 1989 to present 
Wisconsin Apr 1992 to present NA Jul 2011 to present 
Wyoming NA NA Oct 1994 to present 
Note: ┼Alabama, New Hampshire, and Washington have right-to-carry laws with dates of 
enactment that substantially predate the time period we studied. Those laws are not 
considered in our analysis to ensure the estimated effects of laws are identified using within 
state changes.  
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Table S2. State characteristics included in analyses.  
Type Variable 
Age Distribution (percentages) 

Younger than 15 
15–29 
30–44 
45–60 
60–75 
Older than 75  

Race or ethnicity (percentages) 
Caucasian 
African American 
Asian/Pacific Islander 
American Indian/Alaska Native 
Hispanic 

Relationship status (percentages) 
Married/widowed 
Divorced 
Never married 

Highest education (percentages) 
Without high school diploma 
High school diploma  
Four-year degree 
Graduate degree 

Other demographics 
Total population size  
Gender ratio 
Percentage of children in single parent household 
Percentage foreign born 
Percentage military veterans 
Percentage urban households 
Percentage >25 years old, black, and urban 
Percentage >25 years old, Hispanic, and urban 

Socioeconomic conditions 
Percentage of population in the workforce 
Percentage unemployed (U3) 
Average income (inflation adjusted) 
Poverty rate 
Alcohol consumption per capita 
Incarceration persons per capita 
Police officers per capita 
Percent receiving hunting license* 

Note: * because these variables were viewed as plausibly endogenous 
to state firearm regulations, these covariates were lagged by one-year. 
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Statistical Model and Law Coding. The selection of the model was based on a large-scale 
simulation designed to identify the most appropriate model specification for analyzing state-level 
firearm death data (2), out of more than 100 methods investigated. The most appropriate model 
on the basis of the simulations demonstrated accurate type I error (i.e., unbiased standard 
errors), the best statistical power (i.e., lowest actually error of the estimate), and minimal bias 
(i.e., directional and magnitude bias was always a small fraction of the standard error of the 
estimate). The model used in the current research is a variant of the model selected through 
those simulations. Relative to that model, the treatment effects were modified to allow greater 
flexibility in phase-in function for any possible causal effect. This change reflects the fact that 
there is considerable uncertainty about the phase-in function of these laws, unlike in the 
simulation where it was known.  

For simplicity, we present a version of the model below estimating the effect of a single law, 
although our final model included indicators for all three laws. Let 𝑦௦௧  and 𝑁௦௧ be the number of 
firearm deaths and the population size within a given state s in year t, respectively. Further, let 𝑿௦௧ 
denote the set of 17 principal components from the covariates in state s and year t, and define an 

autoregressive variable 𝐿௦,௧ିଵ equal to log ൬
௬ೞ,షభ

ேೞ,షభ
൰. For a single law, this model can be expressed 

as: 
𝑦௦௧~𝑁𝑒𝑔𝐵𝑖𝑛(𝜇௦௧  , 𝜙) 

 
log(𝜇௦௧) = log(𝑁௦௧) + 𝛼 + 𝜁௧ + 𝛿𝐿௦,௧ିଵ + 𝑿௦௧𝜸 + 𝛽ଵ𝐼௦௧ + 𝛽ଶ൫𝐼௦௧ − 𝐼௦,௧ିଵ൯ + 𝛽ଷ𝐴௦௧ + 𝛽ସ൫𝐴௦௧ − 𝐴௦,௧ିଵ൯ 

 
where 𝜁௧ is a year-specific effect. The presence of a specific law is coded in 𝐼௦௧ and 𝐴௦௧. 𝐼௦௧ is 

coded to represent an instant effect of the law on the outcome. It is 0 for each state-year without 
the law, 1 for each state-year with the law fully in effect, and a pro-rated valued for years with 
partial implementation based on the number of months in which the law was in effect. 𝐴௦௧ is 
coded to represent a gradual phase-in of the law’s effect. It is computed as a spline that is linearly 
increasing from 0 to 1 over 72 months beginning with the month of law implementation. Because 
the outcome is modelled as discrete-time based on calendar year, yearly values of the spline 
used in the model are computed as the average of the monthly spline value over each calendar 
year. 

The model includes these two codings of the law (instant and 6-year) as individual 
predictors, but they are also included in a first-differenced form, i.e., change in the level of the 
indicator variables since the prior year. When the autoregressive coefficient 𝛿 is zero, the model 
is a standard generalized linear model (GLM) predicting the level of the outcome; in that case the 
coefficients 𝛽ଵ and 𝛽ଷ are the appropriate unbiased estimators of the effect of the instant and 
phased-in effects of the law, respectively. When the autoregressive coefficient 𝛿 is one, the 
model becomes equivalent to a first-differences model, in which case 𝛽ଶ and 𝛽ସ (the first-
differences of the law indicators) are the appropriate estimators of the causal effect of the of the 
instant and phased-in effects of the law, respectively. The model includes both sets of indicators 
so that the model could fit the desired function relating the laws to the outcome for any value of 
the autoregressive coefficient between 0 and 1. For example, if the law has a true instant effect 
on the firearm death rate that persists indefinitely, the model can reproduce that function in each 
year regardless of how much of the effect in any given year is mediated through the 
autoregressive coefficient (because the full effect was already reflected in the prior year’s value) 
versus being a direct effect of the law indicators. Essentially, the model we are using is a parent 
model from which both the standard levels models and first-differences (i.e., change) models fall 
out as special cases. Unlike both standard levels and first-differences models, however, the 
current model ensures that residuals are uncorrelated across adjacent years, which is a key 
assumption of the likelihood function for all these models.  

 
Selection and implementation of priors. The priors used for the Bayesian estimation of the 
model are listed below. For the variables in the model other than the law indicators, all priors 
were intended to be either uninformative or weakly informative.  
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 𝛼 ~ 𝑁( −10 , 100ଶ ) -- the prior for the overall intercept is noninformative with a 
standard deviation of 100, covering all plausible base rates of the outcomes, and 
centered at a value of -10 to reflect the expected rarity of the outcomes. 

 𝛿 ~ 𝑈𝑛𝑖𝑓( 0 , 1 ) -- the weakly informative prior for the autoregressive coefficient is 
uniform and constrained to fall between 0 and 1. 

 𝜁௧  ~ 𝑁( 0 , 0.65ଶ ) -- there is a 95% prior probability that a given year’s effect has an 
IRR between 0.28 and 3.55. This weakly informative prior was based on our 
assumption about the proportion of variance in the data that might be attributable to 
year effects conditioned on the other factors in the model.  

 𝜸 ~ 𝑁( 0 , 0.11ଶ ) -- separately for each principal component of the covariates, there 
is a 95% prior probability that the IRR for a one standard deviation change in a 
given covariate is between 0.81 and 1.24. This weakly informative prior was based 
on our assumption about the proportion of variance in the data that might be 
attributable to these covariates conditioned on the other factors in the model. 

 
The prior distributions on the laws’ effects are more complex and reflect the 

interdependence among the 𝛽 distributions and their dependence on the autoregressive 
coefficient 𝛿. Conceptually, these priors are designed to ensure that the total marginal effect of 
each law, when integrated through the model, has a known prior distribution over time and across 
a range of values of 𝛿.  

 𝛽ଵ~ 𝑁 ቆ 0 ,
(ଵିఋ)ఛమమ

ଶ
ቀ

ଵିఋೖశభ

ଵିఋ
ቁ

ିଶ

ቇ 

 𝛽ଶ~ 𝑁 ቀ 0 ,
ఋఛమమ

ଶ
ቁ 

 𝛽ଷ~ 𝑁 ቆ 0 ,
(ଵିఋ)ఛమమ

ଶ
ቀ

ଵିఋೖశభ

ଵିఋ
−

ଵ

ାଵ
∑ 𝑡

௧ୀଵ 𝛿௧ቁ
ିଶ

ቇ 

 𝛽ସ~ 𝑁 ቆ 0 ,
ఋఛమమ

ଶ
ቀ

ଵିఋೖశభ

(ାଵ)(ଵିఋ)
ቁ

ିଶ

ቇ 

 
Specifically, 𝑏ଶ was chosen to ensure that the prior distributions imply the intended variance 

(more on the choice of 𝑏ଶ below). We wanted to have a prior on the instant effect of the law, 
integrated over both the 𝛽ଵand 𝛽ଶ effects and through the autoregressive term, to have the 
intended variance, 𝑏ଶ. To achieve that, we have priors on 𝛽ଵand 𝛽ଶ that exchange variance such 
that when the autoregressive coefficient is zero the prior on 𝛽ଵ has the desired variance while the 
prior on 𝛽ଶ is set to zero. As the autoregressive coefficient approaches 1, this becomes a first-
difference model and the prior on the 𝛽ଶ reflects the desired variance while the prior on 𝛽ଵ goes to 
zero. There is a comparable trade off in the variance across the priors for 𝛽ଷand 𝛽ସ designed to 
ensure the variance in the phased-in effect of the law, integrated through the model, has the 
desired variance, 𝑏ଶ. 

These formulae for the prior distributions were derived by replacing the autoregressive term 
𝐿௦,௧ିଵ with its corresponding expected value (i.e., 𝜇௦,௧ିଵ). As a result, the formulae are only 
approximate, and an empirically derived scaling factor  𝜏ଶ was added to the approximation to 
ensure the proper variance of the marginal effect. The value of  𝜏ଶ was estimated through 
simulation and was set at 𝜏ଶ = 1.46ଶ. 

Because the process for setting these priors is complex and approximate, we simulated the 
total effect of a law under our prior distributions to verify it had the intended distribution. 
Specifically, we simulated the prior for firearm deaths (the total effect of the law in each year 
integrated through the model) for RTC laws. All parameters other than the 𝛽s were set to their 
posterior means. The empirically simulated prior distribution resulted in a year 6 effect with a 
median IRR=1.00 and 95% CI from 0.83 to 1.20. Note that the intervals are not symmetric around 
1.00 because (a) the marginal effect is a complex, nonlinear function of the parameters and (b) 
we constructed credible intervals with equal probability in the two tails. Other credible intervals 
can be constructed that are symmetric. 
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That is to say, our prior reflects the belief there is a 50% chance that each policy increases 
deaths and a 50% chance it decreases deaths, but that it is unlikely that any of these policies 
increase firearms deaths by more than 20% or decrease them by more than 17%. This prior 
distribution was similar across years, with a constant median and an expected slight increase in 
dispersion over 6 years; the 95% CI for the year 1 IRR was 0.86 to 1.16.  

This prior variance on the total effect of the law, which is set by the scaling parameter 𝑏ଶ, 
was selected to be consistent with expert opinion as assessed in a survey of gun policy experts 
(3). In this survey, a diverse set of gun policy experts were asked about the anticipated effects of 
13 policies on firearm homicides and suicides. All the studied policies in the survey were modest 
regulations that have been held to be constitutional and have been tried in states (including the 
effects of polices changing regulations for concealed carry and liability for improperly stored 
weapons, which are studied here). The prior distribution for the law effects used in this study were 
selected to reflect the aggregate opinion of the surveyed experts about the effect sizes of 13 
similar firearm laws. Specifically, the target prior distributions for log(IRR)’s based on the expert 
surveys were N(0, 0.08), N(0, 0.07), and N(0, 0.09) for total firearm deaths, firearm suicide, and 
firearm homicide, respectively. Because we used an informative prior that implies the effects of 
these laws are unlikely to be descriptively large, we conducted a sensitivity test (included later in 
this document) in which we re-estimate effects with weakly informative priors. 
 
Effect Estimation and Presentation. As discussed above, the effects of a given law on firearms 
deaths are represented across four separate coefficients in the model, and none of those 
coefficients can be interpreted individually to represent the unbiased effect of the law in any given 
year. To facilitate interpretation of this model, we compute a marginal effect of each law, 
integrated through the model, to yield a total effect of the law in each year following 
implementation.  

Computing this marginal effect is more complicated than for many models for several 
reasons. First, autoregressive models are recursive such that a direct effect of the law on time T 
implies effects of the law at T+1 are mediated through the autoregressive path, even in the 
absence of a direct effect of the law on T+1. This mediated effect causes standard treatment 
indicators to yield biased effect estimates. Second, this is a nonlinear model, such that the 
marginal effect is a nonlinear transformation of the model parameters that depends on the levels 
of other covariates in the model. Third, the model assumes a negative binomial distribution, 
which, unlike a Normal distribution, cannot be ignored when computing the marginal effects in an 
autoregressive model. Because of these issues, it is possible that there are slight differences in 
the marginal effects computed in time periods with different values on the covariates. We chose 
to conduct the marginalization of the effect at the end of the study period under the assumption 
that the inferential population of interest is close to what would occur today or in the future based 
on a change in policy.  

We use the following method to estimate the total marginal effect of the law for each year 
after implementation assuming that all states implemented the law in year 2008. Specifically, the 
effect of interest d years after implementation is the ratio of the expected total number of firearm 
homicides in year 2008 + d if all states implemented the law in year 2008 to the expected total 
number of firearm homicides in year 2008 + d if none of the states had the policy at any point in 
years 2008 through 2008 + d. These expectations are nonlinear functions of the model 
parameters and will be expressed through the following expectations: 
 

𝜇ଵ,௦,ଶ଼ା = 𝐸ൣ𝑦௦௧| 𝐼௦,ଶ଼ = 1, … , 𝐼௦,ଶ଼ାௗ = 1 ൧ 
and 

𝜇,௦,ଶ଼ାௗ =  𝐸ൣ𝑦௦௧| 𝐼௦,ଶ଼ = 0 , … , 𝐼௦,ଶ଼ାௗ = 0൧ 
 

Note that 𝑁௦௧  and 𝑋௦௧ are assumed to be fixed and known for all s and t. The effect of 
interest, expressed as an IRR, is then given by: 
 

Δௗ =
∑ 𝜇ଵ,௦,ଶ଼ା௦

∑ 𝜇,௦,ଶ଼ାௗ௦
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Since there is no simple closed form for Δௗ as a function of the model parameters except 

at d=0, we estimate it using Monte Carlo simulation. For a given set of model parameters, do the 
following: 
 

1. Set 𝐼௦௧ and 𝐴௦௧ based on the assumption that all states implemented the law in 2008.That 
is, set  𝐼௦௧ = 1 for 𝑡 from 2008 to 2016 and 𝐴௦௧ based on the phase-in starting in 2008.  

2. For m=1 to M, 
 Generate ( 𝑦௦,ଶ଼

()
 | 𝐿௦,ଶ ) ~𝑁𝑒𝑔𝐵𝑖𝑛൫𝜇௦,ଶ଼, 𝜙൯ with 𝜇௦,ଶ଼ as before. 

 For d = 1 to 8, 

a. Define 𝐿෨௦,ଶ଼ାௗିଵ
()

= log ቆ
௬ೞ,మబబఴశషభ

()

ேೞ,మబబఴశషభ
ቇ 

b. Generate ( 𝑦௦,ଶ଼ାௗ
()

 | 𝐿෨௦,ଶ଼ାௗିଵ
()

 ) ~𝑁𝑒𝑔𝐵𝑖𝑛൫𝜇௦,ଶ଼ା  , 𝜙൯ with 𝜇௦,ଶ଼ାௗ as 

before but using 𝐿෨௦,ଶ଼ାௗିଵ
()  as the autoregressive variable. 

3. Take the sample average of 𝑦௦,ଶ଼ାௗ
()

 as an approximation of 𝜇ଵ,௦,ଶ଼ା  
4. Repeat (1)-(3) for 𝜇,௦,ଶ଼ାௗ by setting  𝐼௦௧ and 𝐴௦௧ based on the assumption that none of 

the states had the law from 2008 to 2016. 

5. Calculate the effect of interest, Δௗ =
∑ ఓభ,ೞ,మబబఴశೞ

∑ ఓబ,ೞ,మబబఴశೞ
 

 
To get the posterior distribution of Δௗ, this process is repeated for each MCMC sample of 

the posterior distribution of the model parameters.  
We also present the effect sizes as national count data, in addition to IRRs. This was done 

by getting an estimated number of deaths with and without a given law in each state in 2016. For 
states that had the law in 2016 we take their actual death count 𝑦௦,ଶଵ as the known number of 
deaths with the law and use 𝑦௦,ଶଵ/Δௗ to get the posterior distribution of the number of deaths 
without the law. For states without the law in 2016 we take their actual death count 𝑦௦,ଶଵ as the 
known number of deaths without the law and use  𝑦௦,ଶଵ × Δௗ to get the posterior distribution of 
the number of deaths with the law. The national estimate for the change in the number of deaths 
is the sum of these state estimates with the law minus the sum of state estimates without the law.  

When describing the posterior distribution of Δௗ we present the median, rather than the 
mean. This was done because it is not possible to have an unbiased mean on the prior 
distribution for both the model scale (log counts) and the original count scale. That is, if the 
log(IRR) of the prior has mean zero, the IRR cannot have mean 1. The posterior median, 
however, is unbiased in count and IRR units as well as in the model units. In addition to medians 
of the posterior distributions, we present the 80% credibility interval to describe the range in which 
the true effect is likely to be found, and we present the probability that the true effect is negative 
(i.e., that the law is beneficial) as the proportion of the posterior distribution less than IRR = 1.  

Finally, the underlying data used to estimate the model is discrete time in which all data 
within a calendar year are combined (e.g., our outcome data and covariates are annual 
measures). Therefore, while the underlying spline functions in the model are continuous time 
functions, the model estimates are effectively discrete time estimates. Thus, when we label 
results in tables or figures as “in the 1st year after implementation,” the estimate should be 
interpreted as the average effect over the first 12 months following implementation. Our primary 
outcome was chosen to be the 6th year after implementation, which corresponds to the effect of 
the policy averaged over the 61st-72nd months following implementation, which differs slightly from 
the point estimate of the function at 72 months post implementation. We chose to use this time-
point as our primary outcome to maximize a trade-off between problems with shorter and longer 
evaluation periods. Assessing the effect of the laws further from the implementation increases our 
confidence that we are assessing the long-term effect of the law, which is likely the primary 
concern for policy makers, rather than a temporary or transitory effect. However, estimating a 
causal effect many years after the hypothesized cause poses both statistical and conceptual 
challenges. The effect estimates themselves get more variable over time, particularly when some 
implementing states have not had the law long enough to contribute to the long-term effect 



 
 

9 
 

estimate. Thus, those longer-term effects will, on average, have somewhat greater error. In 
addition, making causal attributions when the effect and the hypothesized cause are separated by 
lengthy intervals is more difficult as the range of potential confounding variables increases. The 6-
year time period is well-within the observed period of these laws within the current data, which 
includes, on average, 23-years of data after implementation for CAP laws, 21-years for RTC laws, 
and 9 years for SYG laws. 
 
Supplementary Results  
Estimated Model. The models were estimated with 20,000 MCMC samples. The critical beta 
parameters all had more than 9300 effective samples, and all parameters showed Rhat values of 
approximately 1.00. Nominally, the model has 68 parameters. However, because of restrictions 
among the priors, as well as the use of weakly informative priors, the effective numbers of 
parameters were somewhat lower: 64, 65, and 63 for models of total firearms deaths, firearms 
suicides, and firearms homicides, respectively. The effective number of parameters is estimated 
using the calculation from the Wantanabe-Akaike Information Criterion (4). The association 
between the model predicted rate of firearm deaths in a given state-year (posterior mean of 
predicted count ÷ population size) and the actual firearm death rate was R2 = 0.94. Model 
predictions for the suicide and homicide subtypes of firearms deaths were similarly good fits to 
the data, R2 = 0.91 and 0.94, respectively. This ability of the models to explain substantial 
variation in the data is largely due to the strong autocorrelation present in the data. The 
autoregressive coefficients were 0.90, 0.84. and 0.86 for total firearms deaths, firearms suicides, 
and firearms homicides, respectively, suggesting that the final model closely approximates a first-
differences model with modest regression to the mean. Table S3 presents the posterior 
distribution for key parameters from the model of total firearm deaths.  

 
Table S3. Posterior Distributions for Key Parameters in Model of Total Firearm Deaths. 

Parameter 
Posterior  
Median 

95% CI  
lower bound 

95% CI  
upper bound 

alpha -11.260 -11.310 -11.210 
delta 0.896 0.876 0.917 
Beta1_SYG 0.002 -0.008 0.011 
Beta1_CAP -0.001 -0.010 0.008 
Beta1_RTC 0.001 -0.008 0.010 
Beta2_SYG 0.032 -0.010 0.074 
Beta2_CAP -0.014 -0.056 0.028 
Beta2_RTC 0.020 -0.011 0.051 
Beta3_SYG 0.005 -0.008 0.018 
Beta3_CAP -0.004 -0.015 0.008 
Beta3_RTC 0.002 -0.008 0.013 
Beta4_SYG -0.020 -0.117 0.075 
Beta4_CAP -0.058 -0.157 0.039 
Beta4_RTC 0.008 -0.063 0.079 

Note: Coefficients for year effects and covariates are omitted. 
Posterior medians for year effects varied between -0.085 and 0.038; 
Posterior medians for coefficients on standardized covariates varied 
between -0.025 and 0.011. 

 
 
Sensitivity of findings to priors. To address any concerns that the conclusions of the paper 
depend on poorly chosen priors for the effects of laws, we replicated the primary results 
presented in Table 1 using weakly informative priors (Table S4). Specifically, we estimated the 
models with priors on each of the four betas of N(0, 0.42). Practically, this is more than 25 times 
the prior variance on those effects relative to our preferred model specification and reflects a prior 
that these laws might have very large effects on firearms deaths (given the actual autoregressive 
coefficient, an IRR of 5 is well within the prior). The result of this sensitivity test shows that all 
effect sizes became slightly more extreme with less informative priors, with the modal change in 
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IRRs = 0.01 across the two sets of priors. The changes for the homicide outcome were slightly 
larger, which is anticipated because firearm homicide was the sparsest outcome with the widest 
credibility intervals. Similarly, the posterior probabilities that the policies reduced deaths became 
somewhat more extreme with less informative priors. For example, the posterior probability that 
the restrictive policy regime was associated with a reduction in firearm homicide increased from 
0.95 with our preferred priors to 0.97 with less informative priors. Our preferred priors thus result 
in probability estimates that have somewhat greater uncertainty in the direction of the effects.  
 
Table S4. Effects of CAP, RTC, and SYG laws on change in state firearm death rates in the 6th 
year after implementation, estimated using minimally informative priors 

Outcome 
Law 

Posterior  
median  

IRR 

80% CI  
lower bound  

IRR 

80% CI  
upper bound  

IRR 

Posterior  
probability of 

reduced deaths 
Firearm Deaths     

CAP 0.92 0.88 0.97 0.98 
RTC 1.04 1.00 1.07 0.11 
SYG 1.03 0.98 1.08 0.21 
Restrictive 0.87 0.79 0.94 0.99 

Firearm Suicides     
CAP 0.94 0.90 0.99 0.93 
RTC 1.04 1.00 1.08 0.08 
SYG 1.02 0.97 1.07 0.34 
Restrictive 0.89 0.82 0.97 0.96 

Firearm Homicides     
CAP 0.90 0.82 0.98 0.95 
RTC 1.03 0.97 1.10 0.24 
SYG 1.07 0.99 1.17 0.15 
Restrictive 0.81 0.70 0.93 0.97 

 
 
Phase in of the joint effective of restrictive laws.  The main report describes the effect size at 
the 6th year and the general shape of the phase in when a restrictive regime of laws is 
implemented. This restrictive regime consists of CAP laws but no SYG or RTC law. Figure S1 
illustrates the phase in of this regime’s effects.  
 

 
 
Fig S1. Posterior distribution of the effect of a restrictive legal regime (CAP laws, but no RTC, or 
SYG laws) over time, by type of firearms deaths. Effects are expressed as IRRs. Posterior 
median and 500 samples from the posterior distribution are plotted. 
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Effects of laws on total homicides and suicides. One concern about focusing exclusively on 
firearm death rates is that it may miss unintended or second-order consequences of firearm 
legislation. For example, some individuals prevented from committing a homicide or suicide using 
a firearm may commit the homicide or suicide using some other means. In that case, looking 
exclusively at firearms deaths may overstate the effect of the laws. On the other hand, homicide 
and suicide may show some form of social contagion in which these events make subsequent 
homicides or suicides of other victims more likely. In that case, looking exclusively at firearms 
deaths may underestimate the total effect of firearms laws. To address these limitations in looking 
exclusively at firearm deaths, we conducted a sensitivity test in which we ran our primary model 
on both total suicide and total homicide (including both firearm and non-firearm mechanisms). 
These estimates are presented in Table S5, and generally show a modest attenuation of the 
effects found on firearm homicide and suicide, which is what would be expected if these laws 
have minimal effects on non-firearm homicides and suicides.  

A more direct assessment of these effect can be seen when comparing the predicted 
effects of the laws expressed as counts of homicides and suicides nationally (Table S6). These 
effects on firearms deaths and all deaths from homicide and suicide are generally quite close to 
each other and show a similar pattern across laws. In some instances, such as the CAP effect on 
suicide, the total estimated reduction in deaths is somewhat greater than the effect on firearm 
deaths alone. In other cases, such as the CAP effect on homicide, the total estimated reduction in 
deaths is slightly smaller than the effect on firearm deaths alone. 
 
Table S5. Effects of CAP, RTC, and SYG laws on change in state suicide and homicide rates in 
the 6th year after implementation 

 

Outcome 
Law 

Posterior  
median  

IRR 

80% CI  
lower bound  

IRR 

80% CI  
upper bound  

IRR 

Posterior  
probability of 

reduced deaths 
Total Suicides     

CAP 0.96 0.93 0.99 0.95 
RTC 1.02 0.99 1.04 0.17 
SYG 1.00 0.97 1.03 0.53 
Restrictive 0.94 0.89 0.99 0.92 

Total Homicides     
CAP 0.96 0.91 1.02 0.82 
RTC 1.01 0.97 1.06 0.35 
SYG 1.04 0.98 1.10 0.20 
Restrictive 0.91 0.83 1.00 0.89 

 
 
Table S6. Mean change in the number of deaths nationally (with 80% credible interval) for CAP, 
RTC, and SYG laws by mechanism, in the 6th year after implementation 

Outcome 
Law Firearm Deaths Total Deaths 

Suicides   
CAP -1075 (-2163, -17) -1880 (-3339, -431) 
RTC    771 (-16, 1530)   826 (-279, 1901) 
SYG    343 (-663, 1314)     -61 (-1456, 1293) 

Homicides   
CAP -1060 (-2113, -56)   -768 (-1916, 337) 
RTC    470 (-347, 1245)  271 (-630, 1121) 
SYG    718 (-300, 1682)  736 (-377, 1811) 
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Effects of CAP laws on firearm suicides by minors. For our primary analyses we assess the 
relationship of CAP laws to total firearm deaths, as well as firearm homicide and suicide in the full 
population.  Some other research on CAP laws look specifically at deaths of children as an 
outcome. We chose to examine the full population for two reasons.  First, CAP laws generally 
mandate safe gun storage for all households that contain minors, and thus the law could affect 
the likelihood of firearm deaths for anyone in such a household and anyone who might be a victim 
of homicide by a gun from such a household.  Conceptually, the effects of CAP laws are not 
restricted to deaths involving minors, even if that was the legislative intent of the law. Secondly, 
opponents of CAP laws may view these laws as harmful because they make firearms less 
effective as deterrents to crime and diminish the potentially protective effects of the weapons for 
their owners. Looking at the law’s effect exclusively among children would not capture these 
hypothesized harmful effects of the law, and thus would ignore the concerns of those who oppose 
these laws.  

However, the law is targeted to households with children and some might expect that its 
causal effects on deaths in which a child used a gun would be larger than the effect found in the 
general population. Unfortunately, it is not possible to get reliable data on the number of firearm 
homicides in which gun user was a child, however we can subset data on firearm suicides by the 
age of the victim.  The estimated effect of CAP laws on firearm suicides of individuals 0-19 years 
old was very similar to that found on the full population. In the 6th year following implementation, 
the posterior median IRR for CAP was 0.93 (80% CI: 0.89 to 0.97), a slightly larger reduction than 
estimated in the full population (IRR=0.95).  The phase in of the effect was slightly different 
among minors relative to the full population, with the effect on victims 0-19 years old staying 
nearly constant between IRR = 0.94 and 0.93 through seven years. In contrast, the effect size 
estimated within the general population increased steadily from IRR = 0.98 to 0.95 over the same 
period. Although the estimated effect size among young people is nominally larger, particularly in 
the first few years of implementation, given the variance in these posteriors these differences 
should be interpreted cautiously. 

 
Timing of the shifts in death rates within implementing states. The autoregressive model 
used to estimate the effects of these laws is a dynamic model of change in deaths; it identifies the 
effects of laws primarily through the pattern of year-over-year changes in a state’s death rates in 
the years immediately following implementation, and it allows for a parametric but flexible phase-
in of the law’s effect (See Figure 1).  However, to insure the model was not detecting shifts in 
death rates that occurred prior to the laws, we investigated if there were meaningful patterns in 
the outcome series during the pre-implementation period for the implementing states that were 
not accounted for by the model.  Specifically, in Figure S2 we plot the model residuals for the 
implementing states relative to the date of implementation, covering the 7 years before and after 
the implementation year. Like our effect estimates, these residuals are expressed as risk ratios, 
i.e., ∑ 𝑌 ∑ 𝑌⁄  summed over the implementing states for a given law and year. For reference, the 
figure also presents the estimated treatment effect implied by the model over the 7 years after 
implementation on the same scale. Inspection of these figures revealed no evidence of 
meaningful trends or reliable deviations from RR=1 in the pre-law periods.   
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Fig S2. Model residuals for implementing states by time-relative-to-implementation for each law.  
Residuals are expressed as risk ratios (∑ 𝑌 ∑ 𝑌⁄ ) and the estimated policy effects from Figure 1 
are presented for reference on the same scale. 
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