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Supporting Information Text14

Supplementary Appendix 1 - Folding origami sheets15

Energy of folded structures. The origami sheets used in this work are based on a self-folding origami energy model developed16

and validated in previous studies (1–3). The effects of stiff creases are modeled by using torsional spring elements on each17

crease (4, 5). Here we discuss in detail how the energy of a folded structure is computed.18

For thin origami sheets with free-folding creases, the primary contribution to the energy of a folded structure is due to19

bending of the sheet faces. Instead of modelling the faces directly, we look at the mechanical constraints inherent to the20

geometry of the vertices. An origami vertex is known to apply 3 constraints on the dihedral folding angles of the creases21

connected to it (due to embedding of the sheet in 3D-space). The constraints can be derived by noting that the vertex must22

not tear open when folded. Thus, starting from any crease, alternating rotations about the dihedral and sector angles around23

the vertex have to result in an identity operation (2, 4, 5).24

Suppose there are N creases denoted by an index i, each folded to an angle ρi, and N sectors with angles θi around the25

vertex. Rotations about one dihedral angle and one sector would combine to form a rotation matrix26

Ri =

(1 0 0
0 cos ρi − sin ρi
0 sin ρi cos ρi

)(cos θi − sin θi 0
sin θi cos θi 0

0 0 1

)
. [1]27

For the vertex to be closed (i.e. not torn open) in a folded structure, the combination of rotation about all crease dihedral28

angles and sector angles must be the identity:29

A ≡
N∏
i=1

Ri = I. [2]30

A folded structure with values ρi that do not satisfy Eq. 2 must cause the sheet faces to bend. Mathematically, this effect31

will manifest in finite off-diagonal values in the matrix A ≡
∏N

i=1 Ri. As there are 3 independent non-diagonal elements, we32

say that the vertex imparts 3 mechanical constrains on the dihedral angles ρi around it.33

At the flat state all ρi = 0, so that all constraints are trivially satisfied. We can write down an expansion for the 334

off-diagonal terms of A (T1 ≡ A12, T2 ≡ A13, T3 ≡ A23) in powers of the folding angles:35

Ta(ρi) = Ciaρi +Dij
a ρiρj + . . . [3]36

Then, the energy of breaking these constraints is taken as the sum of squares of the residues Ta of the constraint equations37

EVertex ∼
∑

a
Ta(ρi)2. Summing this vertex energy over all the vertices of the sheet gives rise to the total face bending energy.38

The energy due to folding of a stiff crease (modeled as a torsional spring with modulus κi) is quadratic in the folding angle39

ECrease,i = 1
2kiρ

2
i . The total energy of a folded sheet with stiff creases is thus computed as40

Esheet(ρ) ≡ EFace + ECrease = κ
∑

v∈vertices

3∑
a=1

Tva(ρv)2 + 1
2
∑

i∈creases

kiρ
2
i , [4]41

With κ the face bending stiffness scale (chosen as κ = 1 in this work), and ki the creases stiffness values. The scale of42

creases stiffness is denoted by k̄. The choice of stiffness energy scale plays an important role in our learning protocol. We have43

previously shown how the face bending energy scales like ρ4 (5), while the crease stiffness energy scales like k̄ρ2. In turn, this44

gives rise to a transition folding angle scale in our model ρc =
√
k̄. For large folding angles ρ � ρc, sheet bending energy45

dominates, and the folding landscape is controlled solely by the sheet geometry. At small folding angles ρ� ρc (close to the46

flat state), crease stiffness dominates, and it is possible to reshape the force-folding map. The goal of training is to reshape this47

map close to the flat state, such that the applied forces fold the sheet into desired folded states. Throughout this work, we48

choose an initial uniform crease stiffness ki = 0.02. We find that trained sheets, though having heterogeneous stiffness profiles,49

still maintain a dominant stiffness scale at k̄ ∼ 0.02. In our sheets the transition scale is thus given by ρc ∼
√

0.02 ∼ 0.14rad, a50

reasonable angle scale close to the flat state. To make learning in sheets feasible, we conclude that a stiffness scale k̄ ∼ 10−2
51

should be chosen.52

The idea that heterogeneous stiffness at creases modifies the folding response of sheets is at the heart of our learning model.53

This approach was experimentally studied in lattice metamaterials, where stiffness heterogeneities in the form of negative54

stiffness cells are used to tune the material elastic properties (6, 7). More recently, experimental studies have shown that55

heterogeneous stiffness can be used to avoid erroneous actuation pathways in metamaterials. Coulais et. al. have shown56

that a homogeneous stiffness hierarchical structure usually responds to actuation forces in disordered, undesired ways (8).57

However, when the hierarchical metamaterial is designed rationally such that mechanical elements have different bending58

stiffness (different thickness), the structure is compactified in steps to obtain the desired final state. It is similarly known that59

self-folding origami with homogeneous crease stiffness usually folds incorrectly in response to folding forces (4, 9). Biasing the60

creases to facilitate the correct folding can remove such undesired folding pathways so that the sheet folds correctly. Zhou et.61

al. considered designed heterogeneous thickness (and hence stiffness) of hydrogels via photolitography to control the buckling62

of sheets (10). This method was used to remove unwanted pathways in origami, enabling robust folding of sheets into desired63

states (11).64
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Folding protocol. Now that the energy of every folded structure ρi of a specific sheet is defined. We can use this energy65

landscape to simulate the folding of the sheet. Experimentally there are multiple different ways to fold origami sheets (12), and66

we have previously outlined how these methods can be simulated numerically (5).67

One way that an origami sheet can be folded is by applying torques directly to the different creases. Suppose a crease i of68

a flat sheet is subjected to an external torque F exti . Such a torque will induce folding in the crease, but the sheet generally69

resists folding due to the extra energy that might be associated with a folded structure. Assuming that the folding process is70

over-damped, we may write a dynamical folding equation71

τrelax
dρi
dt

= −∂Esheet(ρ)
∂ρi

+ F ext
i , [5]72

where ρ is the current folded structure, and τrelax a time scale of the over-damped dynamics. In this work we utilize a
specific way of folding the origami sheets. Suppose a set of external torques F ext is given (this could be a training or a test
example as described in the main text). First, the sheet is folded very fast with a strong external torque F ext, until a certain
folding magnitude ρ ≡ ||ρ|| is reached. For fast folding we can initially disregard the sheet energy and thus get to a state

ρfast = ρ
F ext

||F ext|| .

Then the sheet is relaxed subject to the constraint that the overall folding magnitude is fixed (i.e. finding an energy minimum73

on a hyper-sphere of radius ρ in ρ-space):74

minimize
ρi

Esheet(ρ)

subject to ||ρ|| = ρ.
[6]

Finding a local minimum on the hyper-sphere guarantees that this folded structure would naturally occur if the sheet is75

folded with appropriate torques, as any neighboring configuration costs more energy, and the local minimum will attract the76

folding process. This algorithm is used to mimic experimental fast folding of origami sheets, followed by clamping of a crease77

at a specific folded dihedral angle. Here we also adjust the clamped angle such that the overall magnitude of folding ρ remains78

fixed and different (discrete) folded structures may be compared more easily. Such fast folding was tested extensively (5), and79

found to obtain the same results as numerically solving the ODE of Eq. 5.80

Origami sheets and applied force patterns. In this project we use specific self-folding origami sheets. These are triangulated81

thin sheets, chosen to have the property of self-foldability. As discussed above, a single vertex induces 3 mechanical constrains82

on the angles of creases surrounding it. Thus each vertex has to connect at least 4 creases or it would be locally rigid. On top83

of that, for a sheet to self-fold, it needs to have one global degree of freedom, so that the number of creases needs to be one84

more than the number of constraints.85

A simple way of generating patterns meeting these requirements is shown in Fig. S1. These are 4 specific geometries used86

throughout this work as the sheets to be trained. Note that we label them according to their size, given by the number87

creases in each sheet. The number of creases in these sheets are 13, 19, 28, 49 and the numbers of internal vertices are 4, 6, 9, 16.88

Subtracting 3 times the number of vertices from the number of creases leaves us with one global degree of freedom for each of89

these sheets, as required.90

The number of supported folded structures for these sheets grows exponentially with the number of internal vertices,91

such that these sheets can fold in approximately 24, 26, 29, 216 distinct ways (4, 9). In fact, any sheet with these topologies92

(yet different geometries) will have a similar number of distinct folded structures. The exact details of the supported folded93

structures is dependent on the specific geometry, but we only require the existence of many distinct folded structures for the94

purpose of training.95

These specific sheets, used for training classifiers throughout this work, are definitely not special. We attempted training96

classifiers using sheets with different geometries and obtained comparable results. In analogy to learning algorithms, the details97

of the sheet and its supported folded structures correspond to the family of models that the training protocol selects from. For98

origami, we believe the available classification models are given by merger of attractors of folded structures, supported by99

the sheet. Since the number of available models to choose from is exponentially large, we reason that the geometry of the100

sheet should play little role in the success of classification. Therefore, any self-folding origami sheet could be used for training101

classifiers.102

The choice of force patterns applied to the sheets is constrained by the problem definition as training and tests sets. Still,103

there is usually freedom in how these forces are applied. For example, suppose we wish to train the 13 crease sheet of Fig. S1104

on 2d force distributions, such as the spherical caps shown in Fig. 3 in the main text. The training and test sets could thus be105

supplied as pairs of numbers, together with a label (blue\orange). A simple choice for training on such a data set is to pick two106

creases in the sheet and apply torques directly to these creases, as in Eq. (5). Here we utilize a different approach.107

For an untrained sheet with homogeneous stiffness, it is known that all folded structures reside in the linear null space of108

the vertex constraint matrix C at the flat state (4). Thus, forces applied in a direction within this null space are more ‘natural’109

for the sheet, and in general cost much less energy due to face bending. We compute the span of the null space for each one of110
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these sheets, and find that the dimension of the null space is dNS = #creases − 2#vertices. Therefore the 13 crease sheet has a111

5D null space, while the 49 crease sheets has 17D null space. Then, the training and test examples are mapped to forces in the112

null space as follows. For a n−D data set, we choose n random orthonormal vectors in the null space. Each training\test113

example is mapped to a force pattern by assigning every component to one of the random orthonoraml vectors. Now these114

forces can be directly applied to the sheet to facilitate the training protocol.115

Before training, we choose the stiffness values to be uniform. This choice is deliberate, as it allows the training protocol to116

access the entire set of supported folded structures. We find that initializing the stiffness elements with a substantial poorly117

chosen heterogeneous profile negatively affects learning. This is expected, as poor initialization can completely eliminate good118

folded states which could be useful for classification. The training protocol results in learned heterogeneous crease stiffness that119

facilitates the correct classification. We observe that a heterogeneous stiffness changes the geometry of the folded structures, so120

that they do not strictly reside in the null space of the untrained sheet. Still, for the moderate heterogeneity developed during121

training, the folded structures are very close to the null space, such that the described mapping is still useful and practical.122

Supplementary Appendix 2 - Training origami sheets123

Learning rule. As discussed in the main text, self-folding origami sheets naturally give rise to complex mapping of force patterns124

to folded structures, with exponentially many structures supported by the sheet. The learning rule developed in this work is125

meant to modify that map by changing crease stiffness coefficients, such that only a small number of folded structures are126

retained, corresponding to the desired classes. Here we will define precisely how the learning rule is chosen and applied to the127

sheet in order to develop the desired mapping.128

According to the specification of the classification problem, the trainer has no a-priori knowledge of the true underlying129

force distributions. Instead they are supplied with a list of labeled force patterns (‘cats’ and ‘dogs’). These training examples130

are used to find a reference folded structure in the following way. We fold an untrained sheet with every ‘dog’ example in the131

training set and record the folding angles of the obtained folded structures. Then, a reference ‘dog’ structure ρ̂dog is defined as132

the average of all of these folded structures (normalized appropriately)133

ρ̂dog ≡
∑

F∈Fdog ρU (F )
||
∑

F∈Fdog ρU (F )||
, [7]

with Fdog the set of ‘dog’ training force patterns and ρU (F ) the folded response of the untrained sheet to force pattern F .134

A similar reference state ρ̂cat is obtained for the ‘cat’ training examples. Crucially, once the reference structures are set for the135

untrained sheet, they are kept fixed throughout the training process. These reference structures are used to define the learning136

rule discussed in the main text. Suppose that during the training protocol, we choose a random ‘dog’ example F dog and apply137

it to the sheet. The normalized resulting folded structure is written as ρ(F dog). The learning rule then compares this folded138

structure to the reference structures defined above and the stiffness coefficients are modified as follows:139

if ρ(F dog) · ρ̂dog > ρ(F dog) · ρ̂cat : dki
dt

= −αρri (F dog)

else : dki
dt

= +αρri (F dog)

ki ≥ 0, i ∈ creases

, [8]

where we choose r = 2. In essence, the learning rule checks whether the observed folded structure is closer to the ‘dog’140

reference than to the ‘cat’ reference. If it does, the stiffness of creases that fold considerably in that structure is reduced,141

effectively reinforcing this force-fold mapping. An opposite modification occurs if the folded structure is far away from the142

‘dog’ reference. A similar training rule is used when ‘cat’ forces patterns are applied, with the understanding that we wish to143

compare the resulting folded structure ρ(F cat) to the ‘cat’ reference ρ̂cat. The intuition for this learning rule is that the softer144

a crease is, the more it will tend to fold. Thus if the sheet responds to a force in a desired way, making the creases that fold145

more softer will increase the likelihood that it will continue acting in the right way when subject to that force. Conversely, if146

the sheet does not respond correctly, stiffening reduces the likelihood it will respond incorrectly to that force in the future.147

This intuition sheds light on the question of interpretability in our model, as creases that correlate with certain features in the148

classified data will tend to be softer after training.149

As discussed in the main text, our learning modifies stiffness according to the strain energy at each crease ∆k ∼ ρr, with150

r = 2. We have considered training sheets with other values of r in the range 1− 5, as seen in Figure S2. These trials gave rise151

to qualitatively similar results. We thus elected to use r = 2 for our classification problems.152

Note that while our learning rule is local in the space of creases, it can still learn non-local correlations in the space of153

input forces. It is believed that biological systems use local learning rule (13), an idea often stated as ‘Hebbian learning’ (14).154

Though such local learning rules are in principle less powerful than arbitrary non-local rules, they can indeed facilitate learning155

in complex data sets (15, 16).156

This learning rule can naturally be generalized to more than two classes. If c classes are to be classified, one could define157

c reference folded states. Then Eq. 8 could be used for learning from given training examples, with a simple modification;158

Crease i should be softened in proportion to the folding angle ρ2
i if the folded state is closest to the appropriate reference state.159

Otherwise, the crease should be stiffened.160
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Assigning labels to folded structures. To begin with, we are given labeled force patterns, and an untrained sheet with many161

available folded structures. It is important to note that these folded structures are equivalent and not intrinsically labeled.162

Thus, as part of the learning protocol we must specify how to label these folded structures, and in particular which of them to163

call ‘dog’ and ‘cat’ (or ‘blue’ and ‘orange’). A simple solution would be to choose 2 of the folded structures in advance and164

assign the classification labels to them. Unfortunately, this turns out to be too restrictive for a couple of reasons. First, the165

choice may be far from ideal in the sense that these labeled folded structures are very different than the actual folded response166

of the sheet to the labeled force patterns. Furthermore, as the training process modifies the stiffness of different creases, the167

folded structures supported by the sheet change as well, either by moving around or disappearing altogether in saddle-node168

bifurcations (5). We thus take a different approach to labeling folded structures, as detailed below.169

Suppose we have trained a sheet for some time, and it now has a particular stiffness profile on its creases ki. To find a folded170

structure of this sheet to be labeled ‘dog’, we apply each of the ‘dog’ training examples once, and record the discrete resulting171

folded structures due to all of them {ρ(F ∈ Fdog)}. We then count the training force patterns that folded into each one of the172

structures in this set. The folded structure that resulted from the largest number of training force patterns is chosen to be173

labeled as ‘dog’. In case of a tie, e.g. two or more folded structures folding as a result of the same number of force patterns,174

one of these structures is randomly chosen to serve as the label. Thus, the labels for ‘dog’ and ‘cat’ are decided through simple175

plurality rules every time we compute the classification accuracy of the sheet. Note that force patterns may also fold the sheet176

into structures not labeled as either ‘cat’ or ‘dog’, in which case they count as failed classification. If both ‘dog’ and ‘cat’177

labels are chosen to be associated with the same folded structure, a plurality rule between the two classes decides which class178

is labeled with that structure (i.e. whether more ‘cat’ or ‘dog’ force patterns folded into that structure), while the other is179

assigned with the runner up structure of that labels’ plurality vote. Finally, if the sheet is over-trained to the point where180

only one folded structure remains, that structure is labeled as both ‘cat’ and ‘dog’, such that classification fails completely, by181

definition.182

Effective cost function. In this work we have defined our learning rule as a supervised physical process modifying the stiffness183

coefficients of an origami sheet. It is interesting to compare this kind of learning protocol to more established learning algorithms184

originating in computer science and statistics. An important difference is that traditional learning algorithms are usually185

defined as an optimization problem, where the function to be optimized (often called cost or loss function) incorporates the186

training data.187

A simple example of a learning algorithm is linear regression, where the cost function is usually chosen as a least squares188

form, with differences taken between a linear model h(x) and the observations y:189

Cost ≡
∑
d∈data

(h(xd)− yd)2

h(x) = a0 + a1x

. [9]

The regression (or learning algorithm) then optimizes the cost function with respect to the model parameters a ≡ (a0, a1)
minimize

a
Cost({x}, {y};a).

This optimization can be performed in any number of ways, but a practically favored method (at least for more advanced190

algorithms like deep learning) is mini-batch stochastic gradient descent (SGD) (17). In an extreme case, when the mini-batches191

are chosen to be of size 1, a single training example (x, y) is chosen at random in each step, and one computes the gradient192

(with respect to parameters a) of the cost function defined with this example alone G ≡ ∇a(h(x)− y)2. Now, training proceeds193

by modifying the parameters in proportion to the the gradient of this single example cost function194

a→ a− αG, [10]
where α is a scalar known as the learning rate. We may compare this single example SGD with our origami training protocol.195

It is relatively easy to see that our training rule (Eq. 8), once a standard wait time is chosen at the folded state, has the form196

of SGD, making it similar in essence to other learning algorithms. To find out what effective cost function gives rise to the197

origami learning rule, we integrate Eq. 8 with respect to the stiffness coefficients198

costmap(ρ(F dog)) = f
∑

i∈creases

kiρ
2
i (F dog)

if ρ(F dog) · ρ̂dog > ρ(F dog) · ρ̂cat : f = +1
else : f = −1

. [11]

Similarly to the linear regression example, our origami training protocol attempts to minimize this derived cost function,199

one training example at a time. Inspecting this function, note that it is very similar to the energy of the torsional springs in200

the folded structure ECrease(ρ) ∼
∑

i
kiρ

2
i . The difference is in the ‘supervising factor’ f that can be ±1 whether the folded201

structure is accepted or not. We conclude that our origami training protocol is attempting to minimize the energy of accepted202

folded structures, while maximizing the energy of rejected structures. It is however important to note that the origami model203

does not have a fundamental cost function to optimize, but instead a local learning rule, from which a cost function emerges.204
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Complexity of origami classification. Self folding origami is often associated with difficult (NP-complete) computational205

problems. The Classic work of Bern and Hayes has shown that determining whether a sheet is rigidly foldable is NP-206

complete (18). More recently, it was shown that even folding a given sheet to a desired folded state is NP-complete (4). These207

NP results apply to a sheet with soft creases; consequently there are many ways (e.g., MV assignments) of incorrectly folding208

the sheet. In fact, the result can be intuitively understood by a mapping from folding origami to a satisfiability (SAT) problem209

of a set of equations (one for each vertex) with boolean variables representing the M or V state of each crease at that vertex.210

Such a SAT problem can also be visualized as a spin glass Hamiltonian with many local minima (19).211

Thus, we expect that no efficient (polynomial time) algorithm can modify all origami sheets in a way that makes them easy212

to fold. Fortunately, computational complexity is a statement about the most difficult instances of a particular problem. It is213

certainly possible that an efficient algorithm can fold a typical sheet in a desired way. We have previously described such an214

algorithm (5), based on linear or quadratic programming, that selects the correct crease stiffness on creases to support easy215

folding of the sheet. It was shown that this algorithm can facilitate easy folding of many sheets, which would otherwise require216

great care to fold correctly. This idea, that the right crease stiffness heterogeneity can be used to make a typical sheet fold in217

desired ways, is used as the basis of our learning algorithm presented in this work. When crease stiffnesses are introduced, many218

or all of these incorrect ways of folding can be made energetically unfavorable. In the SAT or spin glass analogy, stiffnesses219

can be viewed as fields or biases for the variables that lift many of the minima. Thus, the stiffnesses found by our algorithm220

modify the relevant SAT problem until it is easily solvable. Finally, we must note that results about NP-hardness are worst221

case results; i.e., there exists at least one sub-class of problems that are exponential time to solve. The supervised learning222

framework here works with reasonable consistency but any such statistical approach that typically works cannot contradict any223

NP-hardness results, since it fails on some problems.224

Supervised learning, and supervised classification specifically, are NP-complete problems as well (20). Given a large set of225

constraints (data points) and a certain family of models, we do not know of an efficient algorithm guaranteeing a set accuracy226

of classification. In this way, machine learning is similar to problems in physics such as spin glasses (19), and self folding227

origami. With regards to complexity, the learning protocol suggested in this work is similar to machine learning algorithms.228

Neither our learning rule nor traditional algorithms guarantee an accurate classification for a specific data set and model (in229

our case, specific sheet). However, it is known experimentally that an accurate solution to a classification problem can be230

found by using more expressive models (e.g. a deeper neural network). Similarly, we find that larger sheets with more stiff231

creases provide better classification results, as shown in the main text.232

Example classification problem. In this section we provide further detail about the example classification problem discussed233

at length in the main text, and shown in Figure 3. While it is not a standard benchmark classification problem, we wish to234

include this extra information here for the sake of future reproduction of these results by other physically motivated learning235

models. The full data set, including the training forces and the progress of the training protocol, as well as MATLAB codes for236

training the sheet, are included as supplementary files.237

As described in the main text, we use a 13 crease sheet to classify forces drawn from two classes (Figure 3a). The initial238

sheet has uniform stiffness on all creases (ki = 0.02, in the units where bending stiffness is chosen as 1). We consider the 5d239

null-space of the sheet and classify forces in that space, Force directions F1 and F2, defining the distribution to be classified, are240

two random orthonormal directions in this null-space. We draw 20 training forces from each class, dog and cat, given according241

to the distribution Sdog = {F |F ·Fdog ≥ D,F ·F1 > F ·F2}, and similarly for Scat for a threshold D = 0.6. The forces we pick242

are normalized, so that they live on the surface of a 5d sphere, but only 2 of these dimensions are relevant for classification.243

Therefore, if we sampled forces with small component in the F1 − F2 plane, they would be extremely hard to classify. For this244

reason we choose the cutoff D = 0.6, ensuring the sampled forces have a significant component in the relevant space.245

Once the training forces are picked, we also sample 800 test forces for each class from the same distribution. The training246

and test forces are randomly ordered. We note that while the order of training examples affects learning, these effects do247

not change results qualitatively, as long as all training examples are shown. To train the sheet, we go through the training248

examples, alternating the class at every iteration. We fold the sheet with these training forces and apply the update rule of249

Eq. 8 given the obtained folded state. We choose the learning rate α = 10−4. After exhausting all of the training examples, we250

say the training has advanced by one epoch. Then, we continue training on the same training set for as long as necessary. Data251

for this simulation, as well as MATLAB codes for training the sheet, are available as supplements.252

Supplementary Appendix 3 - Using origami sheets to define classification problems253

The force distributions classified in the main text are relatively simple. Both the spherical cap and the Iris data distributions254

can be well separated by a hyper-plane, a very simple decision boundary. It is interesting to study the type of decision255

boundaries naturally trainable in origami sheets – and whether they can be used to classify intrinsically high dimensional data.256

There are many ways to obtain high dimensional distributions. Here we choose to study distributions derived from the257

folding maps of origami sheets. Consider a relatively simple sheet with 2 internal vertices (Fig. S3a). It is known that such258

sheets support 4 discrete folded structures, and that the linearized null space in which they reside is 3-dimensional. Therefore,259

if we sample random force patterns within this null space, we expect to see the sheet folding into 4 distinct structures (color260

coded regions in Fig. S3b). The forces F1, F2, F3 are assigned by randomly choosing Euler angles on the 2-sphere, and 3000261

data points are sampled on the positive octant. Note that we sample normalized forces on the surface of a 2− sphere, such262

that the distribution of force patterns is actually 2-dimensional.263
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Now, suppose we wish to classify forces to 2 classes (‘blue’\‘orange’). A simple way to create 2 neighboring sets of points is264

to take the data of Fig. S3b and merge some attractor regions to create larger groups of points. In Fig. S3c, we merge the265

‘blue’, ‘yellow’, and ‘purple’ folded structures to create one region we define as ‘blue’. This process yields two distributions that266

are intrinsically 2-dimensional, and not naturally separable by a hyper-plane. Larger sheets can be similarly used to create267

force distributions in higher dimensional space.268

With this process, we have access to a new variety of 2-way classification problems, on which we can try to train origami269

sheets using the training protocol described in the main text. Crucially, the sheet used to classify such distributions is different270

than the sheet used to derive the distribution. In other words, we ask if our training protocol can induce an origami sheet to271

mimic the force-fold mapping of another sheet.272

Suppose we want to classify the distribution seen in Fig. S4a, derived form a 2-vertex sheet as described above. We wish to273

train a 13 crease sheet to classify this force pattern data. The untrained sheet has 24 discrete folded structures that do not274

align with the target distribution in any representation that we tested (Fig. S4b). The problem of classification here is to train275

this sheet to have just 2 folded structures with the right force-fold mapping as in the target distribution.276

The target distribution is mapped to applied force patterns on the 13 crease sheet by the construction describe in277

Supplementary Appendix 1: choosing random orthonormal vectors in the null space of the 13 crease sheet and mapping the278

distribution as components of these vectors. We then randomly sample 20 ‘blue’ and 20 ‘orange’ force patterns, marked as279

diamonds in Fig. S4, to serve as the training set. As we train the sheet, the classification accuracy improves dramatically and280

reaches a maximum of 82% (test accuracy) after 23 epochs (Fig. S4c). To qualify the classification better, we look at the281

classification results corresponding to the maximal accuracy at epoch 23 (Fig. S4d). We observe that the trained decision282

boundary resembles the desired boundary, so that the training protocol indeed produced a reasonable classification.283

Note a few artifacts that still remain in the trained map: 1) there are 3 folded structures left, rather than 2 (a small third284

color coded region exists, labeled yellow), 2) a second orange region appeared inside the bulk blue region, emphasizing that the285

decision boundaries between folded structures in sheets are generally not hyper-planes. We conclude that origami sheets can be286

trained to classify distributions derived from other sheets, that are intrinsically higher dimensional than the problems discussed287

in the main text. Moreover, the decision boundaries are non-linear, so that in principal sheets can classify data that is not288

linearly separable. We leave questions of the sheet size and the complexity of decision boundaries to future studies.289

Supplementary Appendix 4 - Transforming Iris data to applied forces on sheets290

The Iris data set (21) classified in the main text is a classical problem for classification. In this work we are able train an291

origami sheet to correctly classify two species of Iris (I. Versicolor, I. Virginica) at an accuracy of 91%. Here we discuss how292

the Iris data is used to generate training and test sets of applied force patterns to be used on origami sheets.293

Each Iris example in the data set is given as a vector with 4 features (components): sepal length, sepal width, petal length,294

petal width. These length measurements are all given in cm. In addition to these measurements, each Iris specimen is labeled295

as one of the Iris species in the study. To generate force pattern sets from this data, we would like the different measurements296

for each Iris specimen to be components of force vectors in the null space of the origami sheet, as described in Supplementary297

Appendix 1. However, the raw Iris data is not suited for this purpose due to two reasons. The dimensionful measurements of298

lengths, if directly translated to forces, would be far too great for our sheets and will cause it to fold too much and cause the299

sheet faces to collide. More crucially, sepal and petal lengths tend to be considerably larger than their widths, and the same300

goes for the variance of these variables. This will causes the width variables to be perceived as less important in the training301

protocol, and have a negative effect on the classification results.302

Fortunately, diverse data like this is an issue regularly faced by learning algorithms, and it is generically solved by applying303

an invertible transformation to the data. The transformed data is then better suited for the learning algorithm in use. A typical304

example of such a transformation in data sets is to normalize each feature (divide by the mean of that feature) and translate305

it such that the mean of the transformed data is 0. This transformation is especially useful for classification algorithms like306

logistic regression, where the different features have different dimensional units.307

In our case however, the standard transformation above is not useful, due to a particular property of origami sheets, namely308

their Z2 symmetry. If forces F are applied to the sheet and it folds into a state ρ, then folding the same sheet with forces −F309

will result in a state −ρ. This is true for any self-folding origami sheet, regardless of the stiffness profile on its creases. This310

property cannot be changed by training the sheet. Thus, force patterns of opposite sign and different labels cannot be correctly311

classified. A simple way to avoid this issue is to limit the force patterns to reside in a restricted part of force space. We choose312

to limit the distributions such that the transformed Iris data will all be in the positive 4-hyperoctant.313

In addition, we want the data to span as much as possible of the positive hyperoctant. This will increase the expressive of314

our training protocol, as more discrete folded structures would become available if the applied force patterns are more diverse.315

We thus need to transform the Iris data to be all positive, and stretch it such that all features have similar variance.316

To achieve these goals we apply the following linear (invertible) transformation to the Iris data of the Versicolor and317

Virginica species. Suppose an Iris specimen is given as a vector x (where the components are sepal length, sepal width, petal318

length, petal width in this order). The vector is transformed by319
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x∗ = Ax+ b

A =

0.264 0 0 0
0 0.580 0 0
0 0 0.303 0
0 0 0 0.836

 , b = −0.880. [12]

The transformed vector is used to define the force patterns applied to the origami sheet, as described in Supplementary320

Appendix 1. After training is concluded, the transformation can be inverted to relate the origami classification results with the321

original Iris data, as shown in the main text.322
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13 creases 19 creases 49 creases28 creases

Fig. S1. Origami Sheets used for training. The size of each sheet is determined by the number creases.
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Fig. S2. Training sheets to fold as desired with different values of the power parameter r in Eq. 8. We observe small differences in the accuracy obtained using different values
of r. Throughout this work we use r = 2, an experimentally viable choice.
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(a) (b) (c)

Fig. S3. Defining force distributions using the force-fold mapping of an origami sheet. a) Origami sheets with 2 internal vertices support 4 discrete folded structures. b) Sample
force patterns on a 2-sphere show the force-fold mapping (4 color coded regions). c) When some attractor regions are merged (here, blue, yellow and purple are merged), we
obtain an intrinsically 2-dimensional separator surface between two classes of force patterns.
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Fig. S4. Training a sheet on a force distribution derived from a different sheet. a) Target classification, a sample distribution derived from a small, 2-vertex origami sheet. b) The
force-fold map of an untrained 13 crease sheet is very different from the desired mapping. c) With training, the accuracy of classification improves and peaks at 82%. d) The
optimally trained sheet has a complex decision boundary that resembles (but different than) the desired boundary.
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SI Dataset S1 (BlueFS.txt)323

Training and test forces for the blue class (in the sheet full folding space.324

SI Dataset S2 (BlueNS.txt)325

Training and test forces for the blue class (in the sheet null space).326

SI Dataset S3 (RedFS.txt)327

Training and test forces for the Red class (in the sheet full folding space.328

SI Dataset S4 (RedNS.txt)329

Training and test forces for the Red class (in the sheet null space).330
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