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Figure S1. Molecular alterations of FRGs. Related to Figure 1. 

The mutation frequencies (A), mutual exclusivity of FRGs and oncogenes (B) /tumor suppressor 

genes (C) among cancers. (D) The differential expressed FRGs-related miRNAs. The correlation 

between FRG expression and somatic copy number alternation, DNA methylation and miRNA 

expressions. 
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Figure S2. Established the FPI in cell lines and examined the performance of the FPI. Related to 

Figure 2. 

The boxes showed the FPI between withaferin A (WA), erastin or ferrostatin and the control (A, D, G). 

The boxes showed the comparison of three genes between stimulators and control in neuroblastoma 

cells (B), clear cell carcinoma cells (E) and liver cancer cells (H). The correlation between the 

expression of CHAC1 and the FPI in neuroblastoma cells (C), clear cell carcinoma cells (F) and liver 

cancer cells (I). The boxes in A-F mean the median values ± 1 quartile, their whiskers extending 

from the median to the smallest or biggest value which is 1.5 × IQR from the boundary of boxes. 

NS. indicates not significant (p value > 0.05), * p value < 0.05; ** p value < 0.01; *** p value < 0.001.
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Figure S3. The relationship between other factors and the FPI or expression of FRGs. Related to 

Figure 2, Figure 3, and Figure 4. 

The implication of the mutation status of driver genes on the FPI (A). The FPI between mutant and 

wild type tumors for TP53 (B) and KRAS (C). The differential expression of FRGs between mutant 

and wild type tumors for TP53 (D) and KRAS (E). The correlation between ferroptosis and immune 

cells (F) and clinical characteristics (G-H). The overall prognostic abilities of FRGs (I). The boxes in 

B, C, and H mean the median values ± 1 quartile, their whiskers extending from the median to the 

smallest or biggest value which is 1.5 × IQR from the boundary of boxes. 
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Figure S4. The pharmacogenomic interaction of the FPI and FRGs. Related to Figure 4. 

(A) The co-expression of FRGs and 136 drug-targeted genes. (B) The number of CAGs correlated 

with FRGs. (C) The number of FRG-CAG correlation pairs. (D) The co-expression of FRGs and 20 

genes for immunotherapy. (E) The interactions between drugs, drug targets and FRGs. (F) The 

correlation between the expression of FRGs and the area under the dose-response curve (AUCs) for 

drugs. 

  



Transparent Methods 
Datasets and Source 

The mRNA expression data, copy number alteration thresholded data, masked copy number 

segmentation data, and DNA methylation 450K data of twenty cancers, including bladder urothelial 

carcinoma (BLCA), breast invasive carcinoma (BRCA), cholangiocarcinoma (CHOL), colon 

adenocarcinoma (COAD), cervical and endocervical cancers (CESC), esophageal carcinoma (ESCA), 

glioblastoma multiforme (GBM), head and neck squamous cell carcinoma (HNSC), kidney 

chromophobe (KICH), kidney renal clear cell carcinoma (KIRC), kidney renal papillary cell carcinoma 

(KIRP), liver hepatocellular carcinoma (LIHC), lung adenocarcinoma (LUAD), lung squamous cell 

carcinoma (LUSC), pancreatic adenocarcinoma (PAAD), prostate adenocarcinoma (PRAD), rectum 

adenocarcinoma (READ), stomach adenocarcinoma (STAD), thyroid carcinoma (THCA), uterine 

corpus endometrial carcinoma (UCEC), which had both tumors and normal samples were 

downloaded from Firehose (http://gdac.broadinstitute.org). Mutation data, miRNA-seq data, and 

clinical data were downloaded from the Xena Browser (https://xenabrowser.net/datapages/). 

Additional gene-centric RMA-normalized gene expression profiles and drug response data of over 

1000 cancer cell lines were accessed from the Genomics of Drug Sensitivity in Cancer (GDSC) 

database (https://www.cancerrxgene.org/downloads) (Yang et al., 2013). Immune associated data, 

including immune cell type fractions and immunophenoscore were obtained from TCIA 

(https://tcia.at/home) (Charoentong et al., 2017), dysfunction and exclusion scores of tumor samples 

were obtained from TIDE (http://tide.dfci.harvard.edu/) (Fu et al., 2020; Jiang et al., 2018). Integrated 

protein-protein interaction data was obtained from the Human Protein Reference Database 

(http://www.hprd.org/) and BioGRID (https://thebiogrid.org) (Keshava Prasad et al., 2009; Peri et al., 

2003). We obtained clinically actionable genes (CAGs) from a previous study (Van Allen et al., 2014) 

(https://software.broadinstitute.org/cancer/cga/target). 

 

Differential expression analysis of mRNA 

To test genes differentially expressed between tumor and normal tissue, gene expression data for 

20502 genes across 20 cancer types were downloaded from TCGA at FireBrowse 

(http://gdac.broadinstitute.org, 2016 January). Then, the fold change and adjusted P-value were 

calculated by the edgeR package (Robinson et al., 2010). We defined genes with an adjusted P-value 



less than 0.05 as the differential expression genes (DEGs). 

 

Establishing the Ferroptosis Potential Index Model 

The index to represent the ferroptosis level was establish based on the expression data for genes of 

ferroptosis core machine including positive components of LPCAT3, ACSL4, NCOA4, ALOX15, GPX4, 

SLC3A2, SLC7A11, NFE2L2, NOX1, NOX3, NOX4, NOX5 and negative components of FDFT1, 

HMGCR, COQ10A, COQ10B. The enrichment score (ES) of gene set that positively or negatively 

regulated ferroptosis was calculated using single sample gene set enrichment analysis (ssGSEA) in 

the R package ‘GSVA’ (Hanzelmann et al., 2013), and the normalized differences between the ES of 

the positive components minus negative components was defined as the ferroptosis potential index 

(FPI) to computationally dissect the ferroptosis levels/trends of the tissue samples. 

 

Somatic Copy-number Alteration (SCNA) and Mutation Analysis 

The heterozygosity and homozygosity of amplification and deletion were included to elevate the copy-

number alteration of each gene, in which over five percent was regarded as high-frequency SCNA. 

Pearson’s correlation between expression values and copy number segment values of each gene 

was calculated to evaluate the association between SCNA and expression. The R package 

“DISCOVER” was employed to evaluate mutual exclusivity between FRGs and tumor suppressor 

genes or oncogenes across tumor samples in each cancer type (Canisius et al., 2016). The mutation 

and CNA events were integrated, while only homozygous amplification and deletion were included, 

and only protein-coding mutations were retained. For each cancer type, the genes were considered 

to be mutually exclusive if they had a q value of 0.05. 

 

DNA methylation analysis 

The R package “IlluminaHumanMethylation-450kanno.ilmn12.hg19” from Bioconductor was imported 

to annotate the methylation probe for the promoter of each gene. Differential methylation of each 

gene in tumor and normal samples was tested by the Wilcoxon signed rank test, and genes that were 

significantly hypomethylated or hypermethylated were identified using a P-value cutoff of 0.05. 

Pearson’s correlation between the transcriptional expression of FRGs and the Beta value of the 

promoter DNA methylation were calculated and considered significant if the P-value < 0.05. 



 

miRNA expression analysis 

To investigate the mechanisms of dysregulation for ferroptosis regulator genes in cancer, we searched 

potential miRNAs which might regulate the FRGs based on miRNA-target intersections in starBase. 

The Spearman correlation between the expression of miRNA and FRGs was statistically evaluated 

(adjusted P-value < 0.1, rho < -0.1). Cytoscape software was used to visualize the high-frequency 

interaction networks among FRGs and miRNA (Shannon et al., 2003). 

 

Multivariate Regression Analysis of Gene Expression 

To assess which factors had significant effects on FRG expression, the expression of each FRG was 

modeled by linear regression as a function of the median miRNA expression, the median Beta value 

of promoter methylation, and the copy number of the genes. 

 

Clinical Features Analysis 

The R package “survival” was used to assess the prognosis potential of the FRGs and ferroptosis 

potential index among cancers. For survival analysis, the expression threshold was exhaustively 

tested and the one with most significant P-value was considered the best cut-off. To test the 

association between ferroptosis level and clinical features, the Pearson correlation was calculated 

between FPI and tumor stages, age, body mass index (BMI) and cigarette exposure per day, which 

were converted to numeric variables (“stage1” = 1, “stage2” = 2, etc.). Wilcoxon rank sum tests and 

Tukey’s tests were used to determine the impact on the ferroptosis potential index for other clinical 

characteristics including race, remission status, and alcohol. The influence of different MSI 

statuses(Liu et al., 2018), histologic types, and molecular subtypes on FPI were also 

considered(Ciriello et al., 2015). 

 

Immune Features Analysis 

To study the relationship of ferroptosis and immune microenvironments, we computed the Pearson 

correlation between FPI and immune parameters including immune cell fractions and 5 types of 

immunophenoscores. 

 



Identifying the FPI associated significant driver gene mutation 

A total of 375 driver genes identified in previous pan-cancer research were included for 

analysis(Lawrence et al., 2013). To test whether a driver gene’s mutational status was significantly 

associated with ferroptosis among cancers, the rank-transformed FPI was modeled by linear 

regression as a function of the driver gene’s mutational status, ignoring the synonymous variant. To 

diminish the confounding effects, the rank-transformed count of the total nonsynonymous mutations 

and the tumor type, which were encoded as virtual variables, were included. To further characterize 

each cancer, the Benjamini-Hochberg method was used to correct the P values across 375 genes. 

Genes with an adjusted P value less than 0.05 for mutation status variable were significantly 

associated with FPI. 

 

Gene Set Enrichment Analysis 

To identify the pathways associated with ferroptosis, the samples of each tumor type were divided 

into two groups according to the FPI, consisting of the top 30% and bottom 30%. Then, the gene set 

enrichment analysis (GSEA) was performed (Subramanian et al., 2005). 

 

Correlation between Drug Sensitivity and FPI/FRG Expression 

To test the correlation between small molecular drugs and FPI and FRGs, the Pearson correlation 

coefficients for FPI, the expression value of FRGs and the area under the dose-response curve (AUCs) 

values were calculated, the results with |R| > 0.1 and P-value < 0.05 were considered as significantly 

correlated. To further investigate the influence of drugs on ferroptosis, the significant association 

between the expression of clinically actionable genes and FRGs were finished across cancer cell 

lines, and the associations were filtered with PPIs. Then the drugs which target CAGs were selected 

according to DrugBank (Wishart et al., 2018) (https://www.drugbank.ca). 
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