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Supplementary Notes 

Supplementary Note 1. Analyses for changes in vegetation community between the 

two sampling periods 

Vegetation communities were investigated for both periods of our resampling campaign. 

During the investigation, all the occurred plant species were identified, and the relative 

cover of each species was virtually estimated. Based on these information, two indexes 

including species richness and Shannon-Wiener index were calculated to characterize 

the vegetation community composition in each of the two sampling periods. Of them, 

species richness refers to the species number per quadrat, and Shannon-Wiener index 

(H) was calculated as: H = -∑Pi lnPi, where Pi is the relative cover of species i1. With 

the calculated species richness and Shannon-Wiener index in the 2000s and the 2010s, 

we examined changes in vegetation composition between the two sampling periods 

based on linear mixed-effects models, in which the fixed effect was sampling years and 

the random effects were the investigated sites as well as replicates within each site2. 

Results showed that neither of the two indicators exhibited any significant changes over 

the detection period (Supplementary Fig. 5), indicating the minimal effect of vegetation 

community shifts on the dynamics of plant δ15N observed in this study. Considering the 

potential effects of mycorrhizal plants on the average community δ15N, we further 

detected changes in vegetation composition at the family and species levels that are 

associated with mycorrhizae. Of them, changes in vegetation composition at the family 

level were analyzed based on two indicators (species richness and the relative cover) 

for five families that can be heavily colonized by mycorrhizae on the Tibetan Plateau, 

including Gramineae, Leguminosae, Asteraceae, Cyperaceae and Rosaceae3. The 

species-level analyses were conducted to detect changes in the relative cover for the 

dominant species of the five families mentioned above. With linear mixed-effect 
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models, results also indicated that the vegetation composition was unchanged either at 

the family or species level between the 2000s and the 2010s (Supplementary Figs. 6-7). 

Taken together, these analyses eliminated the potential confounding effects of 

vegetation community shifts on the plant δ15N dynamics observed in this study. 

 

Supplementary Note 2. Meta-analyses of CO2 enrichment and warming effects on 

mycorrhizal symbiosis 

Meta-analysis was conducted to explore the potential effects of two major 

environmental changes on the Tibetan Plateau, i.e., elevated CO2 (eCO2) and climate 

warming on mycorrhizal symbiosis. To be specific, by searching with mycorrhiza∗ and 

CO2 or mycorrhiza∗ and carbon dioxide in the Web of Science, we collected studies that 

reported the responses of mycorrhizal symbiosis to eCO2. Likewise, we synthesized 

publications that investigated the effects of experimental warming on mycorrhizal 

symbiosis with terms mycorrhiza∗ and warming or mycorrhiza∗ and temperature. All 

collected publications dated to February 25th, 2020. To avoid biases, the following 

criteria were adopted during the searching process: (i) variables that represented 

mycorrhizal symbiosis (e.g., percent of root length colonized and extraradical 

mycorrhizal hyphal density) were reported; (ii) mean value, sample size and error 

(standard error, standard deviation or confidence interval) for eCO2 or warming were 

recorded or could be calculated from the individual studies; (iii) treatment (eCO2 or 

warming) and control plots had same ecosystem types, soil types and dominant plant 

species. Finally, two datasets were compiled including 100 studies that reported eCO2 

effects on mycorrhizal symbiosis and 22 studies that recorded warming effects on 

mycorrhizal symbiosis. 
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As commonly used in meta-analysis, we adopted the response ratio (RR) to quantify 

the responses of mycorrhizal symbiosis to eCO2 or experimental warming. The RR 

refers to the natural-logarithm-transformed ratio of target variables associated with 

mycorrhizal symbiosis between experimental treatment and control4. Typically, the 

collected data are weighted either by variance or sample size, and data with a lower 

variance or larger sample size are assumed to contribute more to the mean effect size. 

Because the collected studies did not always report the sampling variance (e.g., the 

standard error or standard deviation), the number of replicates was used as the 

weighting factor, i.e., weightn = ncnt/(nc+nt), where nc and nt are the number of replicates 

for control and treatment groups, respectively5. A random-effect model with bootstrap 

approach was applied to estimate the mean effect size and its 95% confidence interval 

(CI) with MetaWin 2.1 (Sinauer Associates Inc., Sunderland, MA, USA). The eCO2 or 

warming effect was considered significant if the 95% CI did not overlap with zero. 

Based on the meta-analyses, we observed that both eCO2 and climate warming 

significantly enhanced the degree of mycorrhizal colonization (P < 0.05, 

Supplementary Fig. 9). 

 

Supplementary Note 3. Changes in soil moisture on the Tibetan Plateau during 

2000s-2010s and its potential effects on gaseous N loss 

We collected four independent data sources to examine soil moisture dynamics in the 

Tibetan alpine permafrost region during 2000s-2010s. The first data source was derived 

from our resampling investigations. Based on this dataset, we analyzed changes in the 

gravimetric soil moisture in the top 10 cm with the linear mixed-effects model. Results 

showed that surface soil moisture did not exhibit any significant differences between 

the two sampling periods (Supplementary Fig. 11). The second data source was 
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purchased from China Meteorological Administration (http://data.cma.cn/). Using field 

observations recorded by 7 meteorological stations across the study area, we found that 

the average surface (0-10 cm) soil moisture did not exhibit any significant trend over 

2000-2010 (Supplementary Fig. 12a). The third data source was derived from a recent 

study exploring permafrost changes and their effects on hydrological processes on the 

Tibetan Plateau, which provided the observed dataset for soil moisture dynamics at five 

monitoring sites in the hinterland of the Tibetan alpine permafrost region6. By averaging 

the monitored data, we observed that the surface soil moisture remained stable over the 

detection period (Supplementary Fig. 12b). The fourth data source was obtained from 

a global dataset, CFSV2 (NCEP Climate Forecast System Version 2)7. From the CFSV2 

dataset, we extracted the surface (5 cm) volumetric soil moisture for the 107 resampling 

sites, and found that the surface soil moisture on the Tibetan Plateau experienced no 

significant changes over 2000-2015 (Supplementary Fig. 12c). Collectively, results 

from these four independent data sources consistently demonstrated that the relatively 

stable surface soil moisture on the Tibetan Plateau from the 2000s to the 2010s. The 

stability of soil moisture indicated its limited effect on the increase in gaseous N loss 

observed across the study area. To further demonstrate this point, we explored the 

relationship between each year’s total gaseous N loss from denitrification with the 

corresponding annual average soil water-filled pore space over the detection period. 

Results showed that this relationship was insignificant (Supplementary Fig. 14), which 

provided additional evidence for the argument that soil moisture dynamics could not be 

responsible for the increased gaseous N loss across our study area. 

  

http://data.cma.cn/
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Supplementary Methods 

Supplementary Methods: References used to synthesize N2O observations for 

DNDC model validation 
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Supplementary Methods: References used to analyze the effects of CO2 

enrichment on mycorrhiza symbiosis 
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Supplementary Figures 

 

Supplementary Fig. 1. The schematic diagram for the Tibetan resampling campaign. 
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Supplementary Fig. 2. Environmental changes on the Tibetan Plateau. Panels (a-d) 

represent changes in atmospheric carbon dioxide (CO2) concentration, nitrogen (N) 

deposition, mean annual air temperature (MAAT) and mean annual precipitation (MAP) 

over 2000s~2010s, respectively. Data for atmospheric CO2 concentration, N deposition 

and climate (MAAT and MAP) are derived from Chinese Research Network or Special 

Environment and Disaster (http://www.crensed.ac.cn), Science Data Bank 

(http://www.csdata.org/p/199/) and China Meteorological Administration 

(http://data.cma.cn/), respectively. The changes in CO2 concentration and climate 

(MAAT and MAP) were examined with Ordinary Least Square regressions, and the 

change in N deposition was detected with linear mixed-effects model, in which the fixed 

effect was year and the random effect was site. The solid fitted lines indicate significant 

environmental changes, while the dashed fitted lines denote insignificant dynamics. The 

shade accompanying with the solid fitted line represents 95% confidential interval. 

  

http://www.crensed.ac.cn/portal/
http://www.csdata.org/p/199/
http://data.cma.cn/
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Supplementary Fig. 3. Changes in atmospheric N deposition and its δ15N. Panels (a-

d) represent ammonium (NH4
+) concentration, nitrate (NO3

-) concentration, δ15N-NH4
+, 

and δ15N-NO3
- derived from a representative ice core on the Tibetan Plateau during the 

period from 2001 to 2011. The N concentration and δ15N in ice cores have widely used 

to reflect the dynamics of atmospheric nitrogen (N) deposition and its isotopic 

characteristics8,9,10. In our case, to characterize changes in δ15N values of atmospheric 

N deposition, we obtained isotopic observations based on an ice core from our co-author 

(Dr. Yunting Fang)11. The changes in N concentration and δ15N were examined with 

Ordinary Least Square regressions, and the dashed fitted lines denote insignificant 

changes.  
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Supplementary Fig. 4. Changes in plant δ15N dynamics with the resampling size. Plant 

δ15N dynamics was detected by the bootstrapped estimate of model slope after a specific 

number of resampling sites were randomly removed, of which the model refers to the 

linear mixed-effects model used to statistically analyze changes in plant δ15N on the 

Tibetan Plateau over the period from the 2000s to the 2010s. This analysis was used to 

estimate the threshold that made the findings of changes in plant δ15N lose statistical 

significance once we randomly removed sites from the original dataset. In the analyses, 

the bootstrap was iterated for 10,000 times, in each of which the resampling sites were 

removed randomly and the slope of the linear mixed-effects model used to test changes 

in plant δ15N was estimated based on the remaining sites12. The estimated slopes were 

then used to calculate interquartile range for each number of resampling sites that were 

removed from the dataset12. The average slope was considered non-significant if the 

interquartile range of the slope overlapped with the horizontal zero line12. The dashed 

line represents the first interquartile range which overlapped with the horizontal zero 

line. Each point in the diagram represents a bootstrapped estimate of model slope, and 

each box-plot presents the interquartile range and median slope for each number of 

resampling sites removed from the analysis.  
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Supplementary Fig. 5. Changes in vegetation composition at the community level. 

Panels (a-b) represent changes in species richness and Shannon-Wiener index across 

the resampling sites on the Tibetan Plateau during the period from the 2000s to the 

2010s, respectively. Species richness refers to species number per quadrat, and 

Shannon-Wiener index (H) was calculated as: H = -∑Pi lnPi, where Pi is the relative 

cover of species i1. The change in vegetation composition was examined with linear 

mixed-effects model, in which the fixed effect was sampling years and the random 

effects were the investigated sites as well as replicates within each site. Numbers near 

each box diagram denote the percentile of 95%, 75%, 50%, 25% and 5%, respectively. 
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Supplementary Fig. 6. Changes in vegetation composition at the family level. During 

this analysis, changes in species richness and the relative cover of five families that can 

be heavily colonized by mycorrhizae were detected on the Tibetan Plateau over the 

period from the 2000s to the 2010s. The species richness here refers to species number 

per quadrat for each of the five families, and the relative cover was calculated as the 

sum of the relative cover of each species within a specific family1. To conduct the 

family-level analysis, we selected five families that are heavily colonized by 

mycorrhizae consisted of Gramineae, Cyperaceae, Leguminosae, Compositae and 

Rosaceae3. The changes in species richness and the relative cover were examined with 

linear mixed-effects models, in which the fixed effect was sampling years and the 

random effects were the investigated sites as well as replicates within each site. Points 

in the plot indicate the estimated model slopes, and error bars denote 95% confidence 

intervals. The change in species richness or the relative cover is considered non-

significant if the 95% confidence interval overlaps with the vertical zero line. 
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Supplementary Fig. 7. Changes in vegetation composition at the species level. During 

this analysis, changes in the relative cover of host plant species that can be heavily 

colonized by mycorrhizae were detected on the Tibetan Plateau over the period from 

the 2000s to the 2010s. The host plant species Elymus nutans, Carex moorcroftii, 

Oxytropis tibetica, Ligularia virgaurea and Potentilla nivea belong to the plant family 

Gramineae, Cyperaceae, Leguminosae, Compositae and Rosaceae, respectively3. The 

change in species richness and the relative cover was examined with linear mixed-

effects models, in which the fixed effect was sampling years and the random effects 

were the investigated sites as well as replicates within each site. Points in the plot 

indicate the estimates of model slopes, and the error bars denote 95% confidence 

intervals. The change in the relative cover is considered non-significant if the 95% 

confidence interval overlaps with the vertical zero line.  
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Supplementary Fig. 8. Changes in plant δ15N among sites without Leguminosae. 

Panels (a-b) represent frequency distributions of plant δ15N among those resampling 

sites without the Leguminosae during the two sampling periods, and changes in the 

corresponding plant δ15N over the detection period, respectively. The change in plant 

δ15N was examined with linear mixed-effects model, in which the fixed effect was year 

and the random effect was sampling site. Points in panel (b) denote mean values and 

error bars represent 95% confidence intervals. N, the number of sites used for analyzing 

plant δ15N; Median, median value of plant δ15N; df.resid, residual degrees of freedom. 
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Supplementary Fig. 9. Effects of environmental change on mycorrhizal symbiosis. 

During this analysis, the weighted response ratios reflecting CO2 enrichment or 

warming effects on mycorrhizal symbiosis were estimated based on meta-analyses of 

published literature (Supplementary Note 2; Supplementary Methods). The all 

indicators mean all the collected variables associated with mycorrhizal symbiosis. RLC 

represents the percentage of root length colonized. EMH denotes extraradical 

mycorrhizal hyphal. Points in the plot denote ln-transformed weighted response ratios, 

and error bars represent 95% confidence intervals. The vertical dashed line is drawn at 

the weighted response ratio = 0. The CO2 enrichment or warming effect on mycorrhizal 

symbiosis was considered non-significant if the 95% confidence interval overlapped 

with the dashed vertical line.  
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Supplementary Fig. 10. Changes in topsoil N:P ratio over 2000s~2010s. Soil N:P ratio 

refers to the ratio of soil nitrogen (N) content to phosphorus (P) content in the top 10 

cm on the Tibetan Plateau. Soil N and P contents were measured based on samples 

collected across the resampling sites. The change in soil N:P ratio was examined with 

Wilcoxon signed rank test due to skewed distributions13. Points in the plot denote mean 

values and error bars represent 95% confidence intervals. 
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Supplementary Fig. 11. Comparison of soil water status during the two sampling 

periods. The soil water status refers to gravimetric soil moisture in the top 10 cm on the 

Tibetan Plateau. Soil moisture data were derived from the resampling investigations 

conducted in this study. Soil moisture dynamics was examined with linear mixed-

effects model, in which the fixed effect was year and the random effect was sampling 

site. Numbers near each box diagram denote the percentile of 95%, 75%, 50%, 25% 

and 5%, respectively. 
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Supplementary Fig. 12. Changes in topsoil water status over 2000s~2010s. Panels (a-

d) represent changes in soil water status within the top 10 cm depth derived from China 

Meteorological Administration (http://data.cma.cn/, a), Zhao et al. (2019)6 (b), CFSV2 

(NCEP Climate Forecast System Version 2, https://rda.ucar.edu/datasets/ds094.0/, c) 

and the output of DeNitrification-DeComposition (DNDC) model (d) on the Tibetan 

Plateau from the 2000s to the 2010s, respectively. Based on these datasets, changes in 

soil water status were examined with Ordinary Least Square regressions, and the dashed 

fitted lines in the diagram denoted insignificant trends. GSM: gravimetric soil moisture; 

VSM, volumetric soil moisture; WFPS, water-filled pore space. 

  

http://data.cma.cn/
https://rda.ucar.edu/datasets/ds094.0/
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Supplementary Fig. 13. Effects of environmental change on Tibetan N cycle. Panels 

(a-f) represent effects of environmental changes, including enrichment of atmospheric 

carbon dioxide (CO2) concentration, climate warming and precipitation variability, on 

plant nitrogen (N) pool (a-b), annual plant N uptake rate (c-d) and annual gaseous N 

loss rate (e-f) during the past decades, respectively. Effects of environmental changes 

on the related N pools or N cycling processes were analyzed with the simulation 

experiments performed by the DeNitrification-DeComposition (DNDC) model. Preci. 

refers to precipitation. 
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Supplementary Fig. 14. Effects of soil water status on gaseous N loss. Gaseous N 

losses are each year’s total gaseous N loss from denitrification over the period from 

2001 to 2014, and soil water status refers to the corresponding annual average soil 

water-filled pore space. Both gaseous N loss and soil water-filled pore space are derived 

from the simulation output of the DeNitrification-DeComposition (DNDC) model, and 

their relationship is examined with Least Ordinary Square regression. The dashed fitted 

line denotes an insignificant relationship.  
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Supplementary Fig. 15. Validation of the DNDC model based on flux measurements. 

Panels (a-b) represent location of the observation sites used to validate the DNDC 

model, and performance of the validated model detected by its simulation in ecosystem 

nitrous oxide (N2O) emissions, respectively. The N2O observations were derived from 

publications across the study area (Supplementary Methods). The background map in 

panel (a) represents the elevation across the study area. The dashed line in panel (b) 

denotes the 1:1 line. Four indicators including R2 (coefficient of determination), RMSE 

(root mean square error), RMD (relative mean deviation), and ME (model efficiency), 

were used to evaluate the model performance. N, the number of observation-simulation 

pairs.  
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Supplementary Fig. 16. Validation of the DNDC model based on pool measurements. 

Panels (a-b) represent validation of the DNDC model for its simulations in soil N 

density within the top 10 cm and aboveground plant N pool, respectively. The observed 

soil N density and plant N pool were derived from the field campaign in this study. The 

dashed line denotes the 1:1 line. Four indicators, including R2 (coefficient of 

determination), RMSE (root mean square error), RMD (relative mean deviation), and 

ME (model efficiency), were used to evaluate the model performance. N, the number 

of observation-simulation pairs.  

  



42 
 

 

Supplementary Fig. 17. Validation of the DNDC model based on soil water status. 

During this analysis, the model performance was validated through its simulation in 

soil water-filled pore space (WFPS) across the 107 resampling sites on the Tibetan 

Plateau. The observed soil WFPS was calculated based on gravimetric soil moisture 

and bulk density14 in the top 10 cm detected through the repeated field sampling 

campaign. The dashed line denotes the 1:1 line. Four indicators, including R2 

(coefficient of determination), RMSE (root mean square error), RMD (relative mean 

deviation), and ME (model efficiency), were used to evaluate the model performance. 

N, the number of observation-simulation pairs. 
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