GL261 luciferase-expressing cells elicit an anti-tumor immune response: an evaluation of murine glioma models

Victoria E. Sanchez¹, BS, John P. Lynes¹, MD, Stuart Walbridge¹, BS, Xiang Wang¹, MS, Nancy

A. Edwards¹, BA, Anthony K. Nwankwo¹, BS, Hannah P. Sur¹, BS, Gifty A. Dominah¹, BA,

Arnold Obungu¹, BS, Nicholas Adamstein¹, BA, Pradeep K. Dagur², PhD, Dragan Maric³, PhD,

Jeeva Munasinghe⁴, PhD, John D. Heiss¹, MD, Edjah K. Nduom*¹, MD

¹Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National

Institutes of Health, Bethesda, MD, USA

²Flow Cytometry Core Facility, National Heart, Lung, and Blood Institute, Bethesda, MD, USA

³Flow Cytometry Core Facility, National Institute of Neurological Disorders and Stroke,

National Institutes of Health, Bethesda, MD, USA

⁴Mouse Imaging Facility, National Institute of Neurological Disorders and Stroke, National

Institutes of health, Bethesda, MD, USA

Corresponding Author:

*Edjah K. Nduom, M.D.

Surgical Neurology Branch

National Institute of Neurological Disorders and Stroke, NIH

Room 3D-20

10 Center Drive

Bethesda, MD 20892

Phone: 301-480-0284

Fax: 301-402-0380

Email: edjah.nduom@nih.gov

Supplementary Fig. 1 Representative H&E stained brains of mice sacrificed at the 10-day endpoint for GL261, GL261-RedFluc, and GL261-Luc2 implanted mice. Mice of this cohort were used for flow cytometry experiments and show sites of tumor implantation for each group, respectively.

Supplemental Information

Antibodies used for flow cytometry

Anti-mouse CD152 BV421 (106312, Biolegend, 1 μg/10⁶ cells), Anti-mouse CD4 BV605 (563151, BD, 0.25 μg/10⁶ cells), Anti-mouse CD8α BV650 (563234, BD, 0.125 μg/10⁶ cells), Anti-mouse CD44 FITC (561859, BD, 0.06 μg/10⁶ cells), Anti-mouse CD127 PerCP/Cy5.5 (135022, Biolegend, 0.25 μg/10⁶ cells), Anti-mouse CD279 PE (551892, BD, 2 μg/10⁶ cells), Anti-mouse CD11b PE/Cy5 (101210, Biolegend, 0.25 μg/10⁶ cells), Anti-mouse CD25 PE-Cy7 (552880, BD, 0.25 μg/10⁶ cells), Anti-mouse CD274 APC (564715, BD, 0.125 μg/10⁶ cells), Anti-mouse F4/80 APC/Cy7 (123118, Biolegend, 1 μg/10⁶ cells), Anti-mouse CD3e BUV395 (563565, BD, 0.25 μg/10⁶ cells).

Statistical analysis

To assess survival differences observed between mice injected with glioma cells, distributions of overall survival were estimated using Kaplan-Meier method. A log-rank (Mantel-Cox) test was used to determine *P*-values. All groups were compared to the GL261 control. Animal deaths not related to tumor growth or severity of neurological deficit were excluded. Long term survival was set at 100 post injection. A threshold of *P*<0.05 was used to determine statistical significance for each experiment (*P<0.05, **P<0.01, ***P<0.001, ****P<0.0001). Unless otherwise stated, data were analyzed with GraphPad Prism 6 (GraphPad Software, Inc., San Diego, CA). All graphs indicated with mean and standard error of the mean (SEM).