
Reviewers' comments: 

Reviewer #1 (Remarks to the Author); expert in glioblastoma: 

Intruguing paper that performs MS classification of a small set of glioma tumors, generates a 

number of intriguing observations regarding utility of proteomic vs DNAseq vs RNAseq data, in 

addition to conclusions regarding prognosis, metabolome, cell of origin and response to therapy, 

offering no futehr biological validation for any of these conclusions. While the paper is generally 

sound, it would be strengthened by inclusion of biological experiments or validation set proteomic 

data that validate claims. At a minimum, they could analyze tumors from a PDX models to see how 

they fit the classifier, and then use them to validate metabolic and therapeutic claims. 

Reviewer #2 (Remarks to the Author); expert in proteomics and bioinformatics in cancer: 

Authors 

This manuscript from Korea is a very well-written and significant pharmaco-proteogenomic 

analysis of the highly malignant and common form of glioblastoma distinguished as IDH wild-type. 

In sum, multi-omics features of 39 IDH wt GBM tumors were compared with 2 IDH mutant GBM 

and 9 low-grade gliomas. Two clusters were identified: GPC1 with enhanced glycolysis (Warburg 

effect), neural stem-cell markers, immune checkpoint ligands, and FKBP9, a biomarker for poor 

prognosis; and GPC2 with high ox-phos proteins, oligodendrocyte and astrocyte biomarkers, and 

PHGDH, a biomarker for relatively better prognosis. Patient-derived cells (PDCs) were prepared for 

testing with many chemotherapeutic drugs. An mTORC1/2 dual inhibitor showed notable 

cytotoxicity against the GPC1 poor prognosis PDCs. This categorization may yield much more 

useful translation than the traditional four subtypes: classical, mesenchymal, proneural, and neural 

(line 60) based on transcriptome profiling by TCGA. 

The GPC2 protein expression patterns were much more like normal brain than were the GPC1 

tumors. With extremely limited data, 2/3 tumors that were recurrent after initially effective 

therapy switched from GPC1 to GPC2 patterns, a good sign. These GPC subtypes were 

independent of the four RNA subtypes, though mutation analysis showed EGFRvIII splice isoform 

and PIK3CA mutations exclusively in GPC1 tumors (of course, there were only 2 mutant GBMs and 

9 low-grade gliomas. That should be acknowledged. 

I would be interested to know whether other striking findings related to splice isoforms were 

revealed, such as PKM isoforms (driver of Warburg effect) in Figure 3(d) (line 835). 

The single cell analyses yielded interesting results, too. 

An important finding was that the proteomic analyses were much more informative than mRNA 

analyses for capturing action of the drugs. This is quite predictable for kinase-related pathways, 

which require phosphoproteomic analysis. AZD2014 may be a high-quality lead drug candidate. 

Equally striking is that only 3 of 271 gene expression biomarkers from RNA studies (presumably 

meaning up or down regulated compared to normal brain) were “validated” in this proteogenomic 

study. 

The speculations about cross-talk and stem cells are of interest, too. 

Methods Details 

Line 566: identify the reference protein database used. 

Line 573-74: give numbers of peptides and PSMs; why only peptides and PSM controlled with FDR 

<0.01; the protein FDR should be stated and controlled below 0.01. 

Line 576: why do you accept “one-hit wonders” for identification after saying in 575 that the 

minimum number of uniquely-mapping peptides was set to 2? 

Line 612: why did you use and not update the SwissProt version 2014/03? For human studies, it is 



generally more convenient to use the sister database neXtProt, updated at least annually. 

Line 616: What is the date of the Ensembl 75? 

Line 858: typo, “2-hydroxyglutarate”. 

Gilbert S. Omenn, MD, PhD 

Reviewer #3 (Remarks to the Author); expert in glioblastoma: 

Manuscript NCOMMS-19-30472: 

The paper by Sejin Oh et al. addresses an unmet clinical need, e.g. how to stratify patients with 

IDH-WT glioblastoma (GBM) for individualized treatment. They approached this using quantitative 

proteomic analysis on 39 IDH wild-type glioblastoma (GBMs) as well as 2 IDH mutant GBM, 9 low 

grade glioma and 4 normal brains. They then integrated their findings with their prior published 

genomic and drug-sensitivity results from the same patients, which they call “integrated 

pharmaco-proteogenomics”. The manuscript is extremely well written overall and mostly based on 

bioinformatics analyses. These analyses derive potentially interesting protein markers for certain 

biological functions, but these are not experimentally validated, so the tentative conclusions are 

forward looking. 

The main proposed finding of the paper is the identification of two subgroups of IDH wt GBMs 

based on proteomic patterns. GBM proteomic cluster 1 (GPC1) tumors exhibit Warburg-like 

features, and have high expression of neural stem-cell markers and immune checkpoint ligands. 

GPC1 have a high expression of FKBP prolyl isomerase 9 (FKBP9), which correlates with poor 

prognosis. GPC2 tumors show high levels of oxidative phosphorylation-related proteins, and 

differentiated oligodendrocyte and astrocyte markers. GPC2 have high phosphoglycerate 

dehydrogenase (PHGDH), which correlates with favorable prognosis. To try to connect this new 

stratification system to subgroup-specific treatments, the authors re-analyzed their prior published 

results of drug sensitivity testing on primary cultures of the same patients, which evidenced GPC1 

cells are most sensitive to mTORC1/2 dual inhibitor AZD2014. They conclude that their analyses 

can guide GBM prognosis and precision treatment strategies. 

While interesting and clearly patient-relevant, the study novelty is somewhat incremental and the 

conclusions are not yet definitive. The purpose of dividing patients into subtypes is to estimate 

differences in prognosis or derive subtype-specific treatments. The advantage of this novel 

proteomics-based subtype classification is not fully demonstrated in their study. Individual 

markers related to prognosis were proposed from the proteomics analysis, but it is unclear 

whether this classification in two separate proteomic groups (GPC1 and GPC2) is useful for 

estimating patient prognosis. The authors show difference in molecular characteristics between the 

two groups, as well as differences in drug sensitivity on primary tumor cell cultures. However, 

there is no logical mechanistic connection between the molecular characteristics and drug 

sensitivity profiles. 

IDH wt GBM are known to be divided into multiple subtypes with various genetic abnormalities and 

RNA expression profiles, so how to reconcile this prior data with only two proteomic subtypes is 

unclear and perhaps related to the small number of samples analyzed by proteomics (39 GBM), 

versus TCGA that used 500 GBM samples. Moreover, they showed that IDH mutant GBM and 

normal brain are included into their GPC2 subtype, indicating the limitation of this subtype. Below 

are some suggestions the authors can consider to further improve their manuscript. 

Major comments: 

1) They detected an average of 6,294 proteins and 2,796 phosphorylation sites from their 

proteomics analysis. In Ext Fig. 1C, they showed that the number of quantified proteins from each 

set is highly variable. They detected about 5,500 phospho sites in set #8, but only 1,400 in set 



#2. Why such difference? 

2) In Fig. 1F, they found that IDH wt gliomas have elevated phosphorylation of STAT1 at serine-

727 (active STAT1) and its target proteins. Was this elevation found in both GPC subgroups? 

Confirming the findings in in vitro experiments with pertinent tumor cells to validate the results of 

proteomics analysis would strengthen the manuscript. 

3) In Fig.2b, the heat map shows the expression pattern of GPC1 and 2. Most of GPC1 tumors 

have very similar pattern, but the pattern of GPC2 tumors is more heterogeneous. The samples in 

3rd, 4th and 6th columns from the left of GPC2 differ in pattern from other GPC2 samples and are 

more similar to GPC1. This data may indicate that additional subtypes may still exist within the 

GPC2 subtype that may be revealed upon increase in sample numbers. 

4) In Fig.2b, the proteomic expression pattern of normal brain is very similar to the pattern of 

GPC2. In contrast, in RNA seq analysis, there are clear differences between normal and tumors. 

Why is this? 

5) The authors suggest that GPC1 tumors metabolically rely on the Warburg effect based on 

metabolic enzyme expression levels in tumor tissue. Demonstration of relevant metabolite levels in 

GPC1 vs. GPC2 tumors and/or primary cells would consolidate the findings. 

6) Showing survival curves differ between patients with GPC1 and GPC2 signatures would 

strengthen the usefulness of this subgrouping for GBM IDH-wt. 

7) The authors indicate that PHGDN, RFTN2 and FKBP9 could serve as markers to predict patient 

outcome. Independent validation by immunohistochemistry of relative expression of these proteins 

in a blinded set of human samples with different survival would consolidate the findings. 

8) Are PHGDN, RFTN2 and FKBP9 functional markers? Addition of functional data with 

overexpression or downregulation in patient-derived cells would help address this issue. 

9) The authors show that GPC1 tumors have high levels of neural stem cell markers and GPC2 

have high oligodendrocyte and astrocyte markers. From these findings, it is concluded that GPC1 

tumors originate from NSCs, whereas GPC2 tumors originate from differentiated oligodendrocytes 

and astrocytes. However, it is hard to reach that conclusion only based on proteomic profiles as 

GPC2 could differentiate from NSCs. These data only show that GPC1 have NSC-like marker 

expression and GPC2 have astro and oligo-like marker expression. 

10) The authors applied their proteomic subtype classification to published single-cell data. Of 

3,589 single cells, 357 and 428 cells were classified as sGPC1 and sGPC2, respectively. Why did 

only about 10% of cells classify as GPC1 and 2? What does that mean for their overall proteomic 

analysis which was based on whole tumor pieces. 

11) prior proteomics analyses of gliomas have been performed. The authors did not mention how 

their results compare to those of those prior studies, using tumor or other fluids like CSF. 

Minor comments: 

Line 97: “obtained non-uniquely” is a strange terminology. Are these longitudinal samples in same 

patients or are they multi-region sampling? A table of all patient samples clarifying this would be 

helpful. Also explaining the adjacent normal samples (line 129) in this table would further clarify. 

Line 132: “comparing IDH wt and mutant gliomas” does this mean a mix of GBM and lower grade 

gliomas? 

Line 147: replace “all the IDH..” with “the two IDH…” 

Line 148: replace “and LGGs..” with “and the 9 LGGs..” 

Line 152/153: this conclusion appears overstated given the heterogeneity within GPC2. More 

samples are needed for such conclusions. 

Line 174: In figure 3a it would be more intuitive if PC1 could be called PC2, as it associates mostly 

with GPC2 subgroup. PC2 could be renamed PC1 as it associates with GPC1. 

Line 218: replace “considered an origin” with “considered a cell of origin” 

Line 219: replace “represents” with “has” 

Line 219: what does “non-target phosphoproteins” mean? Sentence a bit unclear. 

Line 318/319: this statement is somewhat speculative without experimental validation. Rephrase. 

Line 324-326: add reference 

Line 338: “primarily driven by” is speculative. Replace with “primarily characterized by” 

Line 354: add reference after “for GBM” 



Line 359/360: this conclusion is speculative and not supported by experimental data. 

Line 361: the use of the word “cross-talk” appears inadequate here. 

Line 362: replace “carried” with “carry”
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Reviewers' comments:

Reviewer #1 (Remarks to the Author); expert in glioblastoma: 

Intruguing paper that performs MS classification of a small set of glioma tumors, generates a 

number of intriguing observations regarding utility of proteomic vs DNAseq vs RNAseq data, 

in addition to conclusions regarding prognosis, metabolome, cell of origin and response to 

therapy, offering no futehr biological validation for any of these conclusions.  

Referee point 1: While the paper is generally sound, it would be strengthened by inclusion of 

biological experiments or validation set proteomic data that validate claims. At a minimum, 

they could analyze tumors from a PDX models to see how they fit the classifier, and then use 

them to validate metabolic and therapeutic claims.  

Response: We appreciate this referee’s constructive suggestion. In our revised manuscript, 

we made substantial updates, particularly on experimental validation of our major findings. 

These include 1) validation of elevated phospho-STAT1 in IDH wild-type GBM using IDH 

wild-type and mutant cells in an isogenic background (See Referee point 9), 2) multiplex 

immunohistochemistry data validating the prognostic power of the protein marker PHGDH 

(See Referee point 14), 3) functional validation of PHGDH using established cell line models 

assayed in 3D culture conditions with and without relevant genetic and/or chemical 

perturbations (See Referee point 15), 4) validation of enhanced lactate secretion (Warburg 

effect) in GPC1 subtype using an independent large scale CCLE metabolomics dataset (See 

Referee point 12), and 5) validation of intratumoral heterogeneity at a single cell level using 

independent IDH wild-type GBM tumors via multiplex immunohistochemistry method (See 

Referee point 17).  

Notably, however, we were not able to use PDX models, since, as the referee might expect, 

amplifying and testing different PDX models in a given revision timeline was not feasible. 

Therefore, we decided to use alternative validation methods using in vitro experimental 

models and independent GBM tissues. We hope the referee agrees that the validation results 

provided in the revision have significantly strengthened our claims. 
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Reviewer #2 (Remarks to the Author); expert in proteomics and bioinformatics in 

cancer: 

Authors 

This manuscript from Korea is a very well-written and significant pharmaco-proteogenomic 

analysis of the highly malignant and common form of glioblastoma distinguished as IDH 

wild-type. In sum, multi-omics features of 39 IDH wt GBM tumors were compared with 2 

IDH mutant GBM and 9 low-grade gliomas. Two clusters were identified: GPC1 with 

enhanced glycolysis (Warburg effect), neural stem-cell markers, immune checkpoint ligands, 

and FKBP9, a biomarker for poor prognosis; and GPC2 with high ox-phos proteins, 

oligodendrocyte and astrocyte biomarkers, and PHGDH, a biomarker for relatively better 

prognosis. Patient-derived cells (PDCs) were prepared for testing with many 

chemotherapeutic drugs. An mTORC1/2 dual inhibitor showed notable cytotoxicity against 

the GPC1 poor prognosis PDCs. This categorization may yield much more useful translation 

than the traditional four subtypes: classical, mesenchymal, proneural, and neural (line 60) 

based on transcriptome profiling by TCGA. 

The GPC2 protein expression patterns were much more like normal brain than were the 

GPC1 tumors. With extremely limited data, 2/3 tumors that were recurrent after initially 

effective therapy switched from GPC1 to GPC2 patterns, a good sign. These GPC subtypes 

were independent of the four RNA subtypes, though mutation analysis showed EGFRvIII 

splice isoform and PIK3CA mutations exclusively in GPC1 tumors (of course, there were 

only 2 mutant GBMs and 9 low-grade gliomas. That should be acknowledged. 

I would be interested to know whether other striking findings related to splice isoforms were 

revealed, such as PKM isoforms (driver of Warburg effect) in Figure 3(d) (line 835). 

The single cell analyses yielded interesting results, too. 

An important finding was that the proteomic analyses were much more informative than 

mRNA analyses for capturing action of the drugs. This is quite predictable for kinase-related 

pathways, which require phosphoproteomic analysis. AZD2014 may be a high-quality lead 
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drug candidate. Equally striking is that only 3 of 271 gene expression biomarkers from RNA 

studies (presumably meaning up or down regulated compared to normal brain) were 

“validated” in this proteogenomic study. 

The speculations about cross-talk and stem cells are of interest, too. 

Referee point 2: I would be interested to know whether other striking findings related to 

splice isoforms were revealed, such as PKM isoforms (driver of Warburg effect) in 

Figure 3(d) (line 835). 

Response: We appreciate this referee’s valuable comments. In our proteome data, a total of 

18 protein isoform groups, covering 9 genes (CAPZB, EPB41L3, IKBIP, MAP2, MAP4, 

PFN2, PKM, RTN1 and SNX32) showed different quantification levels between isoforms 

(Table below). 

Gene 

Symbol 
Protein isoform 

T-test P

value 
FDR 

Mean 

GPC1 level 

Mean 

GPC2 

level 

PKM 
P14618;P14618-3 

(PKM2) 
1.20E-4 3.10E-4 0.17 -0.67 

PKM P14618-2 (PKM1) 3.00E-5 9.70E-5 -0.46 1.10 

IKBIP Q70UQ0-3 1.80E-5 9.70E-5 0.46 -0.60 

IKBIP Q70UQ0-4 3.20E-5 9.70E-5 0.43 -0.47 

SNX32 Q86XE0-2 0.036 0.054 0.46 -0.23 

SNX32 Q86XE0 0.14 0.17 0.19 -0.54 

EPB41L3 Q9Y2J2-3;Q9Y2J2-2 2.10E-6 3.80E-5 -0.34 0.66 

EPB41L3 Q9Y2J2 1.70E-4 3.70E-4 -0.27 1.00 

RTN1 Q16799-3 2.00E-5 9.70E-5 -0.51 1.20 

RTN1 Q16799;Q16799-2 8.20E-4 1.50E-3 -0.30 0.51 

CAPZB P47756 2.20E-3 3.60E-3 -0.15 0.38 

CAPZB P47756-2 0.18 0.20 0.091 -0.073 
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PFN2 P35080 3.20E-5 9.70E-5 -0.55 0.99 

PFN2 P35080-2 0.67 0.71 -0.076 0.020 

MAP2 
P11137;P11137-

2;P11137-3 
1.90E-4 3.70E-4 -0.40 0.93 

MAP2 P11137-4 0.94 0.94 0.095 0.11 

MAP4 P27816-3 0.056 0.078 -0.073 0.24 

MAP4 
P27816;P27816-

2;P27816-6 
0.14 0.17 0.011 -0.28 

Of the 18 isoform groups, only PKM isoforms exhibited a mutually exclusive expression 

pattern in two GPC subtypes: PKM1 was significantly elevated in GPC2, while PKM2 was in 

GPC1. This GPC subtype dependent expression of PKM isoforms supports our hypothesis 

that GPC1 tumors are more glycolytic and Warburg-like, whereas GPC2 tumors favor 

oxidative phosphorylation. This is because PKM isoforms function as a key metabolic switch 

determining the catabolic pathway of pyruvate, either to glycolysis (by PKM2) or to 

oxidative phosphorylation (by PKM1) (Dong et al. Oncology Letters 2016). In our revised 

manuscript, we updated the Methods to include whole protein isoform analysis and provided 

a list of protein isoforms found to be GPC subtype selective as follows: 

“In total, 18 protein isoforms (sharing a gene symbol) were quantified across the GISs and 

had different quantification values; these corresponded to nine genes (CAPZB, EPB41L3, 

IKBIP, MAP2, MAP4, PFN2, PKM, RTN1 and SNX32). Among the 18 isoform groups, only 

PKM isoforms exhibited mutually exclusive expression patterns in two GPC subtypes: PKM1 

was significantly elevated in GPC2, whereas PKM2 was in GPC1. For the comparison of 

PKM isoforms, we selected peptides belong either to PKM1-specific exon 9 or PKM2-

specific exon 10. The peptide intensities were normalized based on the corresponding GISs 

and transformed to the log2 scale. The average peptide expression values were then calculated 

according to the specific sequences for either PKM1 or PKM2. Five PKM1 isoforms 

(ENST00000319622, ENST00000389093, ENST00000565154, ENST00000565184, and 

ENST00000568459) and one PKM2 isoform (ENST00000335181) were used. The average 

expression of the isoforms was used for PKM1.” 

Methods Details 
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Referee point 3: Line 566: identify the reference protein database used.

Response: As requested by the referee, we clarified the sentences in the Methods section as 

follows: 

“Peptide and protein identification and quantification were performed using MaxQuant 66

1.5.6.0. The mass spectrometry raw files were searched against the Swiss-Prot human 

database (released in March 2014; http://www.uniprot.org) using the Andromeda search 

engine included in MaxQuant.” 

Referee point 4: Line 573-74: give numbers of peptides and PSMs; why only peptides 

and PSM controlled with FDR <0.01; the protein FDR should be stated and controlled 

below 0.01. 

Response: Answered in Referee point 5 below.

Referee point 5: Line 576: why do you accept “one-hit wonders” for identification after 

saying in 575 that the minimum number of uniquely-mapping peptides was set to 2? 

Response: We apologize for the insufficient description and errors in the Methods section. 

Regarding point 4 above, we did actually apply the same stringency threshold for protein 

quantification (FDR < 0.01). Also, we did analyze proteins whose existence are supported by 

at least two unique peptides (>= 8 amino acids in length with no miscleavages allowed). We 

comprehensively revised the paragraph in the Methods section as follows: 

“The following MaxQuant search parameters were used: semispecific trypsin was selected 

as the enzyme; the carbamidomethylation of cysteine was set as a fixed modification; N-

terminal protein acetylation and oxidation (M) were set as variable modifications; and 

phosphorylation (STY) was set as a variable modification for phosphorylation-enriched 

samples. The reporter ion was set as six-plex TMT for quantification. Peptide matches were 

filtered by a minimum length of eight amino acids and no miscleavages were allowed. The 

false discovery rate (FDR) was set to 0.01 at both the protein and peptide spectrum match 
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(PSM) levels. Proteins identified by at least two unique peptides were used. For protein 

quantification, the minimum ratio count was set to two, and the peptide for protein 

quantification was set as unique. Other settings were kept at their default values. In total, 

9,367 protein groups, 179,234 stripped peptides, and 2,750,407 peptide spectral matches 

(PSMs) were identified from the global proteome. In the case of the phosphoproteome, 8,019 

phosphorylation sites, 16,377 phosphorylated peptides, and 276,153 PSMs were identified. 

The mass spectrometry proteomics data have been deposited to the ProteomeXchange 

Consortium (http://proteomecentral.proteomexchange.org) via the PRIDE partner repository 

with the dataset identifier PXD015545.” 

Referee point 6: Line 612: why did you use and not update the SwissProt version 

2014/03? For human studies, it is generally more convenient to use the sister database 

neXtProt, updated at least annually. 

Response: In our integrated analysis, as we had to generate personalized databases that 

reflect sample-specific somatic mutations, we had to freeze the reference genome and 

transcriptome and proteome databases at the time point of when we generated mass 

spectrometry data. This is why those databases were somewhat outdated. However, the 

differences in the identified peptides and proteins between the old and new releases are small. 

To evaluate the differences therein, we used the raw data of set1 samples (4-1, 12, 18, 20, and 

655N) and compared the qualitative and quantitative results of the two databases (March 

2014 and Sept 2019). Qualitatively, 99% of the discovered peptides (Figure a below) and 

proteins (Figure b below) were identical. 



7 

Only 1% of the proteins and peptides unique to either database did not affect any of the 

main findings of our study. Furthermore, the different quantitative values generated from the 

two databases, observed only in 166 out of 6465 protein groups, exhibited almost perfect 

correlation (Figure below), confirming again that relative protein expression levels are not 

affected by the database issue. 

However, we appreciate the referee’s suggestion and agree that neXtProt is now a better 

option for proteomic studies. Although we did not use it for this manuscript, we will 

definitely consider using it in the future.

Referee point 7: Line 616: What is the date of the Ensembl 75? 
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Response: It was released in February 2014. We added this information in the Methods 

section as follows: 

“For this database, the transcript models in Ensembl 75 (released in February 2014) whose 

FPKM values were > 1 were used, similar to our previous study.” 

Referee point 8: Line 858: typo, “2-hydroxyglutarate”. 

Response: Corrected. Thanks. 

Gilbert S. Omenn, MD, PhD 

Reviewer #3 (Remarks to the Author); expert in glioblastoma:  

Manuscript NCOMMS-19-30472: 

The paper by Sejin Oh et al. addresses an unmet clinical need, e.g. how to stratify patients 

with IDH-WT glioblastoma (GBM) for individualized treatment. They approached this using 

quantitative proteomic analysis on 39 IDH wild-type glioblastoma (GBMs) as well as 2 IDH 

mutant GBM, 9 low grade glioma and 4 normal brains. They then integrated their findings 

with their prior published genomic and drug-sensitivity results from the same patients, which 

they call “integrated pharmaco-proteogenomics”. The manuscript is extremely well written 

overall and mostly based on bioinformatics analyses. These analyses derive potentially 

interesting protein markers for certain biological functions, but these are not experimentally 

validated, so the tentative conclusions are forward looking. 

The main proposed finding of the paper is the identification of two subgroups of IDH wt 

GBMs based on proteomic patterns. GBM proteomic cluster 1 (GPC1) tumors exhibit 

Warburg-like features, and have high expression of neural stem-cell markers and immune 
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checkpoint ligands. GPC1 have a high expression of FKBP prolyl isomerase 9 (FKBP9), 

which correlates with poor prognosis. GPC2 tumors show high levels of oxidative 

phosphorylation-related proteins, and differentiated oligodendrocyte and astrocyte markers. 

GPC2 have high phosphoglycerate dehydrogenase (PHGDH), which correlates with 

favorable prognosis. To try to connect this new stratification system to subgroup-specific 

treatments, the authors re-analyzed their prior published results of drug sensitivity testing on 

primary cultures of the same patients, which evidenced GPC1 cells are most sensitive to 

mTORC1/2 dual inhibitor AZD2014. They conclude that their analyses can guide GBM 

prognosis and precision treatment strategies. 

While interesting and clearly patient-relevant, the study novelty is somewhat incremental and 

the conclusions are not yet definitive. The purpose of dividing patients into subtypes is to 

estimate differences in prognosis or derive subtype-specific treatments. The advantage of this 

novel proteomics-based subtype classification is not fully demonstrated in their study. 

Individual markers related to prognosis were proposed from the proteomics analysis, but it is 

unclear whether this classification in two separate proteomic groups (GPC1 and GPC2) is 

useful for estimating patient prognosis. The authors show difference in molecular 

characteristics between the two groups, as well as differences in drug sensitivity on primary 

tumor cell cultures. However, there is no logical mechanistic connection between the 

molecular characteristics and drug sensitivity profiles. 

IDH wt GBM are known to be divided into multiple subtypes with various genetic 

abnormalities and RNA expression profiles, so how to reconcile this prior data with only two 

proteomic subtypes is unclear and perhaps related to the small number of samples analyzed 

by proteomics (39 GBM), versus TCGA that used 500 GBM samples. Moreover, they 

showed that IDH mutant GBM and normal brain are included into their GPC2 subtype, 

indicating the limitation of this subtype. Below are some suggestions the authors can consider 

to further improve their manuscript.  

Major comments:

Referee point 8: They detected an average of 6,294 proteins and 2,796 phosphorylation 
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sites from their proteomics analysis. In Ext Fig. 1C, they showed that the number of 

quantified proteins from each set is highly variable. They detected about 5,500 phospho 

sites in set #8, but only 1,400 in set #2. Why such difference? 

Response: We appreciate this referee’s valuable comments. The variation the referee pointed 

out is caused by different sample preparation methods used for samples in the first batch 

(consisting of set 1 to set 6) and the second batch (consisting of set 7 to set 11). The Methods 

section described this as follows:  

"The combined sample comprising the first batch was dried in vacuo and subsequently 

desalted using HLB-SPE. By contrast, the combined sample for the second batch was directly 

desalted and subsequently dried in vacuo because drying samples in the presence of 

hydroxylamine is detrimental to phospho-peptides.”  

We changed the sample preparation method for the second batch to improve the stability of 

phospho-peptides. As shown in the Extended Data Fig. 1C, the change allowed us to identify 

twice as many phospho-peptides in the second batch. This change only affected the 

sensitivity of detection and did not affect phospho-protein levels, since the levels were always 

normalized by GIS controls. We demonstrated this by showing that samples from different 

batches were evenly mixed in the principal component analysis (PCA) with 548 phospho-

sites quantified across all 11 sets in the two batches (Figure below). If there was a strong 

batch effect, samples on the PCA plot might be clustered by their own batches. 
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Referee point 9: In Fig. 1F, they found that IDH wt gliomas have elevated 

phosphorylation of STAT1 at serine-727 (active STAT1) and its target proteins. Was 

this elevation found in both GPC subgroups? Confirming the findings in in vitro 

experiments with pertinent tumor cells to validate the results of proteomics analysis 

would strengthen the manuscript. 

Response: We appreciate this feedback. As the referee suggested, we confirmed our findings 

of IDH wild-type selective elevation of STAT1 (pSer727) with an isogenic pair of pertinent 

GBM cells obtained from ATCC: IDH1 wild-type (U87MG) and IDH1 knock-in derivative 

(R132H). Coherent to our original findings, STAT1 (pS727) levels were 1.5 fold higher in 

IDH1 wild-type cells than in its mutant derivative (Figure below; fold difference was 

estimated using ImageJ) (Figure below). We added this result to the revised manuscript (new 

Extended Data Fig. 1f) as follows: 

“Also, IDH mutation status directly affected STAT1-pS727 levels, as shown in an IDH

wild-type and mutant GBM cell line pair in an isogenic U87MG background (Extended Data 

Fig. 1f).” 
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With regard to the referee’s question, there was no meaningful difference in STAT1-pS727 

levels between the two subtypes in our SMC1 cohort (Figure below), indicating it is 

associated with IDH mutant status not GPC subtype.

Referee point 10: In Fig.2b, the heat map shows the expression pattern of GPC1 and 2. 

Most of GPC1 tumors have very similar pattern, but the pattern of GPC2 tumors is 

more heterogeneous. The samples in 3rd, 4th and 6th columns from the left of GPC2 

differ in pattern from other GPC2 samples and are more similar to GPC1. This data 

may indicate that additional subtypes may still exist within the GPC2 subtype that may 

be revealed upon increase in sample numbers. 
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Response: As the reviewer pointed out, the expression pattern of GPC2 was relatively more 

heterogeneous than that of GPC1. However, we would like to emphasize that two of the three 

samples the referee pointed out (3-1 and 3-2) are more closely associated with GPC2 than 

GPC1, as demonstrated by significantly high consensus index values for GPC2 (Figure below; 

classification frequency estimated from 1,000X permutation resampling, **; Wilcoxon rank-

sum, P < 0.00001 ). However, 5-1 is an outlier that was associated with GPC2-subtype 

samples at a slightly higher frequency (52% of GPC2 samples vs. 51% of GPC1 samples) 

(Figure below).

This displays the ambiguous expression pattern of proteins associated with two GPC 

subtypes (Figure below). 
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This suggests that, as the referee pointed out, we cannot rule out the possibility that 

increased sample size may lead to an additional subtype distinct from the two GPC subtypes. 

However, based on our analysis of 39 samples of IDH wild-type GBM, we are confident that 

GPC1 and GPC2 may still represent major IDH wild-type GBM subtypes, even with 

increased sample size. 

To address the referee’s important point, we added the following sentence in the 

Discussion section of the revised manuscript:

“However, some of the samples, particularly in GPC2, exhibited heterogeneous expression 

patterns, compared to other samples in the subtype, suggesting that increased sample size 

may lead to additional subtype(s) distinct from the two major GPC subtypes.” 

Referee point 11: In Fig.2b, the proteomic expression pattern of normal brain is very 

similar to the pattern of GPC2. In contrast, in RNA seq analysis, there are clear 

differences between normal and tumors. Why is this? 

Response: We apologize for the unclear labels on the Figure. Normal tissues on the left were 

only used for proteomic analysis not for RNA-seq. Therefore, we never compared normal and 

tumor tissues at the RNA level. In the figure, grey stripes indicated normal controls, rather 

than molecular subtypes. In the revised manuscript, we clarified the figure as follows:  
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Referee point 12: The authors suggest that GPC1 tumors metabolically rely on the 

Warburg effect based on metabolic enzyme expression levels in tumor tissue. 

Demonstration of relevant metabolite levels in GPC1 vs. GPC2 tumors and/or primary 

cells would consolidate the findings. 

Response: As the referee suggested, showing the actual metabolite levels in primary tumors 

and/or primary cells would be ideal in the validation of the functional consequence of our 

proteome data. However, we hope the referee understands that this would require both a large 

amount and a large number of samples to get reliable measurement of metabolites and to 

obtain sufficient statistical power for comparison, respectively. As available fresh-frozen 

tissues were limited and patient derived cells grow very slowly, we decided to look into 

recent large scale metabolomics datasets instead in an attempt to satisfy both requirements. 

Therein, 225 metabolites (including lactate) were profiled for 928 pertinent cell lines of 

different lineages, including GBM (Li et al. Nat Med 2019). We used transcriptome data to 
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determine sGPC subtypes of 47 GBM cell lines (Figure a below) and compared their lactate 

levels (Figure b below). Coherent to our findings, sGPC1 GBM cell lines (classified under 

permutation resampling p < 0.05, N = 6) exhibited higher levels of lactate than sGPC2 lines 

(N = 10). This supports our hypothesis that GPC1 tumors may rely on the Warburg effect, 

with GPC2 relying on oxidative phosphorylation. Although it is the beyond the scope of this 

study, as the referee suggested, additional large scale studies of primary GBM tumors with 

intact tumor microenvironment are needed for ultimate validation. 

In the revised manuscript, we added the findings from our revision experiments to the Results 

section as follows: 

“Coherent with our proteomic data, GBM cell lines belonging to gene expression-based 

surrogate-GPC1 subtype (sGPC1) exhibited higher lactate levels (Fig. 3e) in the analysis of 

cancer cell line encyclopedia metabolomics data.” 

Referee 13: Showing survival curves differ between patients with GPC1 and GPC2 

signatures would strengthen the usefulness of this subgrouping for GBM IDH-wt.  

Response: When we compared the survival of the GPC1 and GPC2 samples in the Samsung 

Medical Center (SMC) 1 cohort (used for proteomic analysis), GPC1 samples showed 

slightly worse prognosis, although the difference was not statistically significant (Figure a 

below). This trend was observed as well in other independent GBM cohorts with long term 

survival follow-up, including our Yonsei cohort (Figure b below, Park et al. Sci Rep 2019) 
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and the Association des Neuro-Oncologue d’Expression (ANOCEF, Ducray et al. Mol 

Cancer 2010) cohort (Figure c below) (Figure below). However, log rank test P values were 

all insignificant, as indicated below. 

Although GPC subtype itself does not directly predict patient survival, we like to emphasize 

that some of the protein markers that are significantly associated with the subtypes have 

robust predictive power of prognosis for IDH wild-type GBM (See Figure 4a & 4b, Response 

14 below). To make this clear, we added the following sentence to the Results section: 

“However, GPC subtypes did not directly show a significant difference in prognosis (Log 

rank test P = 0.0548, data not shown).” 

Response 14: The authors indicate that PHGDN, RFTN2 and FKBP9 could serve as 

markers to predict patient outcome. Independent validation by immunohistochemistry 

of relative expression of these proteins in a blinded set of human samples with different 

survival would consolidate the findings. 

Response: We are grateful for the reviewer’s constructive suggestion. To address the request, 

we approached this in two ways: first was using gene expression based classification, 

followed by survival analysis of other independent GBM datasets, and second was using in-

house tumor microarray (SMC-TMA) analysis to measure relative expression of these 

proteins by immunohistochemistry, as the referee suggested. 

The first approach was feasible since expression of all three proteins exhibited strong 

positive correlations with their mRNA levels in our SMC1 cohort samples (Figure below). 
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Using the same method by which these survival markers were originally identified in the 

TCGA dataset (Uhlen et al. Science 2017; i.e. divide patients at the gene expression cutoff 

providing the most significant difference in prognosis), we classified patients in the Yonsei 

and ANOCEF cohorts into PHGDH high vs. low, RFTN2 high vs. low, and FKBP9 high vs. 

low, respectively, based on gene expression values of the three markers. As shown in the 

Figure below, PHGDH and RFTN2 showed consistent results to our observation in both 

cohorts (i.e. elevated expression is associated with good prognosis). However, FKBP9, a poor 

prognostic marker confirmed in our study at the protein level, was reproduced in ANOCEF, 

but not in the Yonsei cohort. 
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The differences in prognosis did not rely on single bifurcation cutoff value of gene 

expression, as shown in the scanning window plot below (blue: good prognosis in high 

expression group, orange: poor prognosis in high expression group). Meanwhile, a prognostic 

difference was consistently observed across broad range of cutoffs, except for FKBP9, in the 

Yonsei dataset. 
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Second, we used a tumor microarray (SMC-TMA) to measure relative expression of these 

proteins by Opal, a method for multiplex florescent immunohistochemistry. The SMC-TMA 

contained an array of tumor cores taken from paraffin-embedded tumor tissues and consisted 

of 128 tissue samples: 83 IDH-wild-type GBMs, 4 IDH-mutant GBMs, 35 low grade gliomas, 

and 6 normal control normal tissues. Also, the array included 8 SMC1 and 15 SMC2 samples. 

Due to limited availability of SMC-TMA slides and limited slots for antibodies for 

multiplexing, PHGDH was selected over RFTN2 as a favorable prognostic marker based on 

its greater hazard ratios and more significant Cox regression P values. FKBP9 was also not 

included because it showed inconsistent prognosis patterns in the independent datasets, as 

shown above, and because commercial antibodies available for IHC studies were unable to 

generate reliable signals in the pre-optimization step. Coherently, in both TCGA and SMC1, 

PHGDH-elevated IDH wild-type GBM patients showed better prognosis than PHGDH-low 

patients (Figure below). 
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In the revised manuscript, we added these findings to the Result section as follows:  

“Of the three proteins, PHGDH was the strongest biomarker (Univariate Cox P = 0.0071) 

associated with long-term survivors of IDH wild-type GBM patients in the SMC1 cohort (Fig. 

4d), as well as in other independent datasets at the mRNA-level (Extended Data Fig. 4a). 

Favorable prognosis of PHGDH-high tumors was further validated in 42 independent IDH

wild-type GBM tumors assessed by immunohistochemistry on a tumor tissue microarray 

(SMC-TMA) using an anti-PHGDH antibody (Fig.4g).” We also updated Method section to 

include the SMC-TMA study. 

Referee point 15: Are PHGDN, RFTN2 and FKBP9 functional markers? Addition of 

functional data with overexpression or downregulation in patient-derived cells would 

help address this issue. 

Response: We appreciate this feedback, and it has been one of the major focuses of our post-

submission efforts. To address the referee’s comments, we prepared an experimental setup to 

test whether genetic and/or chemical perturbation of PHGDH in relevant patient-derived cells 

affects aggressiveness. Here, in our revision study, we focused on PHGDH since only this 

marker was consistently associated with prognosis in multiple independent cohorts (Referee 

point 14). We used GBM patient-derived established cell line models rather than patient-

derived primary cells (PDCs) since PDCs are not ideal experimental models for genetic 

perturbation due to their slow proliferation, suspension growth, and limits in number of cell 

divisions. Our strategy was to find relevant cell line models based on protein marker 
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expression in steady state growth conditions and to subject them into Matrigel-based 3D 

sphere culture conditions for quantitative evaluation of the phenotype. 

First, we could divide nine tested GBM cell lines into Nestin-high (potentially representing 

GPC1 subtype) and PHGDH-high (potentially representing GPC2 subtype) groups (Figure a 

below). PHGDH enzymatic activity was concordantly higher in the four PHGDH-high cell 

lines (Figure b below). Notably, FKBP9 expression levels were correlated with Nestin 

(Figure a below), consistent with our findings in primary tumors. 

Next, we selected two PHGDH-high cell lines, HS683 and SNU1105, and treated them 

with NCT-502, a selective PHGDH inhibitor. We observed significantly increased invasion 

(invasive front of the protrusions are indicated by yellow arrowheads in Figure c below) from 

both spheres in 3D matrix (Figure b below) at a concentration suppressing enzymatic activity 

(Figure a below). 
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Conversely, overexpression of PHGDH in two PHGDH negative cell lines, SNU201 and 

A172, decreased invasion (Figure below). 



24 

Taken together, these data indicate that PHGDH is a functional marker and suggest that 

PHGDH may prolong patient survival by suppressing tumor invasion via its increased 

enzymatic activity. The revised manuscript now includes new Fig 4g and 4h and new 

Extended Data Fig 4a for the analysis of the results of functional studies of PHGDH. In 

accordance therewith, substantial updates were made to the Results as follows:  

“The good prognosis of the PHGDH-high group suggests a functional role for PHGDH in 

limiting tumor aggressiveness. Intriguingly, NCT-502, a chemical inhibitor of PHGDH, 

significantly increased invasion of tumor spheres (Fig. 4h) derived from PHGDH-active 

GBM cell lines (Extended Data Fig. 4b & 4c, Supplementary Data 5) into 3D matrix. 

Conversely, PHGDH overexpression in PHGDH-deficient GBM cell lines decreased invasion 

(Extended Data Fig. 4d), suggesting that PHGDH may prolong patient survival by 

suppressing tumor invasion via its increased enzymatic activity.” We also updated the 

Methods section to include the 3D sphere invasion assay and made some minor modifications 

throughout the manuscript to reflect the findings. 
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Referee point 16: The authors show that GPC1 tumors have high levels of neural stem 

cell markers and GPC2 have high oligodendrocyte and astrocyte markers. From these 

findings, it is concluded that GPC1 tumors originate from NSCs, whereas GPC2 tumors 

originate from differentiated oligodendrocytes and astrocytes. However, it is hard to 

reach that conclusion only based on proteomic profiles as GPC2 could differentiate 

from NSCs. These data only show that GPC1 have NSC-like marker expression and 

GPC2 have astro and oligo-like marker expression. 

Response: We agree with the referee’s point that our data are not sufficient to draw a 

conclusion on cell of origin of the two subtypes. A difference in cell of origin may potentially 

explain the observation. Alternatively, as the referee speculated, two subtypes may represent 

cell of origin status and differentiated status therefrom, respectively. With regard to this 

alternative hypothesis, we showed in Extended Data Fig. 2e that relapsed tumors in the three 

longitudinal cases tended to be GPC2. Although the sample size was too small to a draw 

definitive conclusion, these data better fit the alternative hypothesis rather than the different 

cell-of-origin hypothesis described in the original manuscript. Therefore, we revised the 

related sentences in the Results and Discussion sections accordingly to avoid any 

misinterpretation or overstatement as follows: 

Result: “Together, with the observation that recurrent tumors tend to be GPC2 (Extended 

Data Fig. 2e), one potential explanation of these data is that GPC1 tumors originate from 

NSCs, whereas GPC2 tumors differentiate from GPC1. However, we cannot exclude the 

possibility that GPC2 tumors may originate directly from oligodendrocytes and astrocytes."  

Discussion: “A recent study showed that 56% of human GBM cases originate from SVZ-

derived GSCs 25. Thus, we hypothesized that GPC1 subtype might originate from SVZ-

derived glioma stem cells (GSCs).” 

We also modified the tile of the Results section as follows: “GPC-subtype dependent 

expression of neural stem cell, oligodendrocyte, and astrocyte markers.” 

Referee point 17: The authors applied their proteomic subtype classification to 

published single-cell data. Of 3,589 single cells, 357 and 428 cells were classified as 

sGPC1 and sGPC2, respectively. Why did only about 10% of cells classify as GPC1 and 
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2? What does that mean for their overall proteomic analysis which was based on whole 

tumor pieces. 

Response: As the referee pointed out, only a small fraction (22%) of single cells were 

classified into sGPC subtypes. This is because we selected single cells with a high stringent 

statistical cut-off (permutation P <0.05) to remove falsely classified cells due to limited 

mRNA-protein correlation and a sparsity of single cell RNA-seq (scRNA-seq) data. Sparsity 

(missing values) is one of the most challenging issues in scRNA-seq analysis, making it 

difficult to assign reliable sGPC subtypes to cells. Indeed, the sGPC-classified cells had 

statistically higher proportions of expressed genes than the unclassified cells (Wilcoxon rank-

sum test P = 2.32E-7). With the classified single cells, we showed that individual tumors 

contain neoplastic single cells of different sGPC subtypes and that a dominant cellular 

population might determine the representative subtype of bulk tumors. 

To further validate the intratumoral heterogeneity of GPC subtypes at a single cell level, 

we used a tumor microarray (SMC-TMA) of independent IDH wild-type GBM tissues and 

measured relative expression of PHGDH (good prognostic and representing GPC2, Fig. 4c) 

and Nestin (representing GPC1, Fig. 4e) by multiplex florescent immunohistochemistry 

(Opal), both of which generated reliable signal intensities at a single cell resolution. As 

shown in the Figure below, consistent to our original findings, sGPC1 tumors (labeled in blue) 

comprised a significantly higher fraction of Nestin-positive neoplastic cells, whereas sGPC2 

tumors (labeled in red) showed a significantly higher fraction of PHGDH-positive neoplastic 

cells. 
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Intratumoral heterogeneity, observed from the scRNA-seq analysis, was clearly seen in the 

TMA results. If you look at the representative images below, both Nestin+/PHGDH- cells 

(colored in red, representing GPC1 subtype) and PHGDH+/Nestin- cells (colored in yellow, 

representing GPC2 subtype) were found in all the tumor cores, although at different ratios 

matching to their sGPC subtypes (i.e., two sGPC1 tumors contained a higher frequency of 

Nestin+ cells, while two sGPC2 tumors contained a higher frequency of PHGDH+ cells). 
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Collectively, scRNA-seq analysis and multiplex immunohistochemistry analysis of 

independent TMA datasets clearly demonstrated intratumoral heterogeneity in IDH wild-type 

GBM tumors and helped highlight the nature of GPC subtypes at a single cell resolution. Our 

revised manuscript now includes a new Fig. 5g demonstrating single cell level heterogeneity 

of Nestin+ and PHGDH+ cells in tumor tissues, and we updated the Results section as 

indicated below. 

“To further validate the intratumoral heterogeneity of GPC subtypes at a single cell level, 

we used a tumor microarray (SMC-TMA) of independent IDH wild-type GBM tissues to 

measure relative expression of PHGDH (good prognostic marker representing GPC2, Fig 4c) 

and Nestin (representing GPC1, Fig 4e) by multiplex florescent immunohistochemistry that 

generated reliable signal intensities at a single cell resolution. Consistent with our findings in 

the proteomic analysis, sGPC1 tumors exhibited a significantly higher fraction of Nestin 

positive neoplastic cells, whereas sGPC2 tumors comprised a significantly higher fraction of 

PHGDH-positive neoplastic cells (Extended Data Fig. 5b). Intratumoral heterogeneity, 

observed from the scRNA-seq data, was clearly seen in the multiplex florescent 

immunohistochemistry results. Both Nestin+/PHGDH- cells (representing GPC1 subtype) 

and PHGDH+/Nestin- cells (representing GPC2 subtype) were found in all tumor cores, 

albeit with different ratios matching their sGPC subtypes (i.e., two sGPC1 tumors contained a 

higher frequency of Nestin+ cells, while two sGPC2 tumors contained higher frequency of 

PHGDH+ cells (Fig. 5g).” 
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Referee point 18: prior proteomics analyses of gliomas have been performed. The 

authors did not mention how their results compare to those of those prior studies, using 

tumor or other fluids like CSF. 

Response: As the referee pointed out, there are several previous studies reporting proteomic 

analysis on fluids or glioma tissues. For example, Gahoi et al. analyzed cerebrospinal fluid 

from high and low grade glioma samples, focusing on differentially secreted proteins from 

gliomas at different levels (high vs. low grade, IDH wild-type vs. mutant) (Gahoi et al. 

Proteomics. Clinical Applications 2017). More recently, for the early diagnosis and for 

following the progression of GBM patients, Osti et al. investigated protein compositions in 

extracellular vesicles in blood (Osti et al. Clinical Cancer Research 2019). These studies 

commonly investigated a small number of diagnostic biomarker proteins with minimally 

invasive blood sampling, rather than comprehensively profiling global proteomic contents in 

glioblastomas. 

So far, only a few studies have attempted proteomic analysis of GBM tissues. For example, 

in an effort by the TCGA consortium, Brennan et al. conducted reverse phase protein array 

(RPPA) by which 214 sample lysates were probed with 171 antibodies targeting major 

signaling pathway proteins (Brennan et al. Cell 2013). More recently, Hutter et al. applied the 

same method to 60 GBM samples to classify them based on selectively activated signaling 

pathways (Hutter et al. J Neu Onc 2016). However, these RPPA based analyses were strictly 

limited to the tested antibodies, which are not readily applicable to global proteomic analysis. 

More recently, a study of mass spectrometry-based global proteomic analysis of eight GBM 

tissues and paired normal tissues was conducted to identify differentially expressed proteins 

and pathways in tumor tissue, compared to normal tissue (Song et al. Oncotarget 2017). 

Although they found Nestin and OXPHOS proteins to be dysregulated in GBMs, compared to 

normal tissue, they were unable to investigate inter- and intra-tumoral heterogeneity, 

prognostic protein markers, and protein-based drug response predictions, which we believe 

our manuscript first addresses in GBM. Per the referee’s suggestion, we added the following 

revision to the Introduction section: 
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“However, although several studies have conducted proteomic analysis of glioma tissue 

samples or secreted proteins in blood (Gahoi et al. Proteomics. Clinical Applications 2017, 

Osti et al. Clinical Cancer Research 2019, Song et al. Oncotarget 2017), large-scale 

proteomic characterization in the context of GBM has not yet been conducted.” 

Referee point 19: The authors show difference in molecular characteristics between the 

two groups, as well as differences in drug sensitivity on primary tumor cell cultures. 

However, there is no logical mechanistic connection between the molecular 

characteristics and drug sensitivity profiles. 

Response: We greatly appreciate the referee’s attention to the gap in the logical mechanistic 

connection for Fig. 6c in the original manuscript. Of the six drugs (Tandutinib, Olaparib, 

Crizotinib, and AZD2014 for GPC1 subtype and Erismodegib and Canertinib for GPC2 

subtype), we only provided logical mechanistic connections for Olaparib in Fig. 6d by 

showing that GPC1-subtype tumors have elevated BRCAness scores and PARP inhibitor 

sensitivity scores, indicating the concordant pathway activation at the protein level. Upon the 

referee’s request, we thoroughly investigated the difference in drug target pathway activation 

status in the two GPC subtypes at the protein level. As shown in the Figure below, we 

observed drug-sensitivity and target-pathway activation relationships for all other drugs: 

tandutinib (PDGFR inhibitor), PDGFR_Binding; crizotinib (ALK, MET, ROS1 inhibitor), 

Oncogenesis_by_MET; olaparib (PARP inhibitor), BRCAness score; AZD2014 (mTORC1/2 

dual inhibitor), Translational_Initiation; erismodegib (Hedgehog inhibitor), 

Hedgehog_GLI_Pathway; and canertinib (pan-ERBB inhibitor), ERBB2_ERBB3_Pathway. 
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We would like to emphasize that our manuscript already described logical mechanistic 

connections between the molecular characteristics and drug sensitivity profiles of other drug 

sensitivities independent of GPC subtypes (i.e., Fig. 6b for panobinotat and bortezomib and 

Extended Figure 5c/d/e for afatinib, bosutinib, lapatinib, and AZD4547). In result, the revised 

manuscript now comprises updated Fig. 6d, as well as additions to the Results that 

incorporate the findings in responding to the reviewer’s comments as follows: 

“Coherent drug-sensitivity and target-pathway activation relationships for all of these 

drugs were observed at the protein-levels (Fig. 6d): tandutinib (PDGFR inhibitor), 

PDGFR_Binding; crizotinib (ALK, MET, ROS1 inhibitor), Oncogenesis_by_MET; olaparib 

(PARP inhibitor), BRCAness score; AZD2014 (mTORC1/2 dual inhibitor), 

Translational_Initiation; erismodegib (Hedgehog inhibitor), Hedgehog_GLI_Pathway; and 

canertinib (pan-ERBB inhibitor), ERBB2_ERBB3_Pathway. Taken together, these data 

suggest that tandutinib, olaparib, crizotinib and AZD2014 might be a promising targeted 

therapy for GPC1 tumors and that erismodegib and canertinib might be more promising for 

GPC2 tumors.” 

Minor comments:

Referee point 20: Line 97: “obtained non-uniquely” is a strange terminology. Are these 

longitudinal samples in same patients or are they multi-region sampling? A table of all patient 

samples clarifying this would be helpful. Also explaining the adjacent normal samples (line 

129) in this table would further clarify. 

Response: A table of all patient samples with annotations, including multi-region, 

longitudinal, and adjacent normal information, was provided in Supplementary Data 1 in the 

original manuscript. Upon the referee’s request, we corrected the unclear sentence as follows: 

“20 out of 50 samples were obtained redundantly from multiple regions or at different time 

points and had different properties regarding mutation, RNA subtype, 5-aminolevulinic acid 

(5-ALA) positivity, location (locally adjacent or core and margin of tumors), or 

primary/relapse status (Supplementary Data 1).” 
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Referee point 21: Line 132: “comparing IDH wt and mutant gliomas” does this mean a mix 

of GBM and lower grade gliomas? 

Response: Yes. In the original Results section, we summarized overall proteomic profiles 

obtained from 50 glioma samples and 4 normal controls. Therefore, the comparison you 

pointed out was conducted between 44 IDH-wild-type gliomas (39 grade IV and 5 low grade) 

and 6 IDH-mutant gliomas (2 grade IV and 4 low grade). To make this clear, we changed the 

section title and clarified the sentence as follows: 

“Proteomic data represent glioma disease state and underlying biology”, “We then 

compared IDH mutant (N = 6; 2 grade IV and 4 low grade) and IDH wild-type (N=44; 39 

grade IV and 5 low grade) gliomas.” 

Referee point 22: Line 147: replace “all the IDH..” with “the two IDH…” 

Response: Corrected as the referee suggested. 

Referee point 23: Line 148: replace “and LGGs..” with “and the 9 LGGs..” 

Response: Corrected as the referee suggested. 

Referee point 24: Line 152/153: this conclusion appears overstated given the heterogeneity 

within GPC2. More samples are needed for such conclusions. 

Response: We revised the sentence and added the following sentence in Discussion: 

“However, some of the samples, particularly in GPC2, exhibited heterogeneous expression 

patterns, compared to other samples in the subtype, suggesting that increased sample size 

may lead to additional subtype(s) distinct from the two major GPC subtypes.” 

Referee point 25: Line 174: In figure 3a it would be more intuitive if PC1 could be called 

PC2, as it associates mostly with GPC2 subgroup. PC2 could be renamed PC1 as it associates 

with GPC1. 
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Response: In our manuscript, PC1 and PC2 refer to the first principal component and the 

second PC calculated from a statistical method called “principal component analysis (PCA)”. 

PC1 accounts for the largest variability in the data, and PC2 accounts for as much of the 

remaining variability as possible, etc. In our results, the largest variability present in our 

proteome dataset (PC1) was exactly the one that differentiated the two GPC subtypes. 

Therefore, we hope the referee understands that it is not something that we can rename. 

Referee point 26: Line 218: replace “considered an origin” with “considered a cell of origin” 

Response: Corrected as the reviewer suggested. 

Referee point 27: Line 219: replace “represents” with “has” 

Response: Corrected as the reviewer suggested. 

Referee point 28: Line 219: what does “non-target phosphoproteins” mean? Sentence a bit 

unclear. 

Response: Changed to “unrelated phosphoproteins.” 

Referee point 29: Line 318/319: this statement is somewhat speculative without 

experimental validation. Rephrase. 

Response: Per the referee’s suggestion, we toned down the sentence as follows: 

“suggests a possibility that EGFR recycling activity, rather than EGFR kinase activity, may 

determine responses to lapatinib.” 

Referee point 30: Line 324-326: add reference 

Response: Done. 
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Referee point 31: Line 338: “primarily driven by” is speculative. Replace with “primarily 

characterized by” 

Response: Corrected as the reviewer suggested. 

Referee point 32: Line 354: add reference after “for GBM” 

Response: Done. 

Referee point 33: Line 359/360: this conclusion is speculative and not supported by 

experimental data. 

Response: We agree with the reviewer’s comment. In the revised manuscript, we updated the 

sentence as follows: 

“Thus, further research may be needed to evaluate whether the canonical PHGDH function 

or its promiscuous function is associated with favorable prognosis in IDH wild-type GBM.” 

Referee point 34: Line 361: the use of the word “cross-talk” appears inadequate here. 

Response: Updated to “mechanistic connections.” 

Referee point 35: Line 362: replace “carried” with “carry” 

Response: Corrected. Thanks. 



Reviewer #1 (Remarks to the Author): 

Revised manuscript makes some effort to validate findings. 

Reviewer #2 (Remarks to the Author): 

Authors 

You have utilized the review comments and soecific suggestions for clarification and for 

experimental validation to notably strengthen this manuscript. You report numerous new 

experiments and analyses from available data resources. Many findings and conclusions have been 

inserted into the text, and fresh figures and Extended Data materials have been added. It is 

important that you share with the readers what you have presented to the reviewers. 

Two specific details: 

Point 12: Surprised that the largest subtype in the figure is “unknown”. 

Point 18: An important new source of GBM proteogenomics findings should be mentioned from the 

U.S. National Cancer Institute CPTAC3 project: 

https://pdc.cancer.gov/pdc/browse/filters/disease_type:Glioblastoma 

December 2019: A Glioblastoma (GBM) discovery cohort of 99 tumor samples and 10 GTEx normal 

samples analyzed by global proteomic and phosphoproteomic mass spectrometry. 

Gilbert S. Omenn, MD, PhD 

Reviewer #3 (Remarks to the Author): 

We congratulate the authors for adequately responding to our suggestions with additional 

experiments and manuscript modifications.



REVIEWERS' COMMENTS: 

Reviewer #1 (Remarks to the Author):
Revised manuscript makes some effort to validate findings. 

Response: We appreciate this referee’s valuable comments and suggestions. 

Reviewer #2 (Remarks to the Author):
Authors 
You have utilized the review comments and specific suggestions for clarification and for 
experimental validation to notably strengthen this manuscript. You report numerous new 
experiments and analyses from available data resources. Many findings and conclusions have 
been inserted into the text, and fresh figures and Extended Data materials have been added. It 
is important that you share with the readers what you have presented to the reviewers. 
Two specific details: 

Referee point 12: Surprised that the largest subtype in the figure is “unknown”. 

Response: First, we greatly appreciate this referee’s insights and valuable suggestions 
throughout the revision process. The samples were labeled as “unclassified” or “unknown” in 
our surrogate GPC subtyping because they did not reach our stringent statistical threshold. In 
the revised manuscript, we removed “unclassified” and “unknown” samples from the 
Supplementary Fig 3d and Supplementary Fig 5a, respectively, to enhance the clarity of the 
Figures.  

Referee Point 18: An important new source of GBM proteogenomics findings should be 
mentioned from the U.S. National Cancer Institute CPTAC3 
project: https://pdc.cancer.gov/pdc/browse/filters/disease_type:Glioblastoma 
December 2019: A Glioblastoma (GBM) discovery cohort of 99 tumor samples and 10 GTEx 
normal samples analyzed by global proteomic and phosphoproteomic mass spectrometry. 

Response: Thank you for your suggestion. In our revised manuscript, we updated the 
Introduction and References to cite the CPTAC resource for glioblastoma as follows: 
“However, although several studies have conducted proteomic analysis of glioma tissue 
samples16,17 or secreted proteins in blood18, large-scale proteomic characterization in the 
context of GBM has not yet been reported.” 
“17. The U.S. National Cancer Institute’s Clinical Proteomic Tumor Analysis Consortium 
(CPTAC) 3 project, A Glioblastoma (GBM) discovery cohort of 99 tumor samples and 10 
GTEx normal samples analyzed by global proteomic and phosphoproteomic mass 
spectrometry, https://pdc.cancer.gov/pdc/browse/filters/disease_type:Glioblastoma” 

Reviewer #3 (Remarks to the Author):
We congratulate the authors for adequately responding to our suggestions with additional 
experiments and manuscript modifications. 
Response: We particularly appreciate this referee’s detailed and constructive suggestions in 
the first revision process. 


