A fluorescent timer reporter enables sorting of insulin secretory granules by age

Belinda Yau^{1,2}, Lori Hays³, Cassandra Liang⁴, David Ross Laybutt^{4,5}, Helen E Thomas^{6, 7}, Jenny E Gunton^{8,9}, Lindy Williams¹⁰, Wayne J Hawthorne¹⁰, Peter Thorn^{1,11}, Christopher J Rhodes¹² and Melkam A Kebede^{1,2}.

Running title: Sorting out young and old insulin granules

¹Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia.

² School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, New South Wales, Australia.

³ Edmonds Community College, STEM- Dept. of Biology, 20000 68th Avenue W, Lynnwood, WA 98036, USA.

⁴Garvan Institute of Medical Research, Sydney, NSW, Australia

⁵ St Vincent's Clinical School, UNSW Sydney, Sydney, NSW, Australia

⁶ St. Vincent's Institute, Fitzroy, VIC, Australia.

⁷ Department of Medicine, St. Vincent's Hospital, The University of Melbourne, Fitzroy, VIC, Australia.

⁸ Faculty of Health and Medicine, The University of Sydney, Sydney.

⁹ The Westmead Institute for Medical Research, The University of Sydney, Westmead.

¹⁰ Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia; National Pancreas and Islet Transplant Unit (NPITU), Westmead Hospital, Sydney, NSW, Australia.

¹¹ Discipline of Physiology, School of Medical Sciences, Charles Perkins Centre, University of Sydney, Camperdown, 2006, Australia.

¹² AstraZeneca, Cardiovascular, Renal and Metabolism, Biopharmaceuticals R&D, One Medimmune Way, Gaithersburg, MD 20878, USA.

Correspondence should be addressed to: Melkam Kebede: D-17 Charles Perkins Centre, Orphans School Creek lane, University of Sydney, Camperdown, NSW 2006, Australia; P: +61 2 8627 0164; Email: <u>melkam.kebede@sydney.edu.au;</u> ORCID: <u>https://orcid.org/0000-0001-9686-7378</u>

Keywords: insulin, beta-cell, vesicles, insulin secretion, Type 2 diabetes, insulin secretory granule (SG), exocytosis, granule aging, fluorescent timer, dsRed-E5

Supplementary Figure 1

5 µm

Supplementary Figure 1. Young and old insulin granules labelled with syncollin-dsRedE5TIMER differentially localise at the plasma membrane. TIRF microscopy at 488 nm and 561 nm at an illumination angle of ~110 nm at the plasma membrane of INS1 rat beta cell line fixed at (A) 24 h or (B) 72 h post-transduction with syncollin-dsRedE5TIMER.

Supplementary Figure 2. Syncollin-dsRedE5TIMER-expressing granules are genuine granules in INS1 cells. (A) Backgating analysis of young and old granule populations. **(B)** FAOS gating strategy for single subcellular particles between 100 nm and 500 nm, as described in Figure 2B, can be applied unchanged to the INS1 rat beta cell line. **(C)** FAOS analysis of INS1 832/13 cells and hPro-CpepsfGFP-expressing INS1 832/13 GRINCH cells, gated for GFP fluorescence at 488 nm. **(D)** FAOS analysis of unstained Min6 and Min6 stained with guinea pig anti-insulin and Alexa Fluor 647-conjugated anti-guinea pig secondary fluorophore, gated for fluorescence at 633 nm.