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In this supporting information we provide details of calculations for the equations in the
main text.

1 Calculation of local relaxation times

We define a function Pn(t ) as the probability to reach the state n at time t . The dynamics in the
system can be described by a set of master equations:

dP0(t )

d t
= ko f f

N∑
n=1

Pn(t )−konP0(t ), (S1)

for n = 0, and
dP1(t )

d t
= konP0(t )− (kp +ko f f )P1(t ), (S2)

for n = 1, and
dPn(t )

d t
= kp Pn−1(t )− (kp +ko f f )Pn(t ), (S3)

for 1 < n < N and
dPN (t )

d t
= kp PN−1(t )−ko f f PN (t ), (S4)

for n = N . We also have the normalization condition,

N∑
n=0

Pn(t ) = 1. (S5)

In the Laplace language, these equations can be rewritten as

(s +kp +ko f f )P̃n(s) = kp P̃n−1(s); (S6)

(s +kp +ko f f )P̃1(s) = konP̃0(s); (S7)

(s +ko f f )P̃N (s) = kp P̃N−1(s); (S8)
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(s +kon)P̃0(s) = ko f f

N∑
n=1

P̃n(s)+1. (S9)

The normalization equation gives
N∑

n=0
P̃n(s) = 1

s
. (S10)

Eqs. S6, S7, S8, S9 can be solved, yielding

P̃0(s) = (s +ko f f )

s(s +kon +ko f f )
, (S11)

for n = 0; and

P̃n(s) =
kon(s +ko f f )kn−1

p

s(s +kon +ko f f )(s +kp +ko f f )n
, (S12)

for 0 < n < N ; and

P̃N (s) =
konkN−1

p

s(s +kon +ko f f )(s +kp +ko f f )N−1
, (S13)

and for n = N . The stationary probabilities can be found from Eqns. S2, S3, S4 for large times
when the left sides of these equations are equal to zero. We obtain then,

P0 =
ko f f

kon +ko f f
. (S14)

For 0 < n < N it gives

Pn =
konko f f kn−1

p

(kon +ko f f )(kp +ko f f )n
, (S15)

and for n = N ,

PN =
konkN−1

p

(kon +ko f f )(kp +ko f f )N−1
. (S16)

Now let us derive the times to reach the stationary states at the site n. We define a relaxation
function Rn(t ), which is given by

Rn(t ) = 1− Pn(t )

P (s)
n

, (S17)

where P (s)
n is the stationary concentration in the state n. The physical meaning of this function

is the relative distance to the stationary state at the state n. For n > 0, we have Rn(t = 0) = 1,
and Rn(t → ∞) = 0. Therefore, it can be shown that the average time to reach the stationary
concentration at the state n is equal to τn = ∫ ∞

0 Rn(t )d t = R̃n(s = 0). Using this expression, we
obtain the times to reach the stationary states at the fully modified complex n = N ,

τ0 = 1

kon +ko f f
; (S18)

τn = 1

kon +ko f f
+ n

kp +ko f f
− 1

ko f f
; (S19)
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and

τN = 1

kon +ko f f
+ N −1

kp +ko f f
. (S20)

Fig. S1 presents our theoretical predictions on the dependence of the relaxation times on the
phosphorylation rate kp , on the complex formation rate kon and on the complex dissociation
rate ko f f . It shows that for experimentally relevant parameters τN depends relatively weakly on
the association rate, while it is more sensitive to changes in the dissociation and phosphoryla-
tion rates. Increasing kp or ko f f lowers the relaxation time. The reason for this behavior can
be understood from the chemical kinetic scheme. The dominating term in the relaxation time
[see Eq. (S20)] is the time to move through the sequence of the phosphorylation events starting
from the state n = 1 and finishing in the state n = N , and it depends only on kp and ko f f . For
larger kon and kp , the phosphorylations are fast and this lowers the overall relaxation times, as
expected. In addition, increasing ko f f accelerates the formation of the stationary state between
TCR-ligand bound and ligand unbound states.

0.2 0.4 0.6 0.8 1.0
kon

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

k p

N

2.5

3.0

3.5

4.0

4.5

5.0

5.5

0.2 0.4 0.6 0.8 1.0
koff

0.4

0.5

0.6

0.7

0.8

0.9

1.0

k p

N

3

4

5

6

7

8

9

10

(a)

(b)

Figure S1: Heat maps for the relaxation times τN (in seconds) as a function of the transition
rates in the system: (a) varying kp - kon (in s−1) parameter space (with ko f f = 1 s−1 and N = 6),
and (b) varying kp - ko f f (s−1) parameter space (with kon = 1 s−1 and N = 6).
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2 Calculation of mean first-passage times and their variances

In this section, we calculate the mean first passage time to reach a specific state. Since we only
consider the first-passage times, the system dynamics become independent of the initial equi-
librium binding as shown in Fig S2. Here we present a model with homogeneous kinetic rates.
The equations can be easily solved for inhomogeneous rates. We define Fn(t ) as the probability
to reach state N at time t if at t = 0 the system starts in the state n = 1. Time evolution of this
function is governed by following backward master equation:

dFn

d t
= kp Fn+1 − (ko f f +kp )Fn (S21)

with initial condition FN (t ) = δ(t ). After performing Laplace transform we obtain

(s +kp +ko f f )F̃n(s) = kp F̃n+1(s) (S22)

This equation leads to a full exact solution,

F̃1(s) =
(

kp

s +ko f f +kp

)N−1

. (S23)

2 3 N-1… N
!"!"

!#$$

1
!"

!#$$ !#$$ !#$$ !#$$

Figure S2: Schematic diagram for calculations of mean-first passage times.

We define Tn as a mean-first passage time to reach the state N from the the state n. Using
the probability density function Fn(t ), it can be written as

< T1 >=
∫ ∞

0 tF1(t )d t∫ ∞
0 F1(t )d t

= −∂F̃1
∂s |s=0

F̃n(s = 0)
. (S24)

Thus, the first-passage time is given by

< T1 >= N −1

ko f f +kp
. (S25)

Now we can calculate the second moment for mean-first passage time,

< T 2
1 >=

∫ ∞
0 t 2F1(t )d t∫ ∞

0 F1(t )d t
=

−∂2F̃1
∂s2 |s=0

F̃n(s = 0)
. (S26)

which after some algebra leads to

< T 2
1 >= N (N −1)

(ko f f +kp )2
. (S27)

Variance of mean first passage time is given by

σT1 =
√
< T 2

1 >−< T1 >2 =
p

N −1

ko f f +kp
(S28)
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TCR I Ab +3K
mutation

KD

(µM)
kon

(M−1s−1)
koff

(1/s)
t1/2

(s)
Proliferation

EC50 (nM)
TNF-α

EC50 (nM)

B3K506 WT 7 101918 0.7 0.9 0.2 3.1
B3K506 P5R 11 74654 0.8 0.9 0.2 6.0
B3K506 P8R 13 64318 0.8 0.8 0.3 7.0
B3K506 P-1A 26 101731 2.6 0.3 9.0 68.0
B3K506 P8A 92 33370 3.1 0.2 1200.0 2210.0
B3K506 P-1K 101 55149 5.6 0.1 660.0 5500.0
B3K508 WT 29 10887 0.3 2.2 0.4 6.0
B3K508 P5R 93 11048 1.0 0.7 15.0 87.0
B3K508 P2A 175 19914 3.5 0.2 71.0 530.0

Table 1: The data and kinetic parameters are taken from Ref. 7 in the main text.

peptide
name

peptide
sequence

ko f f (1/s)
kon ×10−3

(M−1 s−1)
EC50(I F N−γ)

(µg/ml pMHC )
predicted

activity

ESO-9C SLLMWITQC 0.82 ±0.01 57 ±3 115 ±14 foreign
ESO-9L SLLMWITQL 0.93 ±0.05 17 ±2 42 ±113 self
ESO-9V SLLMWITQ V 0.33 ±0.01 45 ±4 180 ±19 foreign
ESO-3A SLAMWITQV 0.31 ±0.01 47 ±4 70 ±15 foreign
ESO-3I SLIMWITQV 0.61 ±0.04 35 ±3 94 ±16 foreign
ESO-3M SLMMWITQV 0.38 ±0.01 42 ±1 48 ±7 foreign
ESO-3Y SLYMWITQV 1.15 ±0.04 38 ±1 240 ±50 self
ESO-4D SLLDWITQV 2.59 ±0.15 10 ±1 661 ±85 self
ESO-6V SLLMWVTQV 0.85 ±0.03 49 ±2 45 ±5 foreign
ESO-6T SLLMWTTQV 1.30 ±0.03 13 ±1 228 ±62 self
ESO-7H SLLMWIHQV 1.73 ±0.09 17 ±2 526 ±201 self
A2-R65 SLLMWITQV 1.93 ±0.13 17 ±1 479 ±12 self
A2-H70 SLLMWITQV 0.22 ±0.01 2.7 ±0.1 151 ±19 foreign
A2-H74 SLLMWITQV 0.49 ±0.01 19 ±1 107 ±12 foreign
A2-R75 SLLMWITQV 0.39 ±0.00 23 ±1 99 ±12 foreign
A2-V76 SLLMWITQV 0.67 ± 0.01 31 ± 2 146 ± 38 foreign
A2-K146 SLLMWITQV 0.48 ± 0.01 24 ± 2 179 ± 23 foreign

Table 2: Kinetic parameters and activation potency 1G4 TCR interaction with pMHC variants.
(table adapted from Ref. 31 in the main text).
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