Biophysical Journal, Volume 119

Supplemental Information

Relaxation Times of Ligand-Receptor Complex Formation Control T

Cell Activation

Hamid Teimouri and Anatoly B. Kolomeisky

Relaxation times of ligand-receptor complex formation control T cell activation

Hamid Teimouri and Anatoly B Kolomeisky

June 3, 2020

In this supporting information we provide details of calculations for the equations in the main text.

1 Calculation of local relaxation times

We define a function $P_n(t)$ as the probability to reach the state *n* at time *t*. The dynamics in the system can be described by a set of master equations:

$$
\frac{dP_0(t)}{dt} = k_{off} \sum_{n=1}^{N} P_n(t) - k_{on} P_0(t),
$$
\n(S1)

for $n = 0$, and

$$
\frac{dP_1(t)}{dt} = k_{on}P_0(t) - (k_p + k_{off})P_1(t),
$$
\n(S2)

for $n = 1$, and

$$
\frac{dP_n(t)}{dt} = k_p P_{n-1}(t) - (k_p + k_{off}) P_n(t),
$$
\n(S3)

for $1 < n < N$ and

$$
\frac{dP_N(t)}{dt} = k_p P_{N-1}(t) - k_{off} P_N(t),
$$
\n(S4)

for $n = N$. We also have the normalization condition,

$$
\sum_{n=0}^{N} P_n(t) = 1.
$$
\n(S5)

In the Laplace language, these equations can be rewritten as

$$
(s + k_p + k_{off})\widetilde{P}_n(s) = k_p \widetilde{P}_{n-1}(s);
$$
\n^(S6)

$$
(s + k_p + k_{off})\widetilde{P}_1(s) = k_{on}\widetilde{P}_0(s);
$$
\n(S7)

$$
(s + k_{off})\widetilde{P}_N(s) = k_p \widetilde{P}_{N-1}(s);
$$
\n(S8)

$$
(s + k_{on})\widetilde{P}_0(s) = k_{off} \sum_{n=1}^{N} \widetilde{P}_n(s) + 1.
$$
 (S9)

The normalization equation gives

$$
\sum_{n=0}^{N} \widetilde{P}_n(s) = \frac{1}{s}.
$$
\n(S10)

Eqs. [S6,](#page-1-0) [S7,](#page-1-1) [S8,](#page-1-2) [S9](#page-2-0) can be solved, yielding

$$
\widetilde{P}_0(s) = \frac{(s + k_{off})}{s(s + k_{on} + k_{off})},
$$
\n(S11)

for $n = 0$; and

$$
\widetilde{P}_n(s) = \frac{k_{on}(s + k_{off})k_p^{n-1}}{s(s + k_{on} + k_{off})(s + k_p + k_{off})^n},
$$
\n(S12)

for $0 < n < N$; and

$$
\widetilde{P}_N(s) = \frac{k_{on}k_p^{N-1}}{s(s + k_{on} + k_{off})(s + k_p + k_{off})^{N-1}},
$$
\n(S13)

and for $n = N$. The stationary probabilities can be found from Eqns. [S2,](#page-1-3) [S3,](#page-1-4) [S4](#page-1-5) for large times when the left sides of these equations are equal to zero. We obtain then,

$$
P_0 = \frac{k_{off}}{k_{on} + k_{off}}.\tag{S14}
$$

For $0 < n < N$ it gives

$$
P_n = \frac{k_{on}k_{off}k_p^{n-1}}{(k_{on} + k_{off})(k_p + k_{off})^n},
$$
\n(S15)

and for $n = N$,

$$
P_N = \frac{k_{on}k_p^{N-1}}{(k_{on} + k_{off})(k_p + k_{off})^{N-1}}.
$$
\n(S16)

Now let us derive the times to reach the stationary states at the site *n*. We define a relaxation function $R_n(t)$, which is given by

N−1

$$
R_n(t) = 1 - \frac{P_n(t)}{P_n^{(s)}},
$$
\n(S17)

where $P_n^{(s)}$ is the stationary concentration in the state $n.$ The physical meaning of this function is the relative distance to the stationary state at the state *n*. For $n > 0$, we have $R_n(t = 0) = 1$, and $R_n(t \to \infty) = 0$. Therefore, it can be shown that the average time to reach the stationary concentration at the state *n* is equal to $\tau_n = \int_0^\infty R_n(t) dt = \tilde{R}_n(s = 0)$. Using this expression, we obtain the times to reach the stationary states at the fully modified complex $n = N$,

$$
\tau_0 = \frac{1}{k_{on} + k_{off}};
$$
\n^(S18)

$$
\tau_n = \frac{1}{k_{on} + k_{off}} + \frac{n}{k_p + k_{off}} - \frac{1}{k_{off}};
$$
\n(S19)

and

$$
\tau_N = \frac{1}{k_{on} + k_{off}} + \frac{N - 1}{k_p + k_{off}}.\tag{S20}
$$

Fig. S1 presents our theoretical predictions on the dependence of the relaxation times on the phosphorylation rate *kp*, on the complex formation rate *kon* and on the complex dissociation rate k_{off} . It shows that for experimentally relevant parameters τ_N depends relatively weakly on the association rate, while it is more sensitive to changes in the dissociation and phosphorylation rates. Increasing k_p or k_{off} lowers the relaxation time. The reason for this behavior can be understood from the chemical kinetic scheme. The dominating term in the relaxation time [see Eq. [\(S20\)](#page-3-0)] is the time to move through the sequence of the phosphorylation events starting from the state $n = 1$ and finishing in the state $n = N$, and it depends only on k_p and k_{off} . For larger *kon* and *kp*, the phosphorylations are fast and this lowers the overall relaxation times, as expected. In addition, increasing k_{off} accelerates the formation of the stationary state between TCR-ligand bound and ligand unbound states.

Figure S1: Heat maps for the relaxation times τ_N (in seconds) as a function of the transition rates in the system: (a) varying k_p - k_{on} (in s⁻¹) parameter space (with $k_{off} = 1$ s⁻¹ and $N = 6$), and (b) varying $k_p - k_{off}$ (s⁻¹) parameter space (with $k_{on} = 1$ s⁻¹ and $N = 6$).

2 Calculation of mean first-passage times and their variances

In this section, we calculate the mean first passage time to reach a specific state. Since we only consider the first-passage times, the system dynamics become independent of the initial equilibrium binding as shown in Fig S2. Here we present a model with homogeneous kinetic rates. The equations can be easily solved for inhomogeneous rates. We define $F_n(t)$ as the probability to reach state *N* at time *t* if at $t = 0$ the system starts in the state $n = 1$. Time evolution of this function is governed by following backward master equation:

$$
\frac{dF_n}{dt} = k_p F_{n+1} - (k_{off} + k_p) F_n \tag{S21}
$$

with initial condition $F_N(t) = \delta(t)$. After performing Laplace transform we obtain

$$
(s + k_p + k_{off})\widetilde{F}_n(s) = k_p \widetilde{F}_{n+1}(s)
$$
\n^(S22)

This equation leads to a full exact solution,

$$
\widetilde{F}_1(s) = \left(\frac{k_p}{s + k_{off} + k_p}\right)^{N-1}.\tag{S23}
$$

Figure S2: Schematic diagram for calculations of mean-first passage times.

We define *Tⁿ* as a mean-first passage time to reach the state *N* from the the state *n*. Using the probability density function $F_n(t)$, it can be written as

$$
\langle T_1 \rangle = \frac{\int_0^\infty t F_1(t) dt}{\int_0^\infty F_1(t) dt} = \frac{-\frac{\partial \widetilde{F}_1}{\partial s}|_{s=0}}{\widetilde{F}_n(s=0)}.
$$
\n(S24)

Thus, the first-passage time is given by

$$
\langle T_1 \rangle = \frac{N-1}{k_{off} + k_p}.\tag{S25}
$$

Now we can calculate the second moment for mean-first passage time,

$$
\langle T_1^2 \rangle = \frac{\int_0^\infty t^2 F_1(t) dt}{\int_0^\infty F_1(t) dt} = \frac{-\frac{\partial^2 \widetilde{F_1}}{\partial s^2}|_{s=0}}{\widetilde{F_n}(s=0)}.
$$
\n(S26)

which after some algebra leads to

$$
\langle T_1^2 \rangle = \frac{N(N-1)}{(k_{off} + k_p)^2}.\tag{S27}
$$

Variance of mean first passage time is given by

$$
\sigma T_1 = \sqrt{T_1^2 - T_1^2} = \frac{\sqrt{N-1}}{k_{off} + k_p}
$$
\n(S28)

TCR	IA^b+3K mutation	K_{D} (μM)	k_{on} $(M^{-1}s^{-1})$	k_{off} (1/s)	$t_{1/2}$ (s)	Proliferation EC_{50} (nM)	TNF- α EC_{50} (nM)
B3K506	WТ	7	101918	0.7	0.9	0.2	3.1
B3K506	P ₅ R	11	74654	0.8	0.9	0.2	6.0
B3K506	P8R	13	64318	0.8	0.8	0.3	7.0
B3K506	$P-1A$	26	101731	2.6	0.3	9.0	68.0
B3K506	P8A	92	33370	3.1	0.2	1200.0	2210.0
B3K506	$P-1K$	101	55149	5.6	0.1	660.0	5500.0
B3K508	WT	29	10887	0.3	2.2	0.4	6.0
B3K508	P5R	93	11048	1.0	0.7	15.0	87.0
B3K508	P ₂ A	175	19914	3.5	0.2	71.0	530.0

Table 1: The data and kinetic parameters are taken from Ref. 7 in the main text.

predicted activity	$EC_{50}(IFN-\gamma)$ $(\mu$ g/ml pMHC)	k_{on} × 10^{-3} $(M^{-1} s^{-1})$	k_{off} (1/s)	peptide sequence	peptide name
foreign	115 ± 14	57 ± 3	0.82 ± 0.01	SLLMWITQC	ESO-9C
self	$42 + 113$	$17 + 2$	0.93 ± 0.05	SLLMWITQL	ESO-9L
foreign	$180 + 19$	45 ± 4	0.33 ± 0.01	SLLMWITQ V	ESO-9V
foreign	$70 + 15$	$47 + 4$	0.31 ± 0.01	SLAMWITOV	ESO-3A
foreign	$94 + 16$	35 ± 3	0.61 ± 0.04	SLIMWITOV	ESO-3I
foreign	$48 + 7$	42 ± 1	0.38 ± 0.01	SLMMWITQV	ESO-3M
self	240 ± 50	38 ± 1	1.15 ± 0.04	SLYMWITOV	ESO-3Y
self	$661 + 85$	10 ± 1	2.59 ± 0.15	SLLDWITQV	ESO-4D
foreign	$45 + 5$	49 ± 2	0.85 ± 0.03	SLLMWVTQV	ESO-6V
self	228 ± 62	13 ± 1	1.30 ± 0.03	SLLMWTTQV	ESO-6T
self	526 ± 201	$17 + 2$	1.73 ± 0.09	SLLMWIHQV	ESO-7H
self	479 ± 12	17 ± 1	1.93 ± 0.13	SLLMWITQV	A2-R65
foreign	151 ± 19	2.7 ± 0.1	0.22 ± 0.01	SLLMWITQV	A2-H70
foreign	107 ± 12	19±1	0.49 ± 0.01	SLLMWITQV	A2-H74
foreign	$99 + 12$	23 ± 1	0.39 ± 0.00	SLLMWITOV	A2-R75
foreign	146 ± 38	31 ± 2	0.67 ± 0.01	SLLMWITQV	A2-V76
foreign	179 ± 23	24 ± 2	0.48 ± 0.01	SLLMWITOV	A2-K146

Table 2: Kinetic parameters and activation potency 1G4 TCR interaction with pMHC variants. (table adapted from Ref. 31 in the main text).