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Abstract: Background.  Nearly all molecular sequence databases currently use gzip for data
compression. Ongoing rapid accumulation of stored data calls for more efficient
compression tool. Although numerous compressors exist, both specialized and
general-purpose, choosing one of them was difficult because no comprehensive
analysis of their comparative advantages for sequence compression was available.
Findings.  We systematically benchmarked 430 settings of 48 compressors (including
29 specialized sequence compressors and 19 general-purpose compressors) on
representative FASTA-formatted datasets of DNA, RNA and protein sequences. Each
compressor was evaluated on 17 performance measures, including compression
strength, as well as time and memory required for compression and decompression.
We used 27 test datasets including individual genomes of various sizes, DNA and RNA
datasets, and standard protein datasets. We summarized the results as the Sequence
Compression Benchmark database (SCB database, http://kirr.dyndns.org/sequence-
compression-benchmark/) that allows building custom visualizations for selected
subsets of benchmark results.
Conclusion.  We found that modern compressors offer large improvement in
compactness and speed compared to gzip. Our benchmark allows comparing
compressors and their settings using a variety of performance measures, offering the
opportunity to select the optimal compressor based on the data type and usage
scenario specific to particular application.
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Response to Reviewers: Reply to reviewers

We sincerely appreciate a thorough review by the two reviewers. Our replies are
below.

> Reviewer #1:

> This article describes a benchmark for FASTA data that includes online material with
a very high potential to be used by the genomic/proteomic data compression
community. The benchmark is wide, balanced, and fair. The online tool for visualization
of the benchmark is efficiently implemented and easy to follow. The benchmark
includes a good set of tools. In general, the work reflects a high knowledge of the tools
and bioinformatics background. However, some concerns first need to be addressed
before entering in a much more detailed review mode.

Thank you for taking time to review our work in detail and for the kind comment.

> Major concerns:

> There are many compressors for many purposes. Choosing a compressor depends
on the purpose. These purposes are not limited to fast decompression of good
representations, namely to fast data transfer or integration with other tools. For
example, long-term storage removes the importance of fast decompression and
increases the importance over the compression ratio. The same can be seen for
compressors that aim to approximate the Kolmogorov complexity, namely for genomic
or proteomic analysis (phylogenomics, authentication, motif localization,
rearrangements, among many others). Here, the importance in only at the efficiency of
the compressor side using affordable (usually high) computational time and RAM.

> Developing efficient genomic/proteomic compressors is also a methodology to
improve unsupervised algorithms for data mining or machine learning. An example of
this can be seen in the Hutter prize (http://prize.hutter1.net/), a half-million-dollar prize
where compressors can spend up to 10GB of RAM and 100 hours to compress 1 GB
of data. A version of the PAQ9 algorithm, which is comparatively a very "slow"
program, is currently the state-of-the-art. Therefore, centering somewhat the results in
NAF (which is perhaps the best industry-oriented FASTA compressor) and limiting the
conclusions to the fastest decompression algorithms according to somewhat good
compression capabilities does not entirely represent the field of genomic/proteomic
data compression. This because FASTA data is already in post-processed state [semi-
assembled (contig, scaffold), or assembled], unlike FASTQ. This exclusivity would
make sense in FASTQ. Therefore, these notions and wider conclusions would make
the manuscript stronger.

Thank you for your detailed comment. We agree that there are many purposes for
compression. This is why our benchmark includes 17 performance measures, including
compression ratio. The users of our benchmark are free to consider measures that are
most relevant to their application. In the manuscript, we tried to repeatedly emphasize
the diversity of applications of our benchmark, because we believe that this benchmark
should be useful for a broad variety of compressor uses.

In our study, we consider an application of compressors for actual data compression,
with the main goals of conserving storage, network and computation resources
required for managing large amounts of data. We believe that many compressor users
(ourselves included) working with large biological datasets may benefit from a detailed
investigation of compressor performances, such as what we offer in the current
benchmark.

We do not explicitly address related topics such as "approximating the Kolmogorov
complexity", "phylogenomics, authentication, motif localization, rearrangements",
"unsupervised algorithms for data mining or machine learning". Involving such topics is
currently outside of the scope of our work. We'd like to keep our manuscript focused
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and avoid confusing the readers, considering that the issue is already complex, and
considering the broad data collected and summarized in our benchmark.

We certainly strongly support scenarios prioritizing compression strength over any
other considerations. In fact, majority of the specialized sequence compressors (with
few exceptions such as GTZ and DSRC) tend to prioritize compression strength and
neglect speed. We have spent substantial efforts and computation resources
benchmarking such compressors, because we believe they should be fairly
represented, even though we ourselves don't have much use for them.

Regarding the mentioned very slow PAQ9, currently we already include several closely
related compressors: cmix (arguably, a state of the art in compression strength for
general-purpose data compression), zpaq (descendant from the PAQ family of
algorithms), and zpipe (somewhat redundant piping variant of zpaq, although a bit
older code). We are open to including more of such compressors in the future.
However, long computation time required by some of such compressors means that
they may be benchmarked only on smaller datasets, such as in the case of cmix, which
is only benchmarked on datasets smaller than 10 MB.

Regarding "centering somewhat the results in NAF". We removed any mentions of
NAF from the "Conclusion" section of the manuscript. We still mention NAF along with
other top performing compressors in the "Benchmark" section. We are not aware of
any of our results that are "centered in NAF".

We believe the revised version of the text is more neutral.

> I also missed some protein sequence compressors, namely the recent protein
compressor AC [AC: A Compression Tool for Amino Acid Sequences
(https://link.springer.com/article/10.1007/s12539-019-00322-1 )]. Sometimes, these are
lost in a keyword search. A chain on amino acids can make a protein, therefore, the
authors will find protein compressors defined as amino acid sequence compressors.
The AC disadvantages: only for protein sequences (not FASTA), slower and, currently,
RAM increases according to the redundancy and size of the sequence (but easily it
can be adapted to a cache-hash).

Thank you very much for the suggestion. We have added AC to the benchmark.

> Suggestion:

> Given the current times, perhaps a very important dataset to add to the benchmark
would be the whole viral database from the NCBI (FASTA format). It can be easily
obtained from here: https://www.ncbi.nlm.nih.gov/labs/virus/vssi

Thank you for the suggestion. We have added two datasets from the NCBI Virus
datasets that you mention. One is a 122 MB protein dataset "NCBI Virus RefSeq
Protein", another is a 482 MB DNA dataset "NCBI Virus Complete Nucleotide Human".

> Minor:

> From 1993 to 2020 there are 27 years, therefore, the longevity of special-purpose
compressors is 27-year-old. Biocompress was already available in 1992, before the
publication on the DCC (in march of 1993, after review). Therefore, it could also be 28,
although 27 is a safe date.

I'm not completely sure where this comment applies, as we don't specifically discuss
longevity of special-purpose compressors. However, we mention longevity of gzip,
which, coincidentally, was also first released in 1993. As gzip's Wikipedia article (
https://en.wikipedia.org/wiki/Gzip ) mentions: "Initial release31 October 1992; 27 years
ago". Thus, we updated the number to 27.

> Please, improve the format of the figures and tables.

We improved figures and tables (as far as we saw a space for improvement).
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> Some of the bullets have a final ".", others don't. Please, pick one and use the same
format.

Thank you, we changed the lists to a consistent format. Namely, we use final "." in
those bulleted lists where each entry is a complete sentence. In other bulleted lists,
where entries are just items of the list, we don't use final ".".

> Reviewer #2:

> General:

> The article is well constructed and has a good explanation of the use cases for
different measurement criteria, such as archival, database retrieval, one-time transfers
and memory usage.

> There is good attention to detail with specifying the exact versions and commit
hashes of each tool, the parameters used (and their processing scripts), and
references for downloading each data set.  This aids reproducibility and importantly
aids the use of this benchmark framework for future software authors.

> Probably this article came out of the analysis for "naf", by the same authors,
demonstrating that nibble-packing plus zstd is an unexpectedly strong contender.
However a benchmarking framework is a valid and useful piece of work in its own right.
To this end, the authors not only provide the results and a useful website, but also the
tools used for producing it permitting future tools to be validated against the same data
sets using the same methods.  This greatly improves the value of this work.

> Specifics:

> 1. The abstract is good.  The assertion that most sequence datasets use gzip is
valid, if disappointing.  I checked the EMBL sequence archive, UniProt/SwissProt and
NCBI's RefSeq, all of which are gzipped.

> The findings / conclusion part are also good, stressing the benchmark framework and
presentation rather than recommending specific tools which seems appropriate.

> Language throughout is good.

Thank you very much for the time you spent reviewing our work and for encouraging
comments.

> 2. The scope needs to be clearly spelt out.

> Specifically it is targeting genomic sequence datasets (eg the aforementioned EMBL
sequence databank) and not DNA sequencing reads, hence no quality values either.
This is interesting as it's a little bit of a different focus from several other benchmarks.

> It's also excluding reference based compression tools (eg GRS, GReEn, RLZ,
CRAM).  The line has to be drawn somewhere so I fully understand this, but the scope
of what the article covers as well as what it doesn't cover should be more explicit.

Thank you for the suggestion. We have clarified the scope in the "Scope, compressors
and test data" section (previously named "Compressors and test data").

> 3. Mentioning "DNA alignments" is a bit ambiguous as most people now think of
output from an aligner such as bwa - ie SAM format.  The format being used here is the
earlier style of dash-padded sequence sets.  Please clarify this distinction.  I'm not sure
what the proper term is, but I think "multiple sequence alignment" covers it.

Thank you for the suggestion. We have changed all mentions of alignment data to use
"multiple sequence alignment" wording.

> 4. It is a little unclear precisely which data is being compressed.
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> Obviously quality values are not as mention is made to adapting fastq compressors
to the task.  How about reference names?  Other ancillary data after the reference
name (oh how I loathe FASTA for that ill-defined mess). Is it purely sequence being
evaluated, or the entire FASTA file?  Do tools have to be case sensitive?  Do they
need to cope with ambiguity codes?

> The wrapper scripts cope with some of these things, but it is unclear if this is simply
for purposes of testing the compression worked e.g. given the lack of support for lower
case, or whether this information is actually being included in the evaluation and added
as a side-channel for tools that don't support it natively.  If so, how is that done?

> Looking at the wrapper scripts it appears these other types of data get written to
separate files and compressed with zstd.  This needs documenting in the paper itself,
along with an explanation of whether the size of those ancillary files is added to the
compressed size, and also whether the time taken is included.  (I am assuming yes,
but please be explicit.)

Thank you for the suggestion. Indeed this was not clearly explained. We added long
explanation in the "Methods" section, under "Streaming mode" and "FASTA format
compatibility" headers.

Each compressor has to losslessly compress the entire full-featured FASTA file,
including sequence names, case sensitivity and ambiguity codes. All compressors that
lack native support for this, receive it via our wrappers. As you correctly assumed, the
size of ancillary files, as well as time spent on pre-processing the FASTA stream and
extracting these side channels (as well as adding them back during decompression) is
counted as part of the total measurement.

Fortunately our wrappers are really fast and don't impact the results much for most
compressors. However, all non-trivial wrappers (which means implementing anything
more than streaming support) are benchmarked in "wrapper-only" mode and their
results are included in benchmark database. Also fortunately those extra files are
usually very small and compress well, so they don't impact overall compression rate
much.

While admittedly not perfect, this seemed like the only viable strategy that would allow
to compare the diverse array of compressors (each doing their own thing), and at the
same time to have them doing a useful task (as opposed to compressing a raw stream
of ACGT).

> 5. Tool selection.

> There are various fastq compression tools not benchmarked, including but not limited
to FQSqueezer, Minicom, Orcom and FaStore.  Are these planned? This is hinted at
with "our study is not a one-off benchmark, but marks the start of a project where we
will continue to add compressors and test data".

> However this is somewhat of a never ending task, as is alluded to with "Since it's
impractical to benchmark every existing compressor, we will continue to only
benchmark compressors selected based on their performance, quality and usefulness
for sequence compression".

> If there are specific reasons why some tools were not evaluated then perhaps this
should be mentioned on the website under rejected tools along with a reason (eg for
speed, robustness, reordering of data).

Thank you for a good suggestion. Indeed some compressors are still missing in
benchmark, each with their own reason. We've been keeping notes about all such
potential additions, so it makes perfect sense to share those notes on the website. We
now added the "Missing Compressors" page to the website, accessible from the
"Compressors" page. Direct link: http://kirr.dyndns.org/sequence-compression-
benchmark/?page=Missing-Compressors .

I believe the benchmark is currently reasonably thorough, but there will always be
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more compressors to test.

Regarding the mentioned tools:

FQSqueezer - has been added to the benchmark.

Minicom - has been added to the benchmark.

ORCOM - seems to always re-order the reads, making it incompatible with our
conditions.

FaStore - seems to always re-order the reads, making it incompatible with our
conditions.

I have to add that testing FASTQ compressors on FASTA data (via adding constant
quality) is mainly of theoretical interest and probably has little practical value.

FASTQ compressors are usually designed under a FASTQ-specific set of
assumptions, such as: "all reads are very short", "all reads are of same length", "order
of reads does not matter", "all reads are sampled from underlying genome with
substantial coverage". These assumptions don't hold in typical FASTA data and in our
benchmark. So the results we obtain for FASTQ compressors may not transfer well to
their performance on actual data they are designed for.

We added a mention of this to the "Scope" section on the "About" page on the website.

Still it's interesting to see how different approaches and compressors handle genomes
and other FASTA datasets, so we will probably continue to benchmark FASTQ
compressors.

> 6.  Wrapper scripts/tools.

> How much time is in processing vs the actual tool?  For example bsc.pl $cmd is little
more than running bsc, while Quip's has 5 components piped together before piping
into quip itself.  Is the quip tool the bottleneck here and therefore the speed of the other
bits irrelevant? I see most are in C, so it's possibly minimal impact, but it is hard to
judge.  If the impact is minimal, then it's probably best to acknowledge that it was
measured and found to be insignificant.

Following this comment, we now also discuss this in the "FASTA format compatibility"
part of the "Methods" section. In case when wrappers add anything other than
streaming support, we benchmarked the "wrapper-only" runs, so that such runs can be
compared with complete "wrapper+compressor" runs. This allows us to see how much
of the time is consumed by the wrapper.

In most cases the impact is minimal. There are few cases where wrappers significantly
impact compression or decompression speed. Such cases occur when 2 conditions
overlap: 1) Compressor is very fast. 2) Compressor requires extensive data
preprocessing. Notable examples are 2bit and DSRC.

This can be seen by including both the compressor and its wrapper in a scatterplot
produced on benchmark website. We added links to such analyses to the "Examples"
page on the website.

> Was CPU (user+system) time measured at all?  If so then the ratio of wall clock to
CPU time is a good indication of whether the pipeline is causing stalls or not.

Only total wall clock time was measured. I agree this could be interesting, but I don't
expect much stalls. Could be interesting to try it some time.

One problem with such measurements is that I found that they influence speed of the
fastest compressors. This is why, for example, memory use and speed are measured
separately, using different runs of the same compressor.
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> 7. Using fastq-from-sequence may mean that some tools has timings that aren't
entirely comparable.  While still a valid time for that tool, it's not indicative of the time
for the sequence-only portion of that tool.

Yes, exactly. This is an inevitable consequence of testing FASTQ compressors on
FASTA data, and it will remain until we add actual FASTQ data. Currently we are not
sure whether we will be able to do it, but it's a possibility we consider for the future.

> I don't think there is much you can do to mitigate this bar rewriting other peoples
code, so realistically it's just something that could be presented as a warning.

We added an explanation and a warning in the new "FASTQ Compressors" part of the
"Methods" section. We also added corresponding warning in the "Scope" section on
the "About" page on the website.

> 8. Be explicit as to the license on your software.  Some had a license declaration
(public domain) but not all.

Thanks, we specified a license (public domain) on the "Wrappers" page of the website.

> 9. A minor typographical: "[A] wide variety of charts can be produced..."

Thanks, fixed.

> Thank you for your work.

We sincerely appreciate your valuable comments on this manuscript.

Additional Information:

Question Response

Are you submitting this manuscript to a
special series or article collection?

No

Experimental design and statistics

Full details of the experimental design and
statistical methods used should be given
in the Methods section, as detailed in our
Minimum Standards Reporting Checklist.
Information essential to interpreting the
data presented should be made available
in the figure legends.

Have you included all the information
requested in your manuscript?

Yes

Resources

A description of all resources used,
including antibodies, cell lines, animals
and software tools, with enough
information to allow them to be uniquely
identified, should be included in the
Methods section. Authors are strongly

Yes
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encouraged to cite Research Resource
Identifiers (RRIDs) for antibodies, model
organisms and tools, where possible.

Have you included the information
requested as detailed in our Minimum
Standards Reporting Checklist?

Availability of data and materials

All datasets and code on which the
conclusions of the paper rely must be
either included in your submission or
deposited in publicly available repositories
(where available and ethically
appropriate), referencing such data using
a unique identifier in the references and in
the “Availability of Data and Materials”
section of your manuscript.

Have you have met the above
requirement as detailed in our Minimum
Standards Reporting Checklist?

Yes
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Abstract 

Background. Nearly all molecular sequence databases currently use gzip for data compression. Ongoing 

rapid accumulation of stored data calls for more efficient compression tool. Although numerous compressors 

exist, both specialized and general-purpose, choosing one of them was difficult because no comprehensive 

analysis of their comparative advantages for sequence compression was available. 

Findings. We systematically benchmarked 430 settings of 48 compressors (including 29 specialized 

sequence compressors and 19 general-purpose compressors) on representative FASTA-formatted datasets of 

DNA, RNA and protein sequences. Each compressor was evaluated on 17 performance measures, including 

compression strength, as well as time and memory required for compression and decompression. We used 27 

test datasets including individual genomes of various sizes, DNA and RNA datasets, and standard protein 

datasets. We summarized the results as the Sequence Compression Benchmark database (SCB database, 

http://kirr.dyndns.org/sequence-compression-benchmark/) that allows building custom visualizations for 

selected subsets of benchmark results. 

Conclusion. We found that modern compressors offer large improvement in compactness and speed 

compared to gzip. Our benchmark allows comparing compressors and their settings using a variety of 

performance measures, offering the opportunity to select the optimal compressor based on the data type and 

usage scenario specific to particular application. 
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Background 

Molecular sequence databases store and distribute DNA, RNA and protein sequences as compressed 

FASTA-formatted files. Biological sequence compression was first proposed in 1986 [1] and the first 

practical compressor was made in 1993 [2]. A lively field emerged that produced a stream of methods, 

algorithms, and software tools for sequence compression [3,4]. However, despite this activity, currently 

nearly all databases universally depend on gzip for compressing FASTA-formatted sequence data. This 

incredible longevity of the 27-year-old compressor probably owes to multiple factors, including 

conservatism of database operators, wide availability of gzip, and its generally acceptable performance. 

Through all these years the amount of stored sequence data kept growing steadily [5], increasing the load on 

database operators, users, storage systems and network infrastructure. However, someone thinking to replace 

gzip invariably faces the questions: which of the numerous available compressors to choose? And will the 

resulting gains be even worth the trouble of switching? 

Previous attempts at answering these questions are limited by testing too few compressors and by 

using restricted test data [6-11]. In addition, all of these studies provide results in form of tables, with no 

graphical outputs, which makes the interpretation difficult. Existing benchmarks with useful visualization 

such as Squash [12], are limited to general-purpose compressors. 

The variety of available specialized and general-purpose compressors is overwhelming. At the same 

time the field was lacking a thorough investigation of comparative merits of these compressors for sequence 

data. Therefore we set out to benchmark all available and practically useful compressors on a variety of 

relevant sequence data. Specifically, we focused on the common task of compressing DNA, RNA and 

protein sequences, stored in FASTA format, without using reference sequence. The benchmark results were 

shown in the Sequence Compression Benchmark database (SCB database,  http://kirr.dyndns.org/sequence-

compression-benchmark/). 

Scope, compressors and test data 

We considered the common scenario of archiving, transferring and working with large datasets of 

biological sequences. In this study we did not investigate compression of raw sequencing data in FASTQ 



format, which was previously thorougly reviewed in [11]. Instead we focused on typical FASTA-formatted 

datasets, which includes individual genomes and single gene sets. Consequently we also did not consider 

referential compression, but only reference-free compression, which is typically used for such data. We 

evaluated standalone compression tools (rather than libraries), working under Linux OS on a modern 

workstation PC. In this study we only consider lossless compression. 

We tested all DNA sequence compressors that are available and functional in 2020: dnaX [13], XM 

[14], DELIMINATE [15], Pufferfish [16], DNA-COMPACT [17], MFCompress [18], UHT [19], GeCo [20], 

GeCo2 [21], JARVIS [22], NAF [23], and NUHT [24]. We also included the relatively compact among 

homology search database formats: BLAST [25] and 2bit - a database format of BLAT [26]. 

Since compressors designed for FASTQ data can be trivially adopted for FASTA-formatted inputs, 

we also included a comprehensive array of compressors designed primarily or specifically for FASTQ data: 

BEETL [27], Quip [28], fastqz [10], fqzcomp [10], DSRC 2 [29], Leon [30], LFQC [31], KIC [32], ALAPY 

[33], GTX.Zip [34], HARC [35], LFastqC [36], SPRING [37], Minicom [38], and FQSqueezer [39]. We also 

included AC - a compressor designed exclusively for protein sequences [40]. We also tested a 

comprehensive array of general purpose compressors: bcm [41], brieflz[42], brotli [43], bsc [44], bzip2 [45], 

cmix [46], gzip [47], lizard [48], lz4 [49], lzop [50], lzturbo [51], nakamichi [52], pbzip2 [53], pigz [54], 

snzip [55], xz [56], zpaq [57], zpipe [57] and zstd [58]. See Table 1 for the list of compressors we used. 

For the test data, we selected a variety of commonly used sequence datasets in FASTA format: (1) 

Individual genomes of various sizes, as examples of non-repetitive data [59,60]; (2) DNA and RNA datasets, 

such as collections of mitochondrial genomes, influenza virus sequences [60,61,62,59], 16S rRNA gene 

sequences [63], and genomic multiple DNA sequence alignments [64]; (3) Standard protein datasets 

[65,66,61,67]. Individual genomes are less repetitive, while other datasets are more repetitive. In total we 

used 27 test datasets. See Table 2 for the list of test data. All test data is available at the GigaDB repository. 

Benchmark 

We benchmarked each compressor on every test dataset, except in cases of incompatibility (e.g., 

DNA compressors cannot compress protein data) or excessive time requirement (some compressors are so 

slow that they would take weeks on larger datasets). For compressors with adjustable compression level, we 



tested the relevant range of levels. We tested both 1 and 4-thread variants of compressors that support multi-

threading. In total, we used 430 settings of 48 compressors. We also included the non-compressing "cat" 

command as control. For compressors using wrappers, we also benchmarked the wrappers. 

Currently many sequence analysis tools support gzip-compressed files as input. Switching to another 

compressor may require either adding support of new format to those tools, or passing the data in 

uncompressed form. The latter solution can be achieved with the help of Unix pipes, if both the compressor 

and the analysis tool support streaming mode. Therefore, we benchmarked all compressors in streaming 

mode (streaming uncompressed data in both compression and decompression). 

 For each combination of compressor setting and test dataset we recorded compressed size, 

compression time, decompression time, peak compression memory and peak decompression memory. The 

details of the method and raw benchmark data are available in the Methods section and Supplementary Data, 

respectively. We share benchmark results and scripts at the SCM database website:  

http://kirr.dyndns.org/sequence-compression-benchmark/. 

The choice of measure for evaluating compressor performance depends on prospective application. 

For long-term data storage, compactness may be the single most important criterion. For public sequence 

database, the key measure is how long time it takes from initiating the download of compressed files until 

accessing the decompressed data. This time consists of transfer time plus decompression time (TD-Time). 

Corresponding transfer-decompression speed (TD-Speed) is computed as Original Size / TD-Time. In this 

use case compression time is relatively unimportant, since compression happens only once, while transfer 

and decompression times affect every user of the database. For one-time data transfer, all three steps of 

compression, transfer and decompression are timed (CTD-Time), and used for computing the resulting 

overall speed (CTD-Speed). 

A total of 17 measures, including the above-mentioned ones, are available in our results data (See 

Methods for the list of measures). Any of these measures can be used for selecting the best setting of each 

compressor and for sorting the list of compressors. These measures can be then shown in a table and 

visualized in column charts and scatterplots. This allows tailoring the output to answer specific questions, 

such as what compressor is better at compressing particular kind of data, or which setting of each compressor 



performs best at particular task. The link speed that is used for estimating transfer times is configurable. The 

default speed of 100 Mbit/sec corresponds to the common speed of a fixed broadband internet connection. 

Fig.1 compares the performance of best settings of 36 compressors on human genome. It shows that 

specialized sequence compressors achieve excellent compression ratio on this genome. However, when total 

TD-Speed or CTD-Speed is considered (measures that are important in practical applications), most 

sequence compressors fall behind the general-purpose ones. The best compressors for this dataset in terms of 

compression ratio, TD-Speed and CTD-Speed are "fastqz-slow", "naf-22" and "naf-1", respectively (numbers 

in each compressor name indicate compression level and other settings). Interestingly, the non-compressing 

"cat" command used as control, while naturally showing at the last place on compression ratio (Fig.1A), is 

not the slowest in terms of TD-Speed and CTD-Speed (Figs.1B and 1C, respectively). In case of CTD-

Speed, for example, it means that some compressors are so slow that their compression + transfer + 

decompression time turns out to be longer than time required for transferring raw uncompressed data (using 

particular link speed, in this case 100 Mbit/sec). 

Fig.2 compares all compressor settings on the same data (human genome). Fig.2A shows that the 

strongest compressors often provide very low decompression speed (shown using logarithmic scale due to 

the enormous range of values), which means that quick data transfer (resulting from strong compression) 

offered by those compressors is offset by significant waiting time required for decompressing the data. 

Fig.2B shows TD-Speed plotted against CTD-Speed. Similar figures can be constructed for other data and 

performance measures on the SCB database website. 

Visualizing results from multiple test datasets simultaneously is possible, with or without 

aggregation of data. With aggregation, the numbers will be summed or averaged, and a single measurement 

will be shown for each setting of each compressor. Without aggregation, the results of each compressor 

setting will be shown separately on each dataset. Since the resulting number of data points can be huge, in 

such case it is useful to request only best settings of each compressor to be shown. The criteria for choosing 

the best setting is selectable among the 17 measurements. In case of a column chart, any of the 17 measures 

can be used for ordering the shown compressors, independently of the setting used for selecting best version, 

and independently for the measure actually shown in the chart. 



One useful capability of the SCB database is showing measurements relative to specified compressor 

(and setting). This allows selecting a reference compressor and comparing the other compressors to this 

reference. For example, we can compare compressors to gzip as shown on Fig.3. In this example, we 

compare only best settings of each compressor, selected using specific measures (transfer+decompression 

speed and compression+transfer+decompression speed on Figs.3A and 3B, respectively). We also used fixed 

scale to show only range above 0.5 on both axes, which means that only performances that are at least half as 

good as gzip on both axes as shown. In this example, we can see that some compressors improve 

compactness and some improve speed compared to gzip, but few compressors improve both at the same 

time, such as lizard, naf, pigz, pbzip, and zstd. 

It is important to be aware of the memory requirements when choosing a compressor (Fig.4). In 

these charts we plotted data size on the X axis, and disabled aggregation. This allows seeing how much 

memory a particular compressor used on each test dataset. As this example shows memory requirement 

reaches saturation point for most compressors. On the other hand, some compressors have unbounded 

growth of consumed memory, which makes then unusable for large data. Interestingly, gzip apparently has 

the smallest memory footprint, which may be one of the reasons for its popularity. Most compressors can 

function on a typical desktop hardware, but some require larger memory, which is important to consider 

when choosing a compressor that will be run by the consumers of distributed data. 

A wide variety of charts can be produced on the benchmark website by selecting specific 

combinations of test data, compressors, and performance measures. At any point the currently visualized data 

can be obtained in textual form using Table output option. Also, all charts can be downloaded in SVG 

format. 

Conclusions 

Our benchmark reveals complex relationship between compressors and between their settings, based 

on various measures. We found that continued use of gzip is usually far from an optimal choice. 

Transitioning from gzip to a better compressor brings significant gains for genome and protein data, and is 

especially beneficial with repetitive DNA/RNA datasets. The optimal choice of compressor depends on 

many factors, including properties of the data to be compressed (such as sequence type, data size, and 



amount of redundancy), relative importance of compression strength, compression speed and decompression 

speed for particular use scenario, as well as amount of memory available on data machines used for 

compression and decompression. Our benchmark allows comparing compressors on individual performance 

metrics, as well as on their combinations. 

The Sequence Compression Benchmark (SCB) database will help in navigating the complex 

landscape of data compression. With dozens of compressors available, making an informed choice is not an 

easy task and requires careful analysis of the project requirements, data type and compressor capabilities. 

Our benchmark is the first resource providing a detailed practical evaluation of various compressors on a 

wide range of molecular sequence datasets. Using the SCB database, users can analyze compressor 

performances on variety of metrics, and construct custom reports for answering project-specific questions. 

In contrast to previous studies that showed their results in static tables, our project is dynamic in two 

important senses: (1) the result tables and charts can be dynamically constructed for a custom selection of 

test data, compressors, and measured performance numbers, and (2) our study is not a one-off benchmark, 

but marks the start of a project where we will continue to add compressors and test data. 

Making an informed choice of compressor with the help of our benchmark will lead to increased 

compactness of sequence databases, with shorter time required for downloading and decompressing. This 

will reduce the load on network and storage infrastructure, and increase speed and efficiency in biological 

and medical research. 
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Methods 

Benchmarked task 

The task is to compress and decompress a FASTA-formatted file containing DNA, RNA or protein 

sequences. The process has to be lossless, i.e., decompressed data must be byte-to-byte identical to the 

original data. Compression and decompression are done without using any reference genome. Each 

compression and decompression task is executed via a Linux in a command line interface. Input data for 

compression and output data during decompression are streamed using Unix pipes. 

Only well-formed FASTA files are used in the benchmark: They must contain no empty lines and all 

long sequence lines have to be wrapped at the same position. Both large and small (soft-masked) letters can 

be present, as well as common ambiguity codes. In multiple sequence alignments, additionally, dash ("-") is 

used for indicating gaps. Each test dataset is compressed separately from other datasets. 

Compressor selection 

We used all specialized sequence compressors that we could find and make to work for the above 

specified task. For general-purpose compressors we used only the major ones, in terms of performance, 

historical importance, or popularity. For each compressor with configurable compression level (or other 

parameters related to compression strength of speed), we used the relevant range of settings, including the 

default. 

Benchmark machine 



 CPU: dual Xeon E5-2643v3 (3.4 GHz, 6 cores), hyperthreading: off 

 RAM: 128 GB DDR4-2133 ECC Registered 

 Storage: 4 x 2 TB SSD, in RAID 0, XFS filesystem, block size: 4096 bytes (blockdev --getbsz) 

 OS: Ubuntu 18.04.1 LTS, kernel: 4.15.0 

 GCC: 7.4.0 

Compressor/dataset combinations that were tested 

Each setting of each compressor is tested on every test dataset, except when it's difficult or 

impossible due to compressor limitations: 

 AC is a protein-specific compressor, and was tested only on protein datasets. 

 Due to their extreme slowness, these compressors are not tested on any data larger than 10 MB: 

cmix, DNA-COMPACT, GeCo, JARVIS, Leon, and XM. 

 UHT fails on the 245 MB dataset and on larger data. 

 Nakamichi was only used on data smaller than 200 MB due to its slowness and memory 

requirements. 

 Among sequence compressors, only DELIMINATE, MFCompress and NAF support multiple 

sequence alignments. 

 Among sequence compressors, only AC, BLAST and NAF support protein sequences. 

 Some settings of XM crash and/or produce wrong decompressed output on some data - such results 

are not included. 

 NUHT's memory requirement makes it impossible to use on 13.4 GB Picea abies genome. 

 LFastqC fails on 2.7 GB dataset and larger data. 

Benchmark process 

The entire benchmark is orchestrated by a perl script. This script loads the lists of compressor 

settings and test data, and proceeds to test each combination that still has its measurements missing in the 

output directory. For each such combination (of compressor setting and test dataset), the following steps are 

performed: 



1. Compression is performed by piping the test data into the compressor. Compressed size and 

compression time is recorded. For compressed formats consisting of multiple files, sizes of all files 

are summed together. 

2. If compression time did not exceed 10 seconds, 9 more compression runs are performed, recording 

compression times. Compressed data from previous run is deleted before each next compression run. 

3. The next set of compression runs is performed to measure peak memory consumption. This set 

consists of the same number of runs as in steps 1-2 (either 1 or 10 runs). That is, for fast compressors 

and for small data the measurement is repeated 10 times. 

4. Decompression test run is performed. In this run decompressed data is piped to the "md5sum -b -" 

command. The resulting md5 signature is compared with that of the original file. In case of any 

mismatch this combination of compressor setting and dataset is disqualified and its measurements 

are discarded. 

5. Decompression time is measured. This time decompressed data is piped to /dev/null. 

6. If decompression completed within 10 seconds, 9 more decompression runs are performed and 

timed. 

7. Peak decompression memory is measured. The number of runs is same as in steps 5-6. 

8. The measurements are stored to a file. All compressed and temporary files are removed. 

Measurement methods 

Measuring time: Wall clock time was measured using Perl's Time::HiRes module (gettimeofday and 

tv_interval subroutines). The resulting time was recorded with millisecond precision. 

Measuring peak memory consumption: First, each compression command was stored in a temporary 

shell script file. Then it was executed via GNU Time, as /usr/bin/time -v cmd.sh >output.txt. "Maximum 

resident set size" value was extracted from the output. 1638 was then subtracted from this value and the 

result was stored as peak memory measurement. 1638 is the average "Maximum resident set size" measured 

by GNU Time in the same way for an empty shell script. 

Memory consumption and time were measured separately because measuring memory makes the 

task slower, especially for very fast tasks. 



Collected measurements 

For each combination of compressor and dataset that was tested, the following measurements were 

collected: 

 Compressed size (in bytes) 

 Compression time (in milliseconds) 

 Decompression time (in milliseconds) 

 Peak compression memory (in GNU Time's "Kbytes") 

 Peak decompression memory (in GNU Time's "Kbytes") 

In cases where 10 values are collected, the average value is used by the benchmark web-site. 

Computed values 

The following values were calculated based on the measured values: 

 Compressed size relative to original (%) = Compressed size / Uncompressed size * 100 

 Compression ratio (times) = Uncompressed size / Compressed size 

 Compression speed (MB/s) = Uncompressed size in MB / Compression time 

 Decompression speed (MB/s) = Uncompressed size in MB / Decompression time 

 Compression + decompression time (s) = Compression time + Decompression time 

 Compression + decompression speed (MB/s) = Uncompressed size in MB / (Compression time + 

Decompression time) 

 Transfer time (s) = Uncompressed size / Link speed in B/s 

 Transfer speed (MB/s) = Uncompressed size in MB / Transfer time 

 Transfer + decompression time (s) = Transfer time + Decompression time 

 Transfer + decompression speed (MB/s) = Uncompressed size in MB / (Transfer time + 

Decompression time) 

 Compression + transfer + decompression time (s) = Compression time + Transfer time + 

Decompression time 

 Compression + transfer + decompression speed (MB/s) = Uncompressed size in MB / (Compression 

time + Transfer time + Decompression time) 



Rationale for non-constant number of runs 

Variable number of runs is the only way to have both accurate measurements and large test data 

(under the constraints of using one test machine, and running benchmark within reasonable time). 

On one hand, benchmark takes lot of time. So much that some compressors can't be even tested at all 

on dataset larger than 10 MB in reasonable time. Therefore repeating every measurement 10 times is 

impractical. Or, it would imply restricting the test data to only small datasets. 

On the other hand, measurements are slightly noisy. The shorter measured time, the more noisy its 

measurement. Thus for very quick runs, multiple runs allow for substantial noise suppression. For longer 

runs it does not make much difference, because the relative error is already small with longer times. 

Using a threshold of 10 seconds seems to be a reasonable compromise between suppressing noise 

and including larger test data (and slow compressors). 

Streaming mode 

For compression, each compressor was reading the input data streamed via unix pipe ("|" in the 

command line). For decompression, each compressor was set up to stream decompressed data via pipe. This 

was done to better approximate a common pattern of using compressors in a practical data analysis scenario. 

In an actual sequence analysis workflow, often decompressed data is piped directly into a downstream 

analysis command. Also, when compressing the sequences, often the data is first pre-processed with another 

command, which then pipes processed sequences to a compressor. 

Some compressors don't implement streaming mode, and only work with actual files. Since we have 

to benchmark all compressors on the same task, we added streaming mode to such compressors via wrapper 

scripts. For compression, a wrapper reads input data from "stdin" and writes it into a temporary file, then 

executes a compressor on that file, and finally deletes the file. For decompression the reverse process occurs: 

A wrapper executes decompressor which writes decompressed data into a temporary file, then reads this file 

and streams it to "stdout", before deleting the file. 

The entire process is timed for the benchmark. Normally such wrapping has minimal impact on the 

overall compression/decompression speed, because we use fast SSD storage, and because actual compression 

and decompression takes comparatively much longer time than simply streaming the data to/from a file. 



FASTA format compatibility 

Many specialized compressors don't support the full-featured modern FASTA format, such as the 

one used in genome databases. Specifically, modern FASTA files often store masked sequence (use a mix of 

large and small letters), and include ambiguity codes. The degree of completeness of FASTA support varies 

wildly among compressors. At one end of the spectrum there are full featured compressors that support all 

FASTA format features. On another end, there are compressors that only work with a string of capital ACGT 

and nothing else, not even sequence names or newlines. Majority of sequence compressors are somewhere 

between these two extremes. 

Essentially this means that each sequence compressor performs its own task, different from that of 

the others. If a compressor does not need to care about small vs capital letters, or about storing sequence 

names, it can possibly work faster. Thus comparing compressors each doing their own thing would not be 

fair, or very useful to the user. Since full-featured FASTA is in fact commonly used in today's databases, we 

decided to require complete lossless support of full-featured FASTA from all benchmarked compressors. In 

practice this means that we had to create a custom wrapper for each incomplete compressor, implementing 

the missing compatibility features. 

A typical wrapper takes FASTA input transforms it into a format acceptable by the compressor being 

wrapped. For instance, if a compressor only expects capital sequence letters, then the positions of small and 

capital letters is extracted and saved in a separate file. The original file is converted to all uppercase, which is 

then fed to the compressor. The separate "mask" file (storing positions of lowercase letters) is compressed 

with a general purpose compressor. Entire set of files produces in such way counts for the compressed data 

size measured for this particular compressor and dataset, so that the overall compression strength is 

comparable with that achieved by other compressors (with or without their respective wrappers). Also the 

total time is measured, including all transformations and storing/compressing the additional files. 

We developed several tools for quickly processing FASTA files to extract or add various channels of 

information for the purpose of wrapping incomplete compressors. We used C and optimized for speed, so 

that these steps have maximum speed and minimap impact on the overall compression. The wrapper scripts 

themselves are written in Perl. We used fast mode of zstd ("-1") to compress the additional files, chosen 

because of its high speed so that it has minimal impact on measuring the speed of the wrapped compressor. 



As for compactness, the impact is minimal as well since the additional files are typically very small and 

compress well. 

For all such wrapped compressors, we benchmarked not only the complete wrapped compressor, but 

also "wrapper-only" mode, in which only wrapper script is executed, but not the compressor itself. Such 

results are included in the benchmark under "wrap-NAME" names. This means that it's possible to compare 

the speed of entire wrapped compressor with "wrapper-only" run, for each dataset. This allows to see how 

much time is used by the wrapper, and therefore how much impact the wrapper makes on the overall results.  

Some of the features implemented via wrappers: 

 Supporting RNA input for DNA-only compressors 

 Supporting 'N' in DNA/RNA sequences 

 Supporting IUPAC's ambiguous nucleotide codes 

 Saving and restoring line lengths 

 Saving and restoring sequence names 

 Saving and restoring sequence mask (upper/lower case) 

 Supporting FASTA-formatted input 

 Supporting input with more than 1 sequence 

FASTQ compressors 

Several FASTQ compressors are included in the benchmark. All of them are tested using wrappers 

which convert FASTA sequences into their respective accepted formats. Some need only adding artificial 

quality (constant "A" in most cases). Other expect only short reads or reads of identical lengths. These 

transformations are done in custom wrappers that we made for each FASTQ compressor. Since compression 

and decompression time recorded for benchmark is the total time of all steps, including wrapper processing, 

it means that in many cases the wrapped tool may work faster when used directly on FASTQ data. Also 

many FASTQ compressors are designed under additional assumptions typical for FASTQ data, for example 

that all reads are sampled from an underlying genome with substantial coverage (which allows meaningful 

assembly). These assumptions often don't hold on our FASTA-based benchmark datasets. Therefore all 

results of FASTQ compressors shown in our benchmark should not be taken as indicative of the actual 

performance of those compressors on FASTQ data that they were designed for. 



Benchmark script availability 

The benchmark script is available at "Benchmark-script/benchmark.pl" in Supplementary Code. All 

wrappers are available at "Website/tools/wrappers" in Supplementary Code. Additional tools used by the 

wrappers are available at "Website/tools/seq-tools-perl" and "Website/tools/seq-tools-c" in Supplementary 

Code. Compression and decompression commands are listed in files "Benchmark-script/compressors-*.txt" 

and "Benchmark-script/decompressors.txt" in Supplementary code. All these tools, wrappers and commands 

are also available at the SCB database website (http://kirr.dyndns.org/sequence-compression-benchmark/). 

The scripts are provided for reference only. 

Website 

Benchmark data is merged using script "Benchmark-script/2-collect-results.pl", available in 

Supplementary Code. The resulting merged data is then uploaded to the website where it is shown using a 

server-side Perl script. The script is available at "Website/index.cgi" in Supplementary Code. These scripts 

are provided for reference only. 

Update plan 

We plan to continue maintaining Sequence Compression Benchmark. This mainly involves 

benchmarking new or updated compressors, when such compressors become available. Since it's impractical 

to benchmark every existing compressor, we will continue to only benchmark compressors selected based on 

their performance, quality and usefulness for sequence compression. 

Figure legends 

Fig. 1. Comparison of 36 compressors on human genome. Best settings of each compressor are selected 

based on different aspects of performance: (A) compression ratio, (B) transfer + decompression speed, and 

(C) compression + transfer + decompression speed. Specialized sequence compressors are shown in orange 

color, and general-purpose compressors are shown in blue. The copy-compressor ("cat" command), shown in 

red color, is included as a control. The selected settings of each compressor are shown in their names, after 

hyphen. Multi-threaded compressors have "-1t" or "-4t" at the end of their names to indicate the number of 

threads used. Test data is the 3.31 GB reference human genome (accession number GCA_000001405.28). 



Benchmark CPU: Intel Xeon E5-2643v3 (3.4 GHz). Link speed of 100 Mbit/s was used for estimating the 

transfer time. 

 

Fig. 2. Comparison of 334 settings of 36 compressors on human genome. Each point represents a 

particular setting of some compressor. Panel A shows the relationship between compression ratio and 

decompression speed. Panel B shows the transfer + decompression speed plotted against compression + 

transfer + decompression speed. Test data is the 3.31 GB reference human genome (accession number 

GCA_000001405.28). Benchmark CPU: Intel Xeon E5-2643v3 (3.4 GHz). Link speed of 100 Mbit/s was 

used for estimating the transfer time. 

 

Fig. 3. Comparison of compressor settings to gzip. Genome datasets were used as test data. Each point 

shows the performance of a compressor setting on specific genome test dataset. All values are shown relative 

to representative setting of gzip. Only performances that are at least half as good as gzip on both axes are 

shown. Panel A shows settings that performed best in Transfer+Decompression speed, B - settings that 

performed best in Compression+Transfer+Decompression speed. Link speed of 100 Mbit/s was used for 

estimating the transfer time. 

 

Fig. 4. Compressor memory consumption. Strongest setting of each compressor is shown. On the X axis is 

the test data size. On the Y axis is the peak memory used by the compressor, for compression (A) and 

decompression (B).  

Table 1. Compressor versions 

A) Specialized sequence compressors 

Compressor Version 

2bit "faToTwoBit" and "twoBitToFa" binaries dated 2018-11-07 

ac AC 1.1, 2020-01-29 

alapy ALAPY 1.3.0, 2017-07-25 

beetl BEETL, commit 327cc65, 2019-11-14 

blast 
"convert2blastmask", "makeblastdb" and "blastdbcmd" binaries from 

BLAST 2.8.1+, 2018-11-26 



dcom DNA-COMPACT, latest public source 2013-08-29 

dlim DELIMINATE, version 1.3c, 2012 

dnaX dnaX 0.1.0, 2014-08-03 

dsrc DSRC 2.02, commit 5eda82c, 2015-06-04 

fastqz fastqz 1.5, commit 39b2bbc, 2012-03-15 

fqs FQSqueezer 0.1, commit 5741fc5, 2019-05-17 

fqzcomp fqzcomp 4.6, commit 96f2f61, 2019-12-02 

geco 
GeCo: v.2.1, 2016-12-24 

GeCo2: v.1.1, 2019-02-02 

gtz GTX.Zip PROFESSIONAL-2.1.3-V-2020-03-18 07:11:20, binary  

harc HARC, commit cf35caf, 2019-10-04 

jarvis JARVIS v.1.1, commit d7daef5, 2019-04-30 

kic KIC binary, 0.2, 2015-11-25 

leon Leon, 1.0.0, 2016-02-27, Linux binary 

lfastqc LFastqC, commit 60e5fda, 2019-02-28, with fixes 

lfqc LFQC, commit 59f56e0, 2016-01-06 

mfc MFCompress,s1.01, 2013-09-03, 64-bit Linux binary 

minicom Minicom, commit 2360dd9, 2019-09-09 

naf NAF, 1.1.0, 2019-10-01 

nuht NUHT, commit 08a42a8, 2018-09-26, Linux binary 

pfish Pufferfish, v.1.0 alpha, 2012-04-11 

quip Quip, commit 9165bb5, 1.1.8-8-g9165bb5, 2017-12-17 

spring SPRING, commit 6536b1b, 2019-11-28 

uht UHT, binary from 2016-12-27 

xm XM (eXpert-Model), 3.0, commit 9b9ea57, 2019-01-07 

B) General-purpose compressors 

Compressor Version 

bcm 1.30, 2018-01-21 

brieflz 1.3.0, 2020-02-15 

brotli 1.0.7, 2018-10-23 

bsc 3.1.0, 2016-01-01 

bzip2 1.0.6, 2010-09-06 

cmix 17, 2019-03-24 

gzip 1.6, 2013-06-09 

lizard 1.0.0, 2019-03-08 

lz4 1.9.1, 2019-04-24 

lzop 1.04, 2017-08-10 

lzturbo 1.2, 2014-08-11 



nakamichi 2020-May-09 

pbzip2 1.1.13, 2015-12-18 

pigz 2.4, 2017-12-26 

snzip 1.0.4, 2016-10-02 

xz 5.2.2, 2015-09-29 

zpaq 7.15, 2016-08-17 

zpipe  2.01, 2010-12-23 

zstd 1.4.5, 2020-05-22 

Table 2. Test datasets 

A) Genome sequence datasets 

Category Organism Accession Size 

Virus Gordonia phage GAL1 [60] GCF_001884535.1 50.7 kB 

Bacteria WS1 bacterium JGI 0000059-K21 [59] GCA_000398605.1 522 kB 

Protist Astrammina rara [59] GCA_000211355.2 1.71 MB 

Fungus Nosema ceranae [59] GCA_000988165.1 5.81 MB 

Protist Cryptosporidium parvum Iowa II [59] GCA_000165345.1 9.22 MB 

Protist Spironucleus salmonicida [59] GCA_000497125.1 13.1 MB 

Protist Tieghemostelium lacteum [59] GCA_001606155.1 23.7 MB 

Fungus Fusarium graminearum PH-1 [60] GCF_000240135.3 36.9 MB 

Protist Salpingoeca rosetta [59] GCA_000188695.1 56.2 MB 

Algae Chondrus crispus [59] GCA_000350225.2 106 MB 

Algae Kappaphycus alvarezii [59] GCA_002205965.2 341 MB 

Animal Strongylocentrotus purpuratus [60] GCF_000002235.4 1.01 GB 

Plant Picea abies [59] GCA_900067695.1 13.4 GB 

B) Other DNA datasets 

Dataset 
Number of 

sequences 
Size Source Date 

Mitochondrion [60] 9,402 245 MB 

RefSeq FTP: 

ftp://ftp.ncbi.nlm.nih.gov/refseq/release/ 

mitochondrion/mitochondrion.1.1.genomic.fna.gz 

ftp://ftp.ncbi.nlm.nih.gov/refseq/release/ 

mitochondrion/mitochondrion.2.1.genomic.fna.gz 

2019-03-15 

NCBI Virus 

Complete 

Nucleotide Human 

[61] 

36,745 482 MB  
NCBI Virus: 

https://www.ncbi.nlm.nih.gov/labs/virus/vssi/ 
2020-05-11 

Influenza [62] 700,001 1.22 GB 

Influenza Virus Database: 

ftp://ftp.ncbi.nih.gov/genomes/INFLUENZA/ 

influenza.fna.gz 

2019-04-27 

Helicobacter [59] 108,292 2.76 GB 
NCBI Assembly: 

https://www.ncbi.nlm.nih.gov/assembly 
2019-04-24 



C) RNA datasets 

Dataset 
Number of 

sequences 
Size Source Date 

SILVA 132 

LSURef [63] 
198,843 610 MB 

Silva database: 

https://ftp.arb-silva.de/release_132/Exports/ 

SILVA_132_LSURef_tax_silva.fasta.gz 

2017-12-11 

SILVA 132 

SSURef Nr99 

[63] 

695,171 1.11 GB 

Silva database: 

https://ftp.arb-silva.de/release_132/Exports/ 

SILVA_132_SSURef_Nr99_tax_silva.fasta.gz 

2017-12-11 

SILVA 132 

SSURef [63] 
2,090,668 3.28 GB 

Silva database: 

https://ftp.arb-silva.de/release_132/Exports/ 

SILVA_132_SSURef_tax_silva.fasta.gz 

2017-12-11 

D) Multiple DNA sequence alignments 

Dataset 
Number of 

sequences 
Size Source Date 

UCSC hg38 7way 

knownCanonical-exonNuc 

[64] 

1,470,154 340 MB 

UCSC: 

https://hgdownload.soe.ucsc.edu/ 

goldenPath/hg38/multiz7way/alignments/ 

knownCanonical.exonNuc.fa.gz 

2014-06-06 

UCSC hg38 20way 

knownCanonical-exonNuc 

[64] 

4,211,940 969 MB 

UCSC: 

https://hgdownload.soe.ucsc.edu/ 

goldenPath/hg38/multiz20way/alignments/ 

knownCanonical.exonNuc.fa.gz 

2015-06-30 

E) Protein datasets 

Dataset 

Number 

of 

sequences 

Size Source Date 

PDB [65] 109,914 67.6 MB 
PDB database FTP: 

ftp://ftp.ncbi.nih.gov/blast/db/FASTA/pdbaa.gz 
2019-04-09 

Homo sapiens 

GRCh38 [66] 
105,961 73.2 MB 

NCBI FTP: 

ftp://ftp.ensembl.org/ 

pub/release-96/fasta/homo_sapiens/pep/ 

Homo_sapiens.GRCh38.pep.all.fa.gz 

2019-03-12 

NCBI Virus RefSeq 

Protein [61] 
373,332 122 MB 

NCBI Virus: 

https://www.ncbi.nlm.nih.gov/labs/virus/vssi/ 
2020-05-10 

UniProtKB 

Reviewed (Swiss-

Prot) [67] 

560,118 277 MB 

UniProt FTP: 

ftp://ftp.uniprot.org/ 

pub/databases/uniprot/current_release/ 

knowledgebase/complete/uniprot_sprot.fasta.gz 

2019-04-02 
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Abstract 

Background. Nearly all molecular sequence databases currently use gzip for data compression. Ongoing 

rapid accumulation of stored data calls for more efficient compression tool. Although numerous compressors 

exist, both specialized and general-purpose, choosing one of them was difficult because no comprehensive 

analysis of their comparative advantages for sequence compression was available. 

Findings. We systematically benchmarked 430 settings of 48 compressors (including 29 specialized 

sequence compressors and 19 general-purpose compressors) on representative FASTA-formatted datasets of 

DNA, RNA and protein sequences. Each compressor was evaluated on 17 performance measures, including 

compression strength, as well as time and memory required for compression and decompression. We used 27 

test datasets including individual genomes of various sizes, DNA and RNA datasets, and standard protein 

datasets. We summarized the results as the Sequence Compression Benchmark database (SCB database, 

http://kirr.dyndns.org/sequence-compression-benchmark/) that allows building custom visualizations for 

selected subsets of benchmark results. 

Conclusion. We found that modern compressors offer large improvement in compactness and speed 

compared to gzip. Our benchmark allows comparing compressors and their settings using a variety of 

performance measures, offering the opportunity to select the optimal compressor based on the data type and 

usage scenario specific to particular application. 
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Background 

Molecular sequence databases store and distribute DNA, RNA and protein sequences as compressed 

FASTA-formatted files. Biological sequence compression was first proposed in 1986 [1] and the first 

practical compressor was made in 1993 [2]. A lively field emerged that produced a stream of methods, 

algorithms, and software tools for sequence compression [3,4]. However, despite this activity, currently 

nearly all databases universally depend on gzip for compressing FASTA-formatted sequence data. This 

incredible longevity of the 27-year-old compressor probably owes to multiple factors, including 

conservatism of database operators, wide availability of gzip, and its generally acceptable performance. 

Through all these years the amount of stored sequence data kept growing steadily [5], increasing the load on 

database operators, users, storage systems and network infrastructure. However, someone thinking to replace 

gzip invariably faces the questions: which of the numerous available compressors to choose? And will the 

resulting gains be even worth the trouble of switching? 

Previous attempts at answering these questions are limited by testing too few compressors and by 

using restricted test data [6-11]. In addition, all of these studies provide results in form of tables, with no 

graphical outputs, which makes the interpretation difficult. Existing benchmarks with useful visualization 

such as Squash [12], are limited to general-purpose compressors. 

The variety of available specialized and general-purpose compressors is overwhelming. At the same 

time the field was lacking a thorough investigation of comparative merits of these compressors for sequence 

data. Therefore we set out to benchmark all available and practically useful compressors on a variety of 

relevant sequence data. Specifically, we focused on the common task of compressing DNA, RNA and 

protein sequences, stored in FASTA format, without using reference sequence. The benchmark results were 

shown in the Sequence Compression Benchmark database (SCB database,  http://kirr.dyndns.org/sequence-

compression-benchmark/). 

Scope, compressors and test data 

We considered the common scenario of archiving, transferring and working with large datasets of 

biological sequences. In this study we did not investigate compression of raw sequencing data in FASTQ 



format, which was previously thorougly reviewed in [11]. Instead we focused on typical FASTA-formatted 

datasets, which includes individual genomes and single gene sets. Consequently we also did not consider 

referential compression, but only reference-free compression, which is typically used for such data. We 

evaluated standalone compression tools (rather than libraries), working under Linux OS on a modern 

workstation PC. In this study we only consider lossless compression. 

We tested all DNA sequence compressors that are available and functional in 2020: dnaX [13], XM 

[14], DELIMINATE [15], Pufferfish [16], DNA-COMPACT [17], MFCompress [18], UHT [19], GeCo [20], 

GeCo2 [21], JARVIS [22], NAF [23], and NUHT [24]. We also included the relatively compact among 

homology search database formats: BLAST [25] and 2bit - a database format of BLAT [26]. 

Since compressors designed for FASTQ data can be trivially adopted for FASTA-formatted inputs, 

we also included a comprehensive array of compressors designed primarily or specifically for FASTQ data: 

BEETL [27], Quip [28], fastqz [10], fqzcomp [10], DSRC 2 [29], Leon [30], LFQC [31], KIC [32], ALAPY 

[33], GTX.Zip [34], HARC [35], LFastqC [36], SPRING [37], Minicom [38], and FQSqueezer [39]. We also 

included AC - a compressor designed exclusively for protein sequences [40]. We also tested a 

comprehensive array of general purpose compressors: bcm [41], brieflz[42], brotli [43], bsc [44], bzip2 [45], 

cmix [46], gzip [47], lizard [48], lz4 [49], lzop [50], lzturbo [51], nakamichi [52], pbzip2 [53], pigz [54], 

snzip [55], xz [56], zpaq [57], zpipe [57] and zstd [58]. See Table 1 for the list of compressors we used. 

For the test data, we selected a variety of commonly used sequence datasets in FASTA format: (1) 

Individual genomes of various sizes, as examples of non-repetitive data [59,60]; (2) DNA and RNA datasets, 

such as collections of mitochondrial genomes, influenza virus sequences [60,61,62,59], 16S rRNA gene 

sequences [63], and genomic multiple DNA sequence alignments [64]; (3) Standard protein datasets 

[65,66,61,67]. Individual genomes are less repetitive, while other datasets are more repetitive. In total we 

used 27 test datasets. See Table 2 for the list of test data. All test data is available at the GigaDB repository. 

Benchmark 

We benchmarked each compressor on every test dataset, except in cases of incompatibility (e.g., 

DNA compressors cannot compress protein data) or excessive time requirement (some compressors are so 

slow that they would take weeks on larger datasets). For compressors with adjustable compression level, we 



tested the relevant range of levels. We tested both 1 and 4-thread variants of compressors that support multi-

threading. In total, we used 430 settings of 48 compressors. We also included the non-compressing "cat" 

command as control. For compressors using wrappers, we also benchmarked the wrappers. 

Currently many sequence analysis tools support gzip-compressed files as input. Switching to another 

compressor may require either adding support of new format to those tools, or passing the data in 

uncompressed form. The latter solution can be achieved with the help of Unix pipes, if both the compressor 

and the analysis tool support streaming mode. Therefore, we benchmarked all compressors in streaming 

mode (streaming uncompressed data in both compression and decompression). 

 For each combination of compressor setting and test dataset we recorded compressed size, 

compression time, decompression time, peak compression memory and peak decompression memory. The 

details of the method and raw benchmark data are available in the Methods section and Supplementary Data, 

respectively. We share benchmark results and scripts at the SCM database website:  

http://kirr.dyndns.org/sequence-compression-benchmark/. 

The choice of measure for evaluating compressor performance depends on prospective application. 

For long-term data storage, compactness may be the single most important criterion. For public sequence 

database, the key measure is how long time it takes from initiating the download of compressed files until 

accessing the decompressed data. This time consists of transfer time plus decompression time (TD-Time). 

Corresponding transfer-decompression speed (TD-Speed) is computed as Original Size / TD-Time. In this 

use case compression time is relatively unimportant, since compression happens only once, while transfer 

and decompression times affect every user of the database. For one-time data transfer, all three steps of 

compression, transfer and decompression are timed (CTD-Time), and used for computing the resulting 

overall speed (CTD-Speed). 

A total of 17 measures, including the above-mentioned ones, are available in our results data (See 

Methods for the list of measures). Any of these measures can be used for selecting the best setting of each 

compressor and for sorting the list of compressors. These measures can be then shown in a table and 

visualized in column charts and scatterplots. This allows tailoring the output to answer specific questions, 

such as what compressor is better at compressing particular kind of data, or which setting of each compressor 



performs best at particular task. The link speed that is used for estimating transfer times is configurable. The 

default speed of 100 Mbit/sec corresponds to the common speed of a fixed broadband internet connection. 

Fig.1 compares the performance of best settings of 36 compressors on human genome. It shows that 

specialized sequence compressors achieve excellent compression ratio on this genome. However, when total 

TD-Speed or CTD-Speed is considered (measures that are important in practical applications), most 

sequence compressors fall behind the general-purpose ones. The best compressors for this dataset in terms of 

compression ratio, TD-Speed and CTD-Speed are "fastqz-slow", "naf-22" and "naf-1", respectively (numbers 

in each compressor name indicate compression level and other settings). Interestingly, the non-compressing 

"cat" command used as control, while naturally showing at the last place on compression ratio (Fig.1A), is 

not the slowest in terms of TD-Speed and CTD-Speed (Figs.1B and 1C, respectively). In case of CTD-

Speed, for example, it means that some compressors are so slow that their compression + transfer + 

decompression time turns out to be longer than time required for transferring raw uncompressed data (using 

particular link speed, in this case 100 Mbit/sec). 

Fig.2 compares all compressor settings on the same data (human genome). Fig.2A shows that the 

strongest compressors often provide very low decompression speed (shown using logarithmic scale due to 

the enormous range of values), which means that quick data transfer (resulting from strong compression) 

offered by those compressors is offset by significant waiting time required for decompressing the data. 

Fig.2B shows TD-Speed plotted against CTD-Speed. Similar figures can be constructed for other data and 

performance measures on the SCB database website. 

Visualizing results from multiple test datasets simultaneously is possible, with or without 

aggregation of data. With aggregation, the numbers will be summed or averaged, and a single measurement 

will be shown for each setting of each compressor. Without aggregation, the results of each compressor 

setting will be shown separately on each dataset. Since the resulting number of data points can be huge, in 

such case it is useful to request only best settings of each compressor to be shown. The criteria for choosing 

the best setting is selectable among the 17 measurements. In case of a column chart, any of the 17 measures 

can be used for ordering the shown compressors, independently of the setting used for selecting best version, 

and independently for the measure actually shown in the chart. 



One useful capability of the SCB database is showing measurements relative to specified compressor 

(and setting). This allows selecting a reference compressor and comparing the other compressors to this 

reference. For example, we can compare compressors to gzip as shown on Fig.3. In this example, we 

compare only best settings of each compressor, selected using specific measures (transfer+decompression 

speed and compression+transfer+decompression speed on Figs.3A and 3B, respectively). We also used fixed 

scale to show only range above 0.5 on both axes, which means that only performances that are at least half as 

good as gzip on both axes as shown. In this example, we can see that some compressors improve 

compactness and some improve speed compared to gzip, but few compressors improve both at the same 

time, such as lizard, naf, pigz, pbzip, and zstd. 

It is important to be aware of the memory requirements when choosing a compressor (Fig.4). In 

these charts we plotted data size on the X axis, and disabled aggregation. This allows seeing how much 

memory a particular compressor used on each test dataset. As this example shows memory requirement 

reaches saturation point for most compressors. On the other hand, some compressors have unbounded 

growth of consumed memory, which makes then unusable for large data. Interestingly, gzip apparently has 

the smallest memory footprint, which may be one of the reasons for its popularity. Most compressors can 

function on a typical desktop hardware, but some require larger memory, which is important to consider 

when choosing a compressor that will be run by the consumers of distributed data. 

A wide variety of charts can be produced on the benchmark website by selecting specific 

combinations of test data, compressors, and performance measures. At any point the currently visualized data 

can be obtained in textual form using Table output option. Also, all charts can be downloaded in SVG 

format. 

Conclusions 

Our benchmark reveals complex relationship between compressors and between their settings, based 

on various measures. We found that continued use of gzip is usually far from an optimal choice. 

Transitioning from gzip to a better compressor brings significant gains for genome and protein data, and is 

especially beneficial with repetitive DNA/RNA datasets. The optimal choice of compressor depends on 

many factors, including properties of the data to be compressed (such as sequence type, data size, and 



amount of redundancy), relative importance of compression strength, compression speed and decompression 

speed for particular use scenario, as well as amount of memory available on data machines used for 

compression and decompression. Our benchmark allows comparing compressors on individual performance 

metrics, as well as on their combinations. 

The Sequence Compression Benchmark (SCB) database will help in navigating the complex 

landscape of data compression. With dozens of compressors available, making an informed choice is not an 

easy task and requires careful analysis of the project requirements, data type and compressor capabilities. 

Our benchmark is the first resource providing a detailed practical evaluation of various compressors on a 

wide range of molecular sequence datasets. Using the SCB database, users can analyze compressor 

performances on variety of metrics, and construct custom reports for answering project-specific questions. 

In contrast to previous studies that showed their results in static tables, our project is dynamic in two 

important senses: (1) the result tables and charts can be dynamically constructed for a custom selection of 

test data, compressors, and measured performance numbers, and (2) our study is not a one-off benchmark, 

but marks the start of a project where we will continue to add compressors and test data. 

Making an informed choice of compressor with the help of our benchmark will lead to increased 

compactness of sequence databases, with shorter time required for downloading and decompressing. This 

will reduce the load on network and storage infrastructure, and increase speed and efficiency in biological 

and medical research. 
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Methods 

Benchmarked task 

The task is to compress and decompress a FASTA-formatted file containing DNA, RNA or protein 

sequences. The process has to be lossless, i.e., decompressed data must be byte-to-byte identical to the 

original data. Compression and decompression are done without using any reference genome. Each 

compression and decompression task is executed via a Linux in a command line interface. Input data for 

compression and output data during decompression are streamed using Unix pipes. 

Only well-formed FASTA files are used in the benchmark: They must contain no empty lines and all 

long sequence lines have to be wrapped at the same position. Both large and small (soft-masked) letters can 

be present, as well as common ambiguity codes. In multiple sequence alignments, additionally, dash ("-") is 

used for indicating gaps. Each test dataset is compressed separately from other datasets. 

Compressor selection 

We used all specialized sequence compressors that we could find and make to work for the above 

specified task. For general-purpose compressors we used only the major ones, in terms of performance, 

historical importance, or popularity. For each compressor with configurable compression level (or other 

parameters related to compression strength of speed), we used the relevant range of settings, including the 

default. 

Benchmark machine 



 CPU: dual Xeon E5-2643v3 (3.4 GHz, 6 cores), hyperthreading: off 

 RAM: 128 GB DDR4-2133 ECC Registered 

 Storage: 4 x 2 TB SSD, in RAID 0, XFS filesystem, block size: 4096 bytes (blockdev --getbsz) 

 OS: Ubuntu 18.04.1 LTS, kernel: 4.15.0 

 GCC: 7.4.0 

Compressor/dataset combinations that were tested 

Each setting of each compressor is tested on every test dataset, except when it's difficult or 

impossible due to compressor limitations: 

 AC is a protein-specific compressor, and was tested only on protein datasets. 

 Due to their extreme slowness, these compressors are not tested on any data larger than 10 MB: 

cmix, DNA-COMPACT, GeCo, JARVIS, Leon, and XM. 

 UHT fails on the 245 MB dataset and on larger data. 

 Nakamichi was only used on data smaller than 200 MB due to its slowness and memory 

requirements. 

 Among sequence compressors, only DELIMINATE, MFCompress and NAF support multiple 

sequence alignments. 

 Among sequence compressors, only AC, BLAST and NAF support protein sequences. 

 Some settings of XM crash and/or produce wrong decompressed output on some data - such results 

are not included. 

 NUHT's memory requirement makes it impossible to use on 13.4 GB Picea abies genome. 

 LFastqC fails on 2.7 GB dataset and larger data. 

Benchmark process 

The entire benchmark is orchestrated by a perl script. This script loads the lists of compressor 

settings and test data, and proceeds to test each combination that still has its measurements missing in the 

output directory. For each such combination (of compressor setting and test dataset), the following steps are 

performed: 



1. Compression is performed by piping the test data into the compressor. Compressed size and 

compression time is recorded. For compressed formats consisting of multiple files, sizes of all files 

are summed together. 

2. If compression time did not exceed 10 seconds, 9 more compression runs are performed, recording 

compression times. Compressed data from previous run is deleted before each next compression run. 

3. The next set of compression runs is performed to measure peak memory consumption. This set 

consists of the same number of runs as in steps 1-2 (either 1 or 10 runs). That is, for fast compressors 

and for small data the measurement is repeated 10 times. 

4. Decompression test run is performed. In this run decompressed data is piped to the "md5sum -b -" 

command. The resulting md5 signature is compared with that of the original file. In case of any 

mismatch this combination of compressor setting and dataset is disqualified and its measurements 

are discarded. 

5. Decompression time is measured. This time decompressed data is piped to /dev/null. 

6. If decompression completed within 10 seconds, 9 more decompression runs are performed and 

timed. 

7. Peak decompression memory is measured. The number of runs is same as in steps 5-6. 

8. The measurements are stored to a file. All compressed and temporary files are removed. 

Measurement methods 

Measuring time: Wall clock time was measured using Perl's Time::HiRes module (gettimeofday and 

tv_interval subroutines). The resulting time was recorded with millisecond precision. 

Measuring peak memory consumption: First, each compression command was stored in a temporary 

shell script file. Then it was executed via GNU Time, as /usr/bin/time -v cmd.sh >output.txt. "Maximum 

resident set size" value was extracted from the output. 1638 was then subtracted from this value and the 

result was stored as peak memory measurement. 1638 is the average "Maximum resident set size" measured 

by GNU Time in the same way for an empty shell script. 

Memory consumption and time were measured separately because measuring memory makes the 

task slower, especially for very fast tasks. 



Collected measurements 

For each combination of compressor and dataset that was tested, the following measurements were 

collected: 

 Compressed size (in bytes) 

 Compression time (in milliseconds) 

 Decompression time (in milliseconds) 

 Peak compression memory (in GNU Time's "Kbytes") 

 Peak decompression memory (in GNU Time's "Kbytes") 

In cases where 10 values are collected, the average value is used by the benchmark web-site. 

Computed values 

The following values were calculated based on the measured values: 

 Compressed size relative to original (%) = Compressed size / Uncompressed size * 100 

 Compression ratio (times) = Uncompressed size / Compressed size 

 Compression speed (MB/s) = Uncompressed size in MB / Compression time 

 Decompression speed (MB/s) = Uncompressed size in MB / Decompression time 

 Compression + decompression time (s) = Compression time + Decompression time 

 Compression + decompression speed (MB/s) = Uncompressed size in MB / (Compression time + 

Decompression time) 

 Transfer time (s) = Uncompressed size / Link speed in B/s 

 Transfer speed (MB/s) = Uncompressed size in MB / Transfer time 

 Transfer + decompression time (s) = Transfer time + Decompression time 

 Transfer + decompression speed (MB/s) = Uncompressed size in MB / (Transfer time + 

Decompression time) 

 Compression + transfer + decompression time (s) = Compression time + Transfer time + 

Decompression time 

 Compression + transfer + decompression speed (MB/s) = Uncompressed size in MB / (Compression 

time + Transfer time + Decompression time) 



Rationale for non-constant number of runs 

Variable number of runs is the only way to have both accurate measurements and large test data 

(under the constraints of using one test machine, and running benchmark within reasonable time). 

On one hand, benchmark takes lot of time. So much that some compressors can't be even tested at all 

on dataset larger than 10 MB in reasonable time. Therefore repeating every measurement 10 times is 

impractical. Or, it would imply restricting the test data to only small datasets. 

On the other hand, measurements are slightly noisy. The shorter measured time, the more noisy its 

measurement. Thus for very quick runs, multiple runs allow for substantial noise suppression. For longer 

runs it does not make much difference, because the relative error is already small with longer times. 

Using a threshold of 10 seconds seems to be a reasonable compromise between suppressing noise 

and including larger test data (and slow compressors). 

Streaming mode 

For compression, each compressor was reading the input data streamed via unix pipe ("|" in the 

command line). For decompression, each compressor was set up to stream decompressed data via pipe. This 

was done to better approximate a common pattern of using compressors in a practical data analysis scenario. 

In an actual sequence analysis workflow, often decompressed data is piped directly into a downstream 

analysis command. Also, when compressing the sequences, often the data is first pre-processed with another 

command, which then pipes processed sequences to a compressor. 

Some compressors don't implement streaming mode, and only work with actual files. Since we have 

to benchmark all compressors on the same task, we added streaming mode to such compressors via wrapper 

scripts. For compression, a wrapper reads input data from "stdin" and writes it into a temporary file, then 

executes a compressor on that file, and finally deletes the file. For decompression the reverse process occurs: 

A wrapper executes decompressor which writes decompressed data into a temporary file, then reads this file 

and streams it to "stdout", before deleting the file. 

The entire process is timed for the benchmark. Normally such wrapping has minimal impact on the 

overall compression/decompression speed, because we use fast SSD storage, and because actual compression 

and decompression takes comparatively much longer time than simply streaming the data to/from a file. 



FASTA format compatibility 

Many specialized compressors don't support the full-featured modern FASTA format, such as the 

one used in genome databases. Specifically, modern FASTA files often store masked sequence (use a mix of 

large and small letters), and include ambiguity codes. The degree of completeness of FASTA support varies 

wildly among compressors. At one end of the spectrum there are full featured compressors that support all 

FASTA format features. On another end, there are compressors that only work with a string of capital ACGT 

and nothing else, not even sequence names or newlines. Majority of sequence compressors are somewhere 

between these two extremes. 

Essentially this means that each sequence compressor performs its own task, different from that of 

the others. If a compressor does not need to care about small vs capital letters, or about storing sequence 

names, it can possibly work faster. Thus comparing compressors each doing their own thing would not be 

fair, or very useful to the user. Since full-featured FASTA is in fact commonly used in today's databases, we 

decided to require complete lossless support of full-featured FASTA from all benchmarked compressors. In 

practice this means that we had to create a custom wrapper for each incomplete compressor, implementing 

the missing compatibility features. 

A typical wrapper takes FASTA input transforms it into a format acceptable by the compressor being 

wrapped. For instance, if a compressor only expects capital sequence letters, then the positions of small and 

capital letters is extracted and saved in a separate file. The original file is converted to all uppercase, which is 

then fed to the compressor. The separate "mask" file (storing positions of lowercase letters) is compressed 

with a general purpose compressor. Entire set of files produces in such way counts for the compressed data 

size measured for this particular compressor and dataset, so that the overall compression strength is 

comparable with that achieved by other compressors (with or without their respective wrappers). Also the 

total time is measured, including all transformations and storing/compressing the additional files. 

We developed several tools for quickly processing FASTA files to extract or add various channels of 

information for the purpose of wrapping incomplete compressors. We used C and optimized for speed, so 

that these steps have maximum speed and minimap impact on the overall compression. The wrapper scripts 

themselves are written in Perl. We used fast mode of zstd ("-1") to compress the additional files, chosen 

because of its high speed so that it has minimal impact on measuring the speed of the wrapped compressor. 



As for compactness, the impact is minimal as well since the additional files are typically very small and 

compress well. 

For all such wrapped compressors, we benchmarked not only the complete wrapped compressor, but 

also "wrapper-only" mode, in which only wrapper script is executed, but not the compressor itself. Such 

results are included in the benchmark under "wrap-NAME" names. This means that it's possible to compare 

the speed of entire wrapped compressor with "wrapper-only" run, for each dataset. This allows to see how 

much time is used by the wrapper, and therefore how much impact the wrapper makes on the overall results.  

Some of the features implemented via wrappers: 

 Supporting RNA input for DNA-only compressors 

 Supporting 'N' in DNA/RNA sequences 

 Supporting IUPAC's ambiguous nucleotide codes 

 Saving and restoring line lengths 

 Saving and restoring sequence names 

 Saving and restoring sequence mask (upper/lower case) 

 Supporting FASTA-formatted input 

 Supporting input with more than 1 sequence 

FASTQ compressors 

Several FASTQ compressors are included in the benchmark. All of them are tested using wrappers 

which convert FASTA sequences into their respective accepted formats. Some need only adding artificial 

quality (constant "A" in most cases). Other expect only short reads or reads of identical lengths. These 

transformations are done in custom wrappers that we made for each FASTQ compressor. Since compression 

and decompression time recorded for benchmark is the total time of all steps, including wrapper processing, 

it means that in many cases the wrapped tool may work faster when used directly on FASTQ data. Also 

many FASTQ compressors are designed under additional assumptions typical for FASTQ data, for example 

that all reads are sampled from an underlying genome with substantial coverage (which allows meaningful 

assembly). These assumptions often don't hold on our FASTA-based benchmark datasets. Therefore all 

results of FASTQ compressors shown in our benchmark should not be taken as indicative of the actual 

performance of those compressors on FASTQ data that they were designed for. 



Benchmark script availability 

The benchmark script is available at "Benchmark-script/benchmark.pl" in Supplementary Code. All 

wrappers are available at "Website/tools/wrappers" in Supplementary Code. Additional tools used by the 

wrappers are available at "Website/tools/seq-tools-perl" and "Website/tools/seq-tools-c" in Supplementary 

Code. Compression and decompression commands are listed in files "Benchmark-script/compressors-*.txt" 

and "Benchmark-script/decompressors.txt" in Supplementary code. All these tools, wrappers and commands 

are also available at the SCB database website (http://kirr.dyndns.org/sequence-compression-benchmark/). 

The scripts are provided for reference only. 

Website 

Benchmark data is merged using script "Benchmark-script/2-collect-results.pl", available in 

Supplementary Code. The resulting merged data is then uploaded to the website where it is shown using a 

server-side Perl script. The script is available at "Website/index.cgi" in Supplementary Code. These scripts 

are provided for reference only. 

Update plan 

We plan to continue maintaining Sequence Compression Benchmark. This mainly involves 

benchmarking new or updated compressors, when such compressors become available. Since it's impractical 

to benchmark every existing compressor, we will continue to only benchmark compressors selected based on 

their performance, quality and usefulness for sequence compression. 

Figure legends 

Fig. 1. Comparison of 36 compressors on human genome. Best settings of each compressor are selected 

based on different aspects of performance: (A) compression ratio, (B) transfer + decompression speed, and 

(C) compression + transfer + decompression speed. Specialized sequence compressors are shown in orange 

color, and general-purpose compressors are shown in blue. The copy-compressor ("cat" command), shown in 

red color, is included as a control. The selected settings of each compressor are shown in their names, after 

hyphen. Multi-threaded compressors have "-1t" or "-4t" at the end of their names to indicate the number of 

threads used. Test data is the 3.31 GB reference human genome (accession number GCA_000001405.28). 



Benchmark CPU: Intel Xeon E5-2643v3 (3.4 GHz). Link speed of 100 Mbit/s was used for estimating the 

transfer time. 

 

Fig. 2. Comparison of 334 settings of 36 compressors on human genome. Each point represents a 

particular setting of some compressor. Panel A shows the relationship between compression ratio and 

decompression speed. Panel B shows the transfer + decompression speed plotted against compression + 

transfer + decompression speed. Test data is the 3.31 GB reference human genome (accession number 

GCA_000001405.28). Benchmark CPU: Intel Xeon E5-2643v3 (3.4 GHz). Link speed of 100 Mbit/s was 

used for estimating the transfer time. 

 

Fig. 3. Comparison of compressor settings to gzip. Genome datasets were used as test data. Each point 

shows the performance of a compressor setting on specific genome test dataset. All values are shown relative 

to representative setting of gzip. Only performances that are at least half as good as gzip on both axes are 

shown. Panel A shows settings that performed best in Transfer+Decompression speed, B - settings that 

performed best in Compression+Transfer+Decompression speed. Link speed of 100 Mbit/s was used for 

estimating the transfer time. 

 

Fig. 4. Compressor memory consumption. Strongest setting of each compressor is shown. On the X axis is 

the test data size. On the Y axis is the peak memory used by the compressor, for compression (A) and 

decompression (B).  

Table 1. Compressor versions 

A) Specialized sequence compressors 

Compressor Version 

2bit "faToTwoBit" and "twoBitToFa" binaries dated 2018-11-07 

ac AC 1.1, 2020-01-29 

alapy ALAPY 1.3.0, 2017-07-25 

beetl BEETL, commit 327cc65, 2019-11-14 

blast 
"convert2blastmask", "makeblastdb" and "blastdbcmd" binaries from 

BLAST 2.8.1+, 2018-11-26 



dcom DNA-COMPACT, latest public source 2013-08-29 

dlim DELIMINATE, version 1.3c, 2012 

dnaX dnaX 0.1.0, 2014-08-03 

dsrc DSRC 2.02, commit 5eda82c, 2015-06-04 

fastqz fastqz 1.5, commit 39b2bbc, 2012-03-15 

fqs FQSqueezer 0.1, commit 5741fc5, 2019-05-17 

fqzcomp fqzcomp 4.6, commit 96f2f61, 2019-12-02 

geco 
GeCo: v.2.1, 2016-12-24 

GeCo2: v.1.1, 2019-02-02 

gtz GTX.Zip PROFESSIONAL-2.1.3-V-2020-03-18 07:11:20, binary  

harc HARC, commit cf35caf, 2019-10-04 

jarvis JARVIS v.1.1, commit d7daef5, 2019-04-30 

kic KIC binary, 0.2, 2015-11-25 

leon Leon, 1.0.0, 2016-02-27, Linux binary 

lfastqc LFastqC, commit 60e5fda, 2019-02-28, with fixes 

lfqc LFQC, commit 59f56e0, 2016-01-06 

mfc MFCompress,s1.01, 2013-09-03, 64-bit Linux binary 

minicom Minicom, commit 2360dd9, 2019-09-09 

naf NAF, 1.1.0, 2019-10-01 

nuht NUHT, commit 08a42a8, 2018-09-26, Linux binary 

pfish Pufferfish, v.1.0 alpha, 2012-04-11 

quip Quip, commit 9165bb5, 1.1.8-8-g9165bb5, 2017-12-17 

spring SPRING, commit 6536b1b, 2019-11-28 

uht UHT, binary from 2016-12-27 

xm XM (eXpert-Model), 3.0, commit 9b9ea57, 2019-01-07 

B) General-purpose compressors 

Compressor Version 

bcm 1.30, 2018-01-21 

brieflz 1.3.0, 2020-02-15 

brotli 1.0.7, 2018-10-23 

bsc 3.1.0, 2016-01-01 

bzip2 1.0.6, 2010-09-06 

cmix 17, 2019-03-24 

gzip 1.6, 2013-06-09 

lizard 1.0.0, 2019-03-08 

lz4 1.9.1, 2019-04-24 

lzop 1.04, 2017-08-10 

lzturbo 1.2, 2014-08-11 



nakamichi 2020-May-09 

pbzip2 1.1.13, 2015-12-18 

pigz 2.4, 2017-12-26 

snzip 1.0.4, 2016-10-02 

xz 5.2.2, 2015-09-29 

zpaq 7.15, 2016-08-17 

zpipe  2.01, 2010-12-23 

zstd 1.4.5, 2020-05-22 

Table 2. Test datasets 

A) Genome sequence datasets 

Category Organism Accession Size 

Virus Gordonia phage GAL1 [60] GCF_001884535.1 50.7 kB 

Bacteria WS1 bacterium JGI 0000059-K21 [59] GCA_000398605.1 522 kB 

Protist Astrammina rara [59] GCA_000211355.2 1.71 MB 

Fungus Nosema ceranae [59] GCA_000988165.1 5.81 MB 

Protist Cryptosporidium parvum Iowa II [59] GCA_000165345.1 9.22 MB 

Protist Spironucleus salmonicida [59] GCA_000497125.1 13.1 MB 

Protist Tieghemostelium lacteum [59] GCA_001606155.1 23.7 MB 

Fungus Fusarium graminearum PH-1 [60] GCF_000240135.3 36.9 MB 

Protist Salpingoeca rosetta [59] GCA_000188695.1 56.2 MB 

Algae Chondrus crispus [59] GCA_000350225.2 106 MB 

Algae Kappaphycus alvarezii [59] GCA_002205965.2 341 MB 

Animal Strongylocentrotus purpuratus [60] GCF_000002235.4 1.01 GB 

Plant Picea abies [59] GCA_900067695.1 13.4 GB 

B) Other DNA datasets 

Dataset 
Number of 

sequences 
Size Source Date 

Mitochondrion [60] 9,402 245 MB 

RefSeq FTP: 

ftp://ftp.ncbi.nlm.nih.gov/refseq/release/ 

mitochondrion/mitochondrion.1.1.genomic.fna.gz 

ftp://ftp.ncbi.nlm.nih.gov/refseq/release/ 

mitochondrion/mitochondrion.2.1.genomic.fna.gz 

2019-03-15 

NCBI Virus 

Complete 

Nucleotide Human 

[61] 

36,745 482 MB  
NCBI Virus: 

https://www.ncbi.nlm.nih.gov/labs/virus/vssi/ 
2020-05-11 

Influenza [62] 700,001 1.22 GB 

Influenza Virus Database: 

ftp://ftp.ncbi.nih.gov/genomes/INFLUENZA/ 

influenza.fna.gz 

2019-04-27 

Helicobacter [59] 108,292 2.76 GB 
NCBI Assembly: 

https://www.ncbi.nlm.nih.gov/assembly 
2019-04-24 



C) RNA datasets 

Dataset 
Number of 

sequences 
Size Source Date 

SILVA 132 

LSURef [63] 
198,843 610 MB 

Silva database: 

https://ftp.arb-silva.de/release_132/Exports/ 

SILVA_132_LSURef_tax_silva.fasta.gz 

2017-12-11 

SILVA 132 

SSURef Nr99 

[63] 

695,171 1.11 GB 

Silva database: 

https://ftp.arb-silva.de/release_132/Exports/ 

SILVA_132_SSURef_Nr99_tax_silva.fasta.gz 

2017-12-11 

SILVA 132 

SSURef [63] 
2,090,668 3.28 GB 

Silva database: 

https://ftp.arb-silva.de/release_132/Exports/ 

SILVA_132_SSURef_tax_silva.fasta.gz 

2017-12-11 

D) Multiple DNA sequence alignments 

Dataset 
Number of 

sequences 
Size Source Date 

UCSC hg38 7way 

knownCanonical-exonNuc 

[64] 

1,470,154 340 MB 

UCSC: 

https://hgdownload.soe.ucsc.edu/ 

goldenPath/hg38/multiz7way/alignments/ 

knownCanonical.exonNuc.fa.gz 

2014-06-06 

UCSC hg38 20way 

knownCanonical-exonNuc 

[64] 

4,211,940 969 MB 

UCSC: 

https://hgdownload.soe.ucsc.edu/ 

goldenPath/hg38/multiz20way/alignments/ 

knownCanonical.exonNuc.fa.gz 

2015-06-30 

E) Protein datasets 

Dataset 

Number 

of 

sequences 

Size Source Date 

PDB [65] 109,914 67.6 MB 
PDB database FTP: 

ftp://ftp.ncbi.nih.gov/blast/db/FASTA/pdbaa.gz 
2019-04-09 

Homo sapiens 

GRCh38 [66] 
105,961 73.2 MB 

NCBI FTP: 

ftp://ftp.ensembl.org/ 

pub/release-96/fasta/homo_sapiens/pep/ 

Homo_sapiens.GRCh38.pep.all.fa.gz 

2019-03-12 

NCBI Virus RefSeq 

Protein [61] 
373,332 122 MB 

NCBI Virus: 

https://www.ncbi.nlm.nih.gov/labs/virus/vssi/ 
2020-05-10 

UniProtKB 

Reviewed (Swiss-

Prot) [67] 

560,118 277 MB 

UniProt FTP: 

ftp://ftp.uniprot.org/ 

pub/databases/uniprot/current_release/ 

knowledgebase/complete/uniprot_sprot.fasta.gz 

2019-04-02 

 

 



Reply to reviewers 

We sincerely appreciate a thorough review by the two reviewers. Our replies are below. 

Reviewer #1: 

This article describes a benchmark for FASTA data that includes online material with a very high 

potential to be used by the genomic/proteomic data compression community. The benchmark is wide, 

balanced, and fair. The online tool for visualization of the benchmark is efficiently implemented and 

easy to follow. The benchmark includes a good set of tools. In general, the work reflects a high 

knowledge of the tools and bioinformatics background. However, some concerns first need to be 

addressed before entering in a much more detailed review mode. 

Thank you for taking time to review our work in detail and for the kind comment. 

Major concerns: 

There are many compressors for many purposes. Choosing a compressor depends on the purpose. 

These purposes are not limited to fast decompression of good representations, namely to fast data 

transfer or integration with other tools. For example, long-term storage removes the importance of 

fast decompression and increases the importance over the compression ratio. The same can be seen 

for compressors that aim to approximate the Kolmogorov complexity, namely for genomic or 

proteomic analysis (phylogenomics, authentication, motif localization, rearrangements, among many 

others). Here, the importance in only at the efficiency of the compressor side using affordable (usually 

high) computational time and RAM. 

Developing efficient genomic/proteomic compressors is also a methodology to improve unsupervised 

algorithms for data mining or machine learning. An example of this can be seen in the Hutter prize 

(http://prize.hutter1.net/), a half-million-dollar prize where compressors can spend up to 10GB of 

RAM and 100 hours to compress 1 GB of data. A version of the PAQ9 algorithm, which is 

comparatively a very "slow" program, is currently the state-of-the-art. Therefore, centering somewhat 

the results in NAF (which is perhaps the best industry-oriented FASTA compressor) and limiting the 

conclusions to the fastest decompression algorithms according to somewhat good compression 

capabilities does not entirely represent the field of genomic/proteomic data compression. This 

because FASTA data is already in post-processed state [semi-assembled (contig, scaffold), or 

assembled], unlike FASTQ. This exclusivity would make sense in FASTQ. Therefore, these notions 

and wider conclusions would make the manuscript stronger. 

Thank you for your detailed comment. We agree that there are many purposes for compression. This 

is why our benchmark includes 17 performance measures, including compression ratio. The users of 

our benchmark are free to consider measures that are most relevant to their application. In the 

manuscript, we tried to repeatedly emphasize the diversity of applications of our benchmark, because 

we believe that this benchmark should be useful for a broad variety of compressor uses. 

In our study, we consider an application of compressors for actual data compression, with the main 

goals of conserving storage, network and computation resources required for managing large amounts 

of data. We believe that many compressor users (ourselves included) working with large biological 

datasets may benefit from a detailed investigation of compressor performances, such as what we offer 

in the current benchmark. 
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We do not explicitly address related topics such as "approximating the Kolmogorov complexity", 

"phylogenomics, authentication, motif localization, rearrangements", "unsupervised algorithms for 

data mining or machine learning". Involving such topics is currently outside of the scope of our work. 

We'd like to keep our manuscript focused and avoid confusing the readers, considering that the issue 

is already complex, and considering the broad data collected and summarized in our benchmark. 

We certainly strongly support scenarios prioritizing compression strength over any other 

considerations. In fact, majority of the specialized sequence compressors (with few exceptions such as 

GTZ and DSRC) tend to prioritize compression strength and neglect speed. We have spent substantial 

efforts and computation resources benchmarking such compressors, because we believe they should 

be fairly represented, even though we ourselves don't have much use for them. 

Regarding the mentioned very slow PAQ9, currently we already include several closely related 

compressors: cmix (arguably, a state of the art in compression strength for general-purpose data 

compression), zpaq (descendant from the PAQ family of algorithms), and zpipe (somewhat redundant 

piping variant of zpaq, although a bit older code). We are open to including more of such compressors 

in the future. However, long computation time required by some of such compressors means that they 

may be benchmarked only on smaller datasets, such as in the case of cmix, which is only 

benchmarked on datasets smaller than 10 MB. 

Regarding "centering somewhat the results in NAF". We removed any mentions of NAF from the 

"Conclusion" section of the manuscript. We still mention NAF along with other top performing 

compressors in the "Benchmark" section. We are not aware of any of our results that are "centered in 

NAF". 

We believe the revised version of the text is more neutral. 

I also missed some protein sequence compressors, namely the recent protein compressor AC [AC: A 

Compression Tool for Amino Acid Sequences (https://link.springer.com/article/10.1007/s12539-019-

00322-1 )]. Sometimes, these are lost in a keyword search. A chain on amino acids can make a 

protein, therefore, the authors will find protein compressors defined as amino acid sequence 

compressors. The AC disadvantages: only for protein sequences (not FASTA), slower and, currently, 

RAM increases according to the redundancy and size of the sequence (but easily it can be adapted to 

a cache-hash). 

Thank you very much for the suggestion. We have added AC to the benchmark. 

Suggestion: 

Given the current times, perhaps a very important dataset to add to the benchmark would be the 

whole viral database from the NCBI (FASTA format). It can be easily obtained from here: 

https://www.ncbi.nlm.nih.gov/labs/virus/vssi 

Thank you for the suggestion. We have added two datasets from the NCBI Virus datasets that you 

mention. One is a 122 MB protein dataset "NCBI Virus RefSeq Protein", another is a 482 MB DNA 

dataset "NCBI Virus Complete Nucleotide Human". 

Minor: 

From 1993 to 2020 there are 27 years, therefore, the longevity of special-purpose compressors is 27-

year-old. Biocompress was already available in 1992, before the publication on the DCC (in march of 

1993, after review). Therefore, it could also be 28, although 27 is a safe date. 



I'm not completely sure where this comment applies, as we don't specifically discuss longevity of 

special-purpose compressors. However, we mention longevity of gzip, which, coincidentally, was also 

first released in 1993. As gzip's Wikipedia article ( https://en.wikipedia.org/wiki/Gzip ) mentions: 

"Initial release 31 October 1992; 27 years ago". Thus, we updated the number to 27. 

Please, improve the format of the figures and tables. 

We improved figures and tables (as far as we saw a space for improvement). 

Some of the bullets have a final ".", others don't. Please, pick one and use the same format. 

Thank you, we changed the lists to a consistent format. Namely, we use final "." in those bulleted lists 

where each entry is a complete sentence. In other bulleted lists, where entries are just items of the list, 

we don't use final ".". 

Reviewer #2: 

General: 

The article is well constructed and has a good explanation of the use cases for different measurement 

criteria, such as archival, database retrieval, one-time transfers and memory usage. 

There is good attention to detail with specifying the exact versions and commit hashes of each tool, 

the parameters used (and their processing scripts), and references for downloading each data set.  

This aids reproducibility and importantly aids the use of this benchmark framework for future 

software authors. 

Probably this article came out of the analysis for "naf", by the same authors, demonstrating that 

nibble-packing plus zstd is an unexpectedly strong contender.  However a benchmarking framework is 

a valid and useful piece of work in its own right.  To this end, the authors not only provide the results 

and a useful website, but also the tools used for producing it permitting future tools to be validated 

against the same data sets using the same methods.  This greatly improves the value of this work. 

Specifics: 

1. The abstract is good.  The assertion that most sequence datasets use gzip is valid, if disappointing.  

I checked the EMBL sequence archive, UniProt/SwissProt and NCBI's RefSeq, all of which are 

gzipped. 

The findings / conclusion part are also good, stressing the benchmark framework and presentation 

rather than recommending specific tools which seems appropriate. 

Language throughout is good. 

Thank you very much for the time you spent reviewing our work and for encouraging comments. 

2. The scope needs to be clearly spelt out. 

Specifically it is targeting genomic sequence datasets (eg the aforementioned EMBL sequence 

databank) and not DNA sequencing reads, hence no quality values either.  This is interesting as it's a 

little bit of a different focus from several other benchmarks. 



It's also excluding reference based compression tools (eg GRS, GReEn, RLZ, CRAM).  The line has to 

be drawn somewhere so I fully understand this, but the scope of what the article covers as well as 

what it doesn't cover should be more explicit. 

Thank you for the suggestion. We have clarified the scope in the "Scope, compressors and test data" 

section (previously named "Compressors and test data"). 

3. Mentioning "DNA alignments" is a bit ambiguous as most people now think of output from an 

aligner such as bwa - ie SAM format.  The format being used here is the earlier style of dash-padded 

sequence sets.  Please clarify this distinction.  I'm not sure what the proper term is, but I think 

"multiple sequence alignment" covers it. 

Thank you for the suggestion. We have changed all mentions of alignment data to use "multiple 

sequence alignment" wording. 

4. It is a little unclear precisely which data is being compressed. 

Obviously quality values are not as mention is made to adapting fastq compressors to the task.  How 

about reference names?  Other ancillary data after the reference name (oh how I loathe FASTA for 

that ill-defined mess). Is it purely sequence being evaluated, or the entire FASTA file?  Do tools have 

to be case sensitive?  Do they need to cope with ambiguity codes? 

The wrapper scripts cope with some of these things, but it is unclear if this is simply for purposes of 

testing the compression worked e.g. given the lack of support for lower case, or whether this 

information is actually being included in the evaluation and added as a side-channel for tools that 

don't support it natively.  If so, how is that done? 

Looking at the wrapper scripts it appears these other types of data get written to separate files and 

compressed with zstd.  This needs documenting in the paper itself, along with an explanation of 

whether the size of those ancillary files is added to the compressed size, and also whether the time 

taken is included.  (I am assuming yes, but please be explicit.) 

Thank you for the suggestion. Indeed this was not clearly explained. We added long explanation in 

the "Methods" section, under "Streaming mode" and "FASTA format compatibility" headers. 

Each compressor has to losslessly compress the entire full-featured FASTA file, including sequence 

names, case sensitivity and ambiguity codes. All compressors that lack native support for this, receive 

it via our wrappers. As you correctly assumed, the size of ancillary files, as well as time spent on pre-

processing the FASTA stream and extracting these side channels (as well as adding them back during 

decompression) is counted as part of the total measurement. 

Fortunately our wrappers are really fast and don't impact the results much for most compressors. 

However, all non-trivial wrappers (which means implementing anything more than streaming support) 

are benchmarked in "wrapper-only" mode and their results are included in benchmark database. Also 

fortunately those extra files are usually very small and compress well, so they don't impact overall 

compression rate much. 

While admittedly not perfect, this seemed like the only viable strategy that would allow to compare 

the diverse array of compressors (each doing their own thing), and at the same time to have them 

doing a useful task (as opposed to compressing a raw stream of ACGT). 

5. Tool selection. 



There are various fastq compression tools not benchmarked, including but not limited to FQSqueezer, 

Minicom, Orcom and FaStore.  Are these planned? This is hinted at with "our study is not a one-off 

benchmark, but marks the start of a project where we will continue to add compressors and test data". 

However this is somewhat of a never ending task, as is alluded to with "Since it's impractical to 

benchmark every existing compressor, we will continue to only benchmark compressors selected 

based on their performance, quality and usefulness for sequence compression". 

If there are specific reasons why some tools were not evaluated then perhaps this should be 

mentioned on the website under rejected tools along with a reason (eg for speed, robustness, 

reordering of data). 

Thank you for a good suggestion. Indeed some compressors are still missing in benchmark, each with 

their own reason. We've been keeping notes about all such potential additions, so it makes perfect 

sense to share those notes on the website. We now added the "Missing Compressors" page to the 

website, accessible from the "Compressors" page. Direct link: http://kirr.dyndns.org/sequence-

compression-benchmark/?page=Missing-Compressors . 

I believe the benchmark is currently reasonably thorough, but there will always be more compressors 

to test. 

Regarding the mentioned tools: 

 FQSqueezer - has been added to the benchmark. 

 Minicom - has been added to the benchmark. 

 ORCOM - seems to always re-order the reads, making it incompatible with our conditions. 

 FaStore - seems to always re-order the reads, making it incompatible with our conditions. 

I have to add that testing FASTQ compressors on FASTA data (via adding constant quality) is mainly 

of theoretical interest and probably has little practical value. 

FASTQ compressors are usually designed under a FASTQ-specific set of assumptions, such as: "all 

reads are very short", "all reads are of same length", "order of reads does not matter", "all reads are 

sampled from underlying genome with substantial coverage". These assumptions don't hold in typical 

FASTA data and in our benchmark. So the results we obtain for FASTQ compressors may not transfer 

well to their performance on actual data they are designed for. 

We added a mention of this to the "Scope" section on the "About" page on the website. 

Still it's interesting to see how different approaches and compressors handle genomes and other 

FASTA datasets, so we will probably continue to benchmark FASTQ compressors. 

6.  Wrapper scripts/tools. 

How much time is in processing vs the actual tool?  For example bsc.pl $cmd is little more than 

running bsc, while Quip's has 5 components piped together before piping into quip itself.  Is the quip 

tool the bottleneck here and therefore the speed of the other bits irrelevant? I see most are in C, so it's 

possibly minimal impact, but it is hard to judge.  If the impact is minimal, then it's probably best to 

acknowledge that it was measured and found to be insignificant. 

Following this comment, we now also discuss this in the "FASTA format compatibility" part of the 

"Methods" section. In case when wrappers add anything other than streaming support, we 



benchmarked the "wrapper-only" runs, so that such runs can be compared with complete 

"wrapper+compressor" runs. This allows us to see how much of the time is consumed by the wrapper. 

In most cases the impact is minimal. There are few cases where wrappers significantly impact 

compression or decompression speed. Such cases occur when 2 conditions overlap: 1) Compressor is 

very fast. 2) Compressor requires extensive data preprocessing. Notable examples are 2bit and DSRC.  

This can be seen by including both the compressor and its wrapper in a scatterplot produced on 

benchmark website. We added links to such analyses to the "Examples" page on the website. 

Was CPU (user+system) time measured at all?  If so then the ratio of wall clock to CPU time is a 

good indication of whether the pipeline is causing stalls or not. 

Only total wall clock time was measured. I agree this could be interesting, but I don't expect much 

stalls. Could be interesting to try it some time. 

One problem with such measurements is that I found that they influence speed of the fastest 

compressors. This is why, for example, memory use and speed are measured separately, using 

different runs of the same compressor. 

7. Using fastq-from-sequence may mean that some tools has timings that aren't entirely comparable.  

While still a valid time for that tool, it's not indicative of the time for the sequence-only portion of that 

tool. 

Yes, exactly. This is an inevitable consequence of testing FASTQ compressors on FASTA data, and it 

will remain until we add actual FASTQ data. Currently we are not sure whether we will be able to do 

it, but it's a possibility we consider for the future. 

I don't think there is much you can do to mitigate this bar rewriting other peoples code, so 

realistically it's just something that could be presented as a warning. 

We added an explanation and a warning in the new "FASTQ Compressors" part of the "Methods" 

section. We also added corresponding warning in the "Scope" section on the "About" page on the 

website. 

8. Be explicit as to the license on your software.  Some had a license declaration (public domain) but 

not all. 

Thanks, we specified a license (public domain) on the "Wrappers" page of the website. 

9. A minor typographical: "[A] wide variety of charts can be produced..." 

Thanks, fixed. 

Thank you for your work. 

We sincerely appreciate your valuable comments on this manuscript. 
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