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Abstract 

Background. Nearly all molecular sequence databases currently use gzip for data compression. Ongoing 

rapid accumulation of stored data calls for more efficient compression tool. Although numerous compressors 

exist, both specialized and general-purpose, choosing one of them was difficult because no comprehensive 

analysis of their comparative advantages for sequence compression was available. 

Findings. We systematically benchmarked 430 settings of 48 compressors (including 29 specialized 

sequence compressors and 19 general-purpose compressors) on representative FASTA-formatted datasets of 

DNA, RNA and protein sequences. Each compressor was evaluated on 17 performance measures, including 

compression strength, as well as time and memory required for compression and decompression. We used 27 

test datasets including individual genomes of various sizes, DNA and RNA datasets, and standard protein 

datasets. We summarized the results as the Sequence Compression Benchmark database (SCB database, 

http://kirr.dyndns.org/sequence-compression-benchmark/) that allows building custom visualizations for 

selected subsets of benchmark results. 

Conclusion. We found that modern compressors offer a large improvement in compactness and speed 

compared to gzip. Our benchmark allows comparing compressors and their settings using a variety of 

performance measures, offering the opportunity to select the optimal compressor based on the data type and 

usage scenario specific to a particular application. 
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Findings 

Background 

Molecular sequence databases store and distribute DNA, RNA and protein sequences as compressed 

FASTA-formatted files. Biological sequence compression was first proposed in 1986 [1] and the first 

practical compressor was made in 1993 [2]. A lively field emerged that produced a stream of methods, 

algorithms, and software tools for sequence compression [3,4]. However, despite this activity, currently 

nearly all databases universally depend on gzip for compressing FASTA-formatted sequence data. This 

incredible longevity of the 27-year-old compressor probably owes to multiple factors, including 

conservatism of database operators, wide availability of gzip, and its generally acceptable performance. 

Through all these years the amount of stored sequence data kept growing steadily [5], increasing the load on 

database operators, users, storage systems and network infrastructure. However, someone thinking to replace 

gzip invariably faces the questions: which of the numerous available compressors to choose? And will the 

resulting gains be even worth the trouble of switching? 

Previous attempts at answering these questions are limited by testing too few compressors and by 

using restricted test data [6-11]. In addition, all of these studies provide results in form of tables, with no 

graphical outputs, which makes the interpretation difficult. Existing benchmarks with useful visualization 

such as Squash [12], are limited to general-purpose compressors. 

The variety of available specialized and general-purpose compressors is overwhelming. At the same 

time the field was lacking a thorough investigation of comparative merits of these compressors for sequence 

data. Therefore we set out to benchmark all available practically useful compressors on a variety of relevant 

sequence data. Specifically, we focused on the common task of compressing DNA, RNA and protein 

sequences, stored in FASTA format, without using reference sequence. The benchmark results are available 

in the Sequence Compression Benchmark database (SCB database,  http://kirr.dyndns.org/sequence-

compression-benchmark/). 

Scope, compressors and test data 



We considered the common scenario of archiving, transferring and working with large datasets of 

biological sequences. In this study we did not investigate compression of raw sequencing data in FASTQ 

format, which was previously thoroughly reviewed in [11]. Instead we focused on typical FASTA-formatted 

datasets, which includes individual genomes and single gene sets. Consequently we also did not consider 

referential compression, but only reference-free compression, which is typically used for such data. We 

evaluated standalone compression tools (rather than libraries), working under Linux OS on a modern 

workstation PC. In this study we only consider lossless compression. 

We tested all DNA sequence compressors that are available and functional in 2020: dnaX [13], XM 

[14], DELIMINATE [15], Pufferfish [16], DNA-COMPACT [17], MFCompress [18], UHT [19], GeCo [20], 

GeCo2 [21], JARVIS [22], NAF [23], and NUHT [24]. We also included the relatively compact among 

homology search database formats: BLAST [25] and 2bit - a database format of BLAT [26]. 

Since compressors designed for FASTQ data can be trivially adopted for FASTA-formatted inputs, 

we also included a comprehensive array of compressors designed primarily or specifically for FASTQ data: 

BEETL [27], Quip [28], fastqz [10], fqzcomp [10], DSRC 2 [29], Leon [30], LFQC [31], KIC [32], ALAPY 

[33], GTX.Zip [34], HARC [35], LFastqC [36], SPRING [37], Minicom [38], and FQSqueezer [39]. We also 

included AC - a compressor designed exclusively for protein sequences [40]. We also tested a 

comprehensive array of general-purpose compressors: bcm [41], brieflz[42], brotli [43], bsc [44], bzip2 [45], 

cmix [46], gzip [47], lizard [48], lz4 [49], lzop [50], lzturbo [51], nakamichi [52], pbzip2 [53], pigz [54], 

snzip [55], xz [56], zpaq [57], zpipe [57] and zstd [58]. See Table 1 for the list of compressors we used. 

For the test data, we selected a variety of commonly used sequence datasets in FASTA format: (1) 

Individual genomes of various sizes, as examples of non-repetitive data [59,60]; (2) DNA and RNA datasets, 

such as collections of mitochondrial genomes, influenza virus sequences [60,61,62,59], 16S rRNA gene 

sequences [63], and genomic multiple DNA sequence alignments [64]; (3) Standard protein datasets 

[65,66,61,67]. Individual genomes are less repetitive, while other datasets are more repetitive. In total we 

used 27 test datasets. See Table 2 for the list of test data. All test data is available at the GigaDB repository 

[68]. 

Benchmark 



We benchmarked each compressor on every test dataset, except in cases of incompatibility (e.g., 

DNA compressors cannot compress protein data) or excessive time requirement (some compressors are so 

slow that they would take weeks on larger datasets). For compressors with adjustable compression level, we 

tested the relevant range of levels. We tested both 1 and 4-thread variants of compressors that support multi-

threading. In total, we used 430 settings of 48 compressors. We also included the non-compressing "cat" 

command as control. For compressors using non-trivial wrappers, we also benchmarked the wrappers. 

Currently many sequence analysis tools accept gzip-compressed files as input. Switching to another 

compressor may require either adding support of new format to those tools, or passing the data in 

uncompressed form. The latter solution can be achieved with the help of Unix pipes, if both the compressor 

and the analysis tool support streaming mode. Therefore, we benchmarked all compressors in streaming 

mode (streaming uncompressed data in both compression and decompression). 

For each combination of compressor setting and test dataset we recorded compressed size, 

compression time, decompression time, peak compression memory and peak decompression memory. The 

details of the method and raw benchmark data are available in the Methods section and Supplementary Data, 

respectively. We share benchmark results at the online SCB database: http://kirr.dyndns.org/sequence-

compression-benchmark/. All benchmark code is available at https://github.com/KirillKryukov/scb. 

The choice of measure for evaluating compressor performance depends on a prospective application. 

For a long-term data storage, compactness may be the single most important criterion. For a public sequence 

database, the key measure is how long time it takes from initiating the download of compressed files until 

accessing the decompressed data. This time consists of transfer time plus decompression time (TD-Time). 

Corresponding transfer-decompression speed (TD-Speed) is computed as Original Size / TD-Time. In this 

use case, compression time is relatively unimportant, since compression happens only once, while transfer 

and decompression times affect every user of the database. For a one-time data transfer, all three steps of 

compression, transfer and decompression are timed (CTD-Time), and used for computing the resulting 

overall speed (CTD-Speed). 

A total of 17 measures, including the above-mentioned ones, are available in our results data (See 

Methods for the list of measures). Any of these measures can be used for selecting the best setting of each 

compressor and for sorting the list of compressors. These measures can be then shown in a table and 



visualized in form of column charts and scatterplots. This allows tailoring the output to answer specific 

questions, such as what compressor is better at compressing particular kind of data, or which setting of each 

compressor performs best at particular task. The link speed that is used for estimating transfer times is 

configurable. The default speed of 100 Mbit/sec corresponds to the common speed of a fixed broadband 

internet connection. 

Fig.1 compares the performance of best settings of 36 compressors on human genome. It shows that 

specialized sequence compressors achieve excellent compression ratio on this genome. However, when total 

TD-Speed or CTD-Speed is considered (measures that are important in practical applications), most 

sequence compressors fall behind the general-purpose ones. The best compressors for this dataset in terms of 

compression ratio, TD-Speed and CTD-Speed are "fastqz-slow", "naf-22" and "naf-1", respectively (numbers 

in each compressor name indicate compression level and other settings). Interestingly, the non-compressing 

"cat" command used as a control, while naturally showing at the last place on compression ratio (Fig.1A), is 

not the slowest in terms of TD-Speed and CTD-Speed (Figs.1B and 1C, respectively). In case of CTD-

Speed, for example, it means that some compressors are so slow that their compression + transfer + 

decompression time turns out to be longer than the time required for transferring raw uncompressed data 

(using a particular link speed, in this case 100 Mbit/sec). 

Fig.2 compares all compressor settings on the same data (human genome). Fig.2A shows that the 

strongest compressors often provide a very low decompression speed (shown using logarithmic scale due to 

the enormous range of values), which means that quick data transfer (resulting from strong compression) 

offered by those compressors is offset by significant waiting time required for decompressing the data. 

Fig.2B shows TD-Speed plotted against the CTD-Speed. Similar figures can be constructed for other data 

and performance measures on the SCB database website. 

Visualizing results from multiple test datasets simultaneously is possible, with or without 

aggregation of data. With aggregation, the numbers will be summed or averaged, and a single measurement 

will be shown for each setting of each compressor. Without aggregation, the results of each compressor 

setting will be shown separately on each dataset. Since the resulting number of data points can be huge, in 

such case it is useful to request only the best setting of each compressor to be shown. The criteria for 

choosing the best setting is selectable among the 17 measurements. In case of a column chart, any of the 17 



measures can be used for ordering the shown compressors, independently of the measure used for selecting 

best version, and independently of the measure actually shown in the chart. 

One useful capability of the SCB database is showing measurements relative to the specified 

compressor (and setting). This allows selecting a reference compressor and comparing the other compressors 

to this reference. For example, we can compare compressors to gzip as shown on Fig.3. In this example, we 

compare only the best settings of each compressor, selected using specific measures (transfer+decompression 

speed and compression+transfer+decompression speed on Figs.3A and 3B, respectively). We also used a 

fixed scale to show only range above 0.5 on both axes, which means that only performances that are at least 

half as good as gzip on both axes as shown. In this example, we can see that some compressors improve 

compactness and some improve speed compared to gzip, but few compressors improve both at the same 

time, such as lizard, naf, pigz, pbzip, and zstd. 

It is important to be aware of the memory requirements when choosing a compressor (Fig.4). In 

these charts we plotted data size on the x-axis, and disabled aggregation. This allows seeing how much 

memory a particular compressor used on each test dataset. As this example shows, memory requirement 

reaches saturation point for most compressors. On the other hand, some compressors have unbounded 

growth of consumed memory, which makes them unusable for large data. Interestingly, gzip apparently has 

the smallest memory footprint, which may be one of the reasons for its popularity. Most compressors can 

function on a typical desktop hardware, but some require larger memory, which is important to consider 

when choosing a compressor that will be run by the consumers of distributed data. 

A wide variety of charts can be produced on the benchmark website by selecting specific 

combinations of test data, compressors, and performance measures. At any point the currently visualized data 

can be obtained in textual form using Table output option. Also, all charts can be downloaded in SVG 

format. 

Conclusions 

Our benchmark reveals complex relationship between compressors and between their settings, based 

on various measures. We found that continued use of gzip is usually far from an optimal choice. 

Transitioning from gzip to a better compressor brings significant gains for genome and protein data, and is 

especially beneficial with repetitive DNA/RNA datasets. The optimal choice of compressor depends on 



many factors, including properties of the data to be compressed (such as sequence type, data size, and 

amount of redundancy), relative importance of compression strength, compression speed and decompression 

speed for particular use scenario, as well as amount of memory available on data machines used for 

compression and decompression. Our benchmark allows comparing compressors on individual performance 

metrics, as well as on their combinations. 

The Sequence Compression Benchmark (SCB) database will help in navigating the complex 

landscape of sequence data compression. With dozens of compressors available, making an informed choice 

is not an easy task and requires careful analysis of the project requirements, data type and compressor 

capabilities. Our benchmark is the first resource providing a detailed practical evaluation of various 

compressors on a wide range of molecular sequence datasets. Using the SCB database, users can analyze 

compressor performances on a variety of metrics, and construct custom reports for answering project-

specific questions. 

In contrast to previous studies that showed their results in static tables, our project is dynamic in two 

important senses: (1) the result tables and charts can be dynamically constructed for a custom selection of 

test data, compressors, and measured performance numbers, and (2) our study is not a one-off benchmark, 

but marks the start of a project where we will continue to add compressors and test data. 

Making an informed choice of a compressor with the help of our benchmark will lead to increased 

compactness of sequence databases, with shorter time required for downloading and decompressing. This 

will reduce the load on network and storage infrastructure, and increase the speed and efficiency in 

biological and medical research. 

Methods 

Benchmarked task 

The task is to compress and decompress a FASTA-formatted file containing DNA, RNA or protein 

sequences. The process has to be lossless, i.e., decompressed data must be byte-to-byte identical to the 

original data. Compression and decompression are done without using any reference genome. Each 

compression and decompression task is executed under the Linux OS, via a command line interface. Input 

data for compression and output data during decompression are streamed using Unix pipes. 



Only well-formed FASTA files are used in the benchmark: They must contain no empty lines and all 

long sequence lines have to be wrapped at the same position. Both upper- and lower-case (soft-masked) 

letters can be present, as well as common ambiguity codes. In multiple sequence alignments, additionally, 

dashes ("-") are used for indicating gaps. Each test dataset is compressed separately from other datasets. 

Compressor selection 

We used all specialized sequence compressors that we could find and make to work for the above 

specified task. For general-purpose compressors we used only the major ones, in terms of performance, 

historical importance, or popularity. For each compressor with configurable compression level (or other 

parameters related to compression strength of speed), we used the relevant range of settings, including the 

default. 

Benchmark machine 

 CPU: dual Xeon E5-2643v3 (3.4 GHz, 6 cores), hyperthreading: off 

 RAM: 128 GB DDR4-2133 ECC Registered 

 Storage: 4 x 2 TB SSD, in RAID 0, XFS filesystem, block size: 4096 bytes (blockdev --getbsz) 

 OS: Ubuntu 18.04.1 LTS, kernel: 4.15.0 

 GCC: 7.4.0 

Compressor/dataset combinations that were tested 

Each setting of each compressor is tested on every test dataset, except when it's difficult or 

impossible due to compressor limitations: 

 AC is a protein-specific compressor, and was tested only on protein datasets. 

 Due to their extreme slowness, these compressors are not tested on any data larger than 10 MB: 

cmix, DNA-COMPACT, GeCo, JARVIS, Leon, and XM. 

 UHT fails on the 245 MB dataset and on larger data. 

 Nakamichi was only used on data smaller than 200 MB due to its slowness and memory 

requirements. 

 Among sequence compressors, only DELIMINATE, MFCompress and NAF support multiple 

sequence alignments. 



 Among sequence compressors, only AC, BLAST and NAF support protein sequences. 

 Some settings of XM crash and/or produce wrong decompressed output on some data - such results 

are not included. 

 NUHT's memory requirement makes it impossible to use on 13.4 GB Picea abies genome. 

 LFastqC fails on 2.7 GB dataset and larger data. 

Benchmark process 

The entire benchmark is orchestrated by a perl script. This script loads the lists of compressor 

settings and test data, and proceeds to test each combination that still has its measurements missing in the 

output directory. For each such combination (of compressor setting and test dataset), the following steps are 

performed: 

1. Compression is performed by piping the test data into the compressor. Compressed size and 

compression time is recorded. For compressed formats consisting of multiple files, sizes of all files 

are summed together. 

2. If compression time did not exceed 10 seconds, 9 more compression runs are performed, recording 

compression times. Compressed data from previous run is deleted before each next compression run. 

3. The next set of compression runs is performed to measure peak memory consumption. This set 

consists of the same number of runs as in steps 1-2 (either 1 or 10 runs). That is, for fast compressors 

and for small data the measurement is repeated 10 times. 

4. Decompression test run is performed. In this run decompressed data is piped to the "md5sum -b -" 

command. The resulting md5 signature is compared with that of the original file. In case of any 

mismatch this combination of compressor setting and dataset is disqualified and its measurements 

are discarded. 

5. Decompression time is measured. This time decompressed data is piped to /dev/null. 

6. If decompression completed within 10 seconds, 9 more decompression runs are performed and 

timed. 

7. Peak decompression memory is measured. The number of runs is same as in steps 5-6. 

8. The measurements are stored to a file. All compressed and temporary files are removed. 



Measurement methods 

Measuring time: Wall clock time was measured using Perl's Time::HiRes module (gettimeofday and 

tv_interval subroutines). The resulting time was recorded with millisecond precision. 

Measuring peak memory consumption: First, each compression command was stored in a temporary 

shell script file. Then it was executed via GNU Time, as /usr/bin/time -v cmd.sh >output.txt. "Maximum 

resident set size" value was extracted from the output. 1638 was then subtracted from this value and the 

result was stored as peak memory measurement. 1638 is the average "Maximum resident set size" measured 

by GNU Time in the same way for an empty shell script. 

Memory consumption and time were measured separately because measuring memory makes the 

task slower, especially for very fast tasks. 

Collected measurements 

For each combination of compressor and dataset that was tested, the following measurements were 

collected: 

 Compressed size (in bytes) 

 Compression time (in milliseconds) 

 Decompression time (in milliseconds) 

 Peak compression memory (in GNU Time's "Kbytes") 

 Peak decompression memory (in GNU Time's "Kbytes") 

In cases where 10 values are collected, the average value is used by the benchmark web-site. 

Computed values 

The following values were calculated based on the measured values: 

 Compressed size relative to original (%) = Compressed size / Uncompressed size * 100 

 Compression ratio (times) = Uncompressed size / Compressed size 

 Compression speed (MB/s) = Uncompressed size in MB / Compression time 

 Decompression speed (MB/s) = Uncompressed size in MB / Decompression time 

 Compression + decompression time (s) = Compression time + Decompression time 



 Compression + decompression speed (MB/s) = Uncompressed size in MB / (Compression time + 

Decompression time) 

 Transfer time (s) = Uncompressed size / Link speed in B/s 

 Transfer speed (MB/s) = Uncompressed size in MB / Transfer time 

 Transfer + decompression time (s) = Transfer time + Decompression time 

 Transfer + decompression speed (MB/s) = Uncompressed size in MB / (Transfer time + 

Decompression time) 

 Compression + transfer + decompression time (s) = Compression time + Transfer time + 

Decompression time 

 Compression + transfer + decompression speed (MB/s) = Uncompressed size in MB / (Compression 

time + Transfer time + Decompression time) 

Rationale for non-constant number of runs 

Variable number of runs is the only way to have both accurate measurements and large test data 

(under the constraints of using one test machine, and running benchmark within reasonable time). 

On one hand, benchmark takes lot of time. So much that some compressors can't be even tested at all 

on dataset larger than 10 MB in reasonable time. Therefore repeating every measurement 10 times is 

impractical. Or, it would imply restricting the test data to only small datasets. 

On the other hand, measurements are slightly noisy. The shorter measured time, the more noisy its 

measurement. Thus for very quick runs, multiple runs allow for substantial noise suppression. For longer 

runs it does not make much difference, because the relative error is already small with longer times. 

Using a threshold of 10 seconds seems to be a reasonable compromise between suppressing noise 

and including larger test data (and slow compressors). 

Streaming mode 

For compression, each compressor was reading the input data streamed via unix pipe ("|" in the 

command line). For decompression, each compressor was set up to stream decompressed data via pipe. This 

was done to better approximate a common pattern of using compressors in a practical data analysis scenario. 

In an actual sequence analysis workflow, often decompressed data is piped directly into a downstream 



analysis command. Also, when compressing the sequences, often the data is first pre-processed with another 

command, which then pipes processed sequences to a compressor. 

Some compressors don't implement the streaming mode, and only work with actual files. Since we 

have to benchmark all compressors on the same task, we added streaming mode to such compressors via 

wrapper scripts. For compression, a wrapper reads input data from "stdin" and writes it into a temporary file, 

then executes a compressor on that file, and finally deletes the file. For decompression the reverse process 

occurs: The wrapper script executes a decompressor, which writes the decompressed data into a temporary 

file; then the wrapper reads this file and streams it to "stdout", before deleting the file. 

The entire process is timed for the benchmark. Normally such wrapping has minimal impact on the 

overall compression/decompression speed, because we use fast SSD storage, and because the actual 

compression and decompression takes comparatively much longer time than simply streaming the data 

to/from a file. 

FASTA format compatibility 

Many specialized compressors don't support the full-featured modern FASTA format, such as the 

one used in genome databases. Specifically, modern FASTA files often store masked sequence (use a mix of 

upper- and lower-case letters), and include ambiguity codes. The degree of completeness of FASTA support 

varies wildly among compressors. At one end of the spectrum, there are compressors with comprehensive 

support for all FASTA format features. At another end, there are compressors that only work with a string of 

capital ACGT and nothing else, not even sequence names or newlines. Majority of sequence compressors are 

somewhere in-between these two extremes. 

Essentially this means that each sequence compressor performs its own task, different from that of 

the others. If a compressor does not need to care about upper vs lower-case letters, or about storing sequence 

names, it can possibly work faster. Thus comparing compressors each doing their own thing would not be 

fair, or very useful to the user. Since full-featured FASTA is in fact commonly used in today's databases, we 

decided to require complete lossless support of full-featured FASTA files from all benchmarked 

compressors. In practice this means that we had to create a custom wrapper for each incomplete compressor, 

implementing the missing compatibility features. 



A typical wrapper takes the original FASTA-formatted input and transforms it into a format 

acceptable by the compressor being wrapped. For instance, if a compressor only expects upper-case 

nucleotide codes, then the positions of upper- and lowe-case characters are extracted and saved in a separate 

file. The original file is converted to all upper-case, which is then fed to the compressor. The separate "mask" 

file (storing positions of lower-case letters) is compressed with a general-purpose compressor. Entire set of 

files produces in such way counts for the compressed data size measured for this particular compressor and 

dataset, so that the overall compression strength is comparable with that achieved by other compressors (with 

or without their respective wrappers). Also the total time is measured, including the time taken by all 

transformations and by storing/compressing the additional files. 

We developed several tools for quickly processing FASTA files to extract or add various channels of 

information for the purpose of wrapping the incomplete compressors. We used C and optimized for speed, so 

that these steps have maximum speed and minimap impact on the overall compression. The wrapper scripts 

themselves are written in Perl. We used the fast mode of zstd ("-1") to compress the additional files, chosen 

because of its high speed so that it has minimal impact on measuring the speed of the wrapped compressor. 

As for compactness, the impact is minimal as well since the additional files are typically very small and 

compress well. 

For all such wrapped compressors, we benchmarked not only the complete wrapped compressor, but 

also the "wrapper-only" mode, in which only the wrapper script is executed, but not the compressor itself. 

Such results are included in the benchmark under the "wrap-NAME" names. This means that it's possible to 

compare the speed of the entire wrapped compressor with its corresponding "wrapper-only" run, for each 

dataset. This allows to see how much time is used by the wrapper, and therefore how much impact the 

wrapper makes on the overall results.  

Some of the features implemented via wrappers: 

 Supporting RNA sequences for DNA-only compressors 

 Supporting 'N' in DNA/RNA sequences 

 Supporting IUPAC's ambiguous nucleotide codes 

 Saving and restoring line lengths 

 Saving and restoring sequence names 



 Saving and restoring sequence mask (upper/lower case) 

 Supporting FASTA-formatted input 

 Supporting input with more than 1 sequence 

FASTQ compressors 

Several FASTQ compressors are included in the benchmark. All of them are tested using wrappers 

which convert FASTA sequences into their respective accepted formats. Some need only adding the artificial 

quality (constant "A" in most cases). Other expect only short reads or reads of identical lengths. These 

transformations are done in custom wrappers that we made for each FASTQ compressor. Since compression 

and decompression time recorded for benchmark is the total time of all steps, including wrapper processing, 

it means that in many cases the wrapped tool may work faster when used directly on FASTQ data. Also 

many FASTQ compressors are designed under additional assumptions typical for FASTQ data, for example 

that all reads are sampled from an underlying genome with substantial coverage (which allows meaningful 

assembly). These assumptions often don't hold on our FASTA-formatted benchmark datasets. Therefore the 

results of FASTQ compressors shown in our benchmark should not be taken as indicative of the actual 

performance of those compressors on FASTQ data that they were designed for. 

Benchmark code availability 

All scripts used for conducting the benchmark are available at the GitHub repository: 

https://github.com/KirillKryukov/scb. The main benchmark scrripts and configuration files are in the 

"benchmark" directory. All wrappers are in the "wrappers" directory. Additional tools used by the wrappers 

are in "seq-tools-c" and "seq-tools-perl"  directories. Compression and decompression commands are listed 

in files "benchmark/compressors-*.txt" and "benchmark/decompressors.txt". Benchmark data is merged 

using the "benchmark/2-collect-results.pl" script. The resulting merged data is visualized using a server-side 

script in the "website" directory. The scripts are provided for reference only. 

Update plan 

We plan to continue maintaining Sequence Compression Benchmark. This mainly involves 

benchmarking new or updated compressors, when such compressors become available. Since it's impractical 



to benchmark every existing compressor, we will continue to only benchmark compressors selected based on 

their performance, quality and usefulness for sequence compression. 
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Figure legends 

Fig. 1. Comparison of 36 compressors on human genome. The best settings of each compressor are 

selected based on different aspects of performance: (A) compression ratio, (B) transfer + decompression 

speed, and (C) compression + transfer + decompression speed. Specialized sequence compressors are shown 

in orange color, and general-purpose compressors are shown in blue. The copy-compressor ("cat" command), 

shown in red color, is included as a control. The selected settings of each compressor are shown in their 

names, after hyphen. Multi-threaded compressors have "-1t" or "-4t" at the end of their names to indicate the 

number of threads used. Test data is the 3.31 GB reference human genome (accession number 

GCA_000001405.28). Benchmark CPU: Intel Xeon E5-2643v3 (3.4 GHz). Link speed of 100 Mbit/s was 

used for estimating the transfer time. 

 

Fig. 2. Comparison of 334 settings of 36 compressors on human genome. Each point represents a 

particular setting of some compressor. Panel A shows the relationship between compression ratio and 

decompression speed. Panel B shows the transfer + decompression speed plotted against compression + 

transfer + decompression speed. Test data is the 3.31 GB reference human genome (accession number 

GCA_000001405.28). Benchmark CPU: Intel Xeon E5-2643v3 (3.4 GHz). Link speed of 100 Mbit/s was 

used for estimating the transfer time. 

 

Fig. 3. Comparison of compressor settings to gzip. Genome datasets were used as test data. Each point 

shows the performance of a compressor setting on specific genome test dataset. All values are shown relative 

to representative setting of gzip. Only performances that are at least half as good as gzip on both axes are 

shown. Panel A shows settings that performed best in Transfer+Decompression speed, B - settings that 



performed best in Compression+Transfer+Decompression speed. Link speed of 100 Mbit/s was used for 

estimating the transfer time. 

 

Fig. 4. Compressor memory consumption. The strongest setting of each compressor is shown. On the x-

axis is the test data size. On the y-axis is the peak memory used by the compressor, for compression (A) and 

decompression (B).  

Table 1. Compressor versions 

A) Specialized sequence compressors 

Compressor Version 

2bit "faToTwoBit" and "twoBitToFa" binaries dated 2018-11-07 

ac AC 1.1, 2020-01-29 

alapy ALAPY 1.3.0, 2017-07-25 

beetl BEETL, commit 327cc65, 2019-11-14 

blast 
"convert2blastmask", "makeblastdb" and "blastdbcmd" binaries from 

BLAST 2.8.1+, 2018-11-26 

dcom DNA-COMPACT, latest public source 2013-08-29 

dlim DELIMINATE, version 1.3c, 2012 

dnaX dnaX 0.1.0, 2014-08-03 

dsrc DSRC 2.02, commit 5eda82c, 2015-06-04 

fastqz fastqz 1.5, commit 39b2bbc, 2012-03-15 

fqs FQSqueezer 0.1, commit 5741fc5, 2019-05-17 

fqzcomp fqzcomp 4.6, commit 96f2f61, 2019-12-02 

geco 
GeCo: v.2.1, 2016-12-24 

GeCo2: v.1.1, 2019-02-02 

gtz GTX.Zip PROFESSIONAL-2.1.3-V-2020-03-18 07:11:20, binary  

harc HARC, commit cf35caf, 2019-10-04 

jarvis JARVIS v.1.1, commit d7daef5, 2019-04-30 

kic KIC binary, 0.2, 2015-11-25 

leon Leon, 1.0.0, 2016-02-27, Linux binary 

lfastqc LFastqC, commit 60e5fda, 2019-02-28, with fixes 

lfqc LFQC, commit 59f56e0, 2016-01-06 

mfc MFCompress,s1.01, 2013-09-03, 64-bit Linux binary 

minicom Minicom, commit 2360dd9, 2019-09-09 

naf NAF, 1.1.0, 2019-10-01 

nuht NUHT, commit 08a42a8, 2018-09-26, Linux binary 



pfish Pufferfish, v.1.0 alpha, 2012-04-11 

quip Quip, commit 9165bb5, 1.1.8-8-g9165bb5, 2017-12-17 

spring SPRING, commit 6536b1b, 2019-11-28 

uht UHT, binary from 2016-12-27 

xm XM (eXpert-Model), 3.0, commit 9b9ea57, 2019-01-07 

B) General-purpose compressors 

Compressor Version 

bcm 1.30, 2018-01-21 

brieflz 1.3.0, 2020-02-15 

brotli 1.0.7, 2018-10-23 

bsc 3.1.0, 2016-01-01 

bzip2 1.0.6, 2010-09-06 

cmix 17, 2019-03-24 

gzip 1.6, 2013-06-09 

lizard 1.0.0, 2019-03-08 

lz4 1.9.1, 2019-04-24 

lzop 1.04, 2017-08-10 

lzturbo 1.2, 2014-08-11 

nakamichi 2020-May-09 

pbzip2 1.1.13, 2015-12-18 

pigz 2.4, 2017-12-26 

snzip 1.0.4, 2016-10-02 

xz 5.2.2, 2015-09-29 

zpaq 7.15, 2016-08-17 

zpipe  2.01, 2010-12-23 

zstd 1.4.5, 2020-05-22 

Table 2. Test datasets 

A) Genome sequence datasets 

Category Organism Accession Size 

Virus Gordonia phage GAL1 [60] GCF_001884535.1 50.7 kB 

Bacteria WS1 bacterium JGI 0000059-K21 [59] GCA_000398605.1 522 kB 

Protist Astrammina rara [59] GCA_000211355.2 1.71 MB 

Fungus Nosema ceranae [59] GCA_000988165.1 5.81 MB 

Protist Cryptosporidium parvum Iowa II [59] GCA_000165345.1 9.22 MB 

Protist Spironucleus salmonicida [59] GCA_000497125.1 13.1 MB 



Protist Tieghemostelium lacteum [59] GCA_001606155.1 23.7 MB 

Fungus Fusarium graminearum PH-1 [60] GCF_000240135.3 36.9 MB 

Protist Salpingoeca rosetta [59] GCA_000188695.1 56.2 MB 

Algae Chondrus crispus [59] GCA_000350225.2 106 MB 

Algae Kappaphycus alvarezii [59] GCA_002205965.2 341 MB 

Animal Strongylocentrotus purpuratus [60] GCF_000002235.4 1.01 GB 

Plant Picea abies [59] GCA_900067695.1 13.4 GB 

B) Other DNA datasets 

Dataset 
Number of 

sequences 
Size Source Date 

Mitochondrion [60] 9,402 245 MB 

RefSeq FTP: 

ftp://ftp.ncbi.nlm.nih.gov/refseq/release/ 

mitochondrion/mitochondrion.1.1.genomic.fna.gz 

ftp://ftp.ncbi.nlm.nih.gov/refseq/release/ 

mitochondrion/mitochondrion.2.1.genomic.fna.gz 

2019-03-15 

NCBI Virus 

Complete 

Nucleotide Human 

[61] 

36,745 482 MB  
NCBI Virus: 

https://www.ncbi.nlm.nih.gov/labs/virus/vssi/ 
2020-05-11 

Influenza [62] 700,001 1.22 GB 

Influenza Virus Database: 

ftp://ftp.ncbi.nih.gov/genomes/INFLUENZA/ 

influenza.fna.gz 

2019-04-27 

Helicobacter [59] 108,292 2.76 GB 
NCBI Assembly: 

https://www.ncbi.nlm.nih.gov/assembly 
2019-04-24 

C) RNA datasets 

Dataset 
Number of 

sequences 
Size Source Date 

SILVA 132 

LSURef [63] 
198,843 610 MB 

Silva database: 

https://ftp.arb-silva.de/release_132/Exports/ 

SILVA_132_LSURef_tax_silva.fasta.gz 

2017-12-11 

SILVA 132 

SSURef Nr99 

[63] 

695,171 1.11 GB 

Silva database: 

https://ftp.arb-silva.de/release_132/Exports/ 

SILVA_132_SSURef_Nr99_tax_silva.fasta.gz 

2017-12-11 

SILVA 132 

SSURef [63] 
2,090,668 3.28 GB 

Silva database: 

https://ftp.arb-silva.de/release_132/Exports/ 

SILVA_132_SSURef_tax_silva.fasta.gz 

2017-12-11 

D) Multiple DNA sequence alignments 

Dataset 
Number of 

sequences 
Size Source Date 

UCSC hg38 7way 

knownCanonical-exonNuc 

[64] 

1,470,154 340 MB 

UCSC: 

https://hgdownload.soe.ucsc.edu/ 

goldenPath/hg38/multiz7way/alignments/ 

knownCanonical.exonNuc.fa.gz 

2014-06-06 

UCSC hg38 20way 

knownCanonical-exonNuc 

[64] 

4,211,940 969 MB 

UCSC: 

https://hgdownload.soe.ucsc.edu/ 

goldenPath/hg38/multiz20way/alignments/ 

knownCanonical.exonNuc.fa.gz 

2015-06-30 

E) Protein datasets 

Dataset 

Number 

of 

sequences 

Size Source Date 



PDB [65] 109,914 67.6 MB 
PDB database FTP: 

ftp://ftp.ncbi.nih.gov/blast/db/FASTA/pdbaa.gz 
2019-04-09 

Homo sapiens 

GRCh38 [66] 
105,961 73.2 MB 

NCBI FTP: 

ftp://ftp.ensembl.org/ 

pub/release-96/fasta/homo_sapiens/pep/ 

Homo_sapiens.GRCh38.pep.all.fa.gz 

2019-03-12 

NCBI Virus RefSeq 

Protein [61] 
373,332 122 MB 

NCBI Virus: 

https://www.ncbi.nlm.nih.gov/labs/virus/vssi/ 
2020-05-10 

UniProtKB 

Reviewed (Swiss-

Prot) [67] 

560,118 277 MB 

UniProt FTP: 

ftp://ftp.uniprot.org/ 

pub/databases/uniprot/current_release/ 

knowledgebase/complete/uniprot_sprot.fasta.gz 

2019-04-02 
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Abstract 

Background. Nearly all molecular sequence databases currently use gzip for data compression. Ongoing 

rapid accumulation of stored data calls for more efficient compression tool. Although numerous compressors 

exist, both specialized and general-purpose, choosing one of them was difficult because no comprehensive 

analysis of their comparative advantages for sequence compression was available. 

Findings. We systematically benchmarked 430 settings of 48 compressors (including 29 specialized 

sequence compressors and 19 general-purpose compressors) on representative FASTA-formatted datasets of 

DNA, RNA and protein sequences. Each compressor was evaluated on 17 performance measures, including 

compression strength, as well as time and memory required for compression and decompression. We used 27 

test datasets including individual genomes of various sizes, DNA and RNA datasets, and standard protein 

datasets. We summarized the results as the Sequence Compression Benchmark database (SCB database, 

http://kirr.dyndns.org/sequence-compression-benchmark/) that allows building custom visualizations for 

selected subsets of benchmark results. 

Conclusion. We found that modern compressors offer a large improvement in compactness and speed 

compared to gzip. Our benchmark allows comparing compressors and their settings using a variety of 

performance measures, offering the opportunity to select the optimal compressor based on the data type and 

usage scenario specific to a particular application. 
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Findings 

Background 

Molecular sequence databases store and distribute DNA, RNA and protein sequences as compressed 

FASTA-formatted files. Biological sequence compression was first proposed in 1986 [1] and the first 

practical compressor was made in 1993 [2]. A lively field emerged that produced a stream of methods, 

algorithms, and software tools for sequence compression [3,4]. However, despite this activity, currently 

nearly all databases universally depend on gzip for compressing FASTA-formatted sequence data. This 

incredible longevity of the 27-year-old compressor probably owes to multiple factors, including 

conservatism of database operators, wide availability of gzip, and its generally acceptable performance. 

Through all these years the amount of stored sequence data kept growing steadily [5], increasing the load on 

database operators, users, storage systems and network infrastructure. However, someone thinking to replace 

gzip invariably faces the questions: which of the numerous available compressors to choose? And will the 

resulting gains be even worth the trouble of switching? 

Previous attempts at answering these questions are limited by testing too few compressors and by 

using restricted test data [6-11]. In addition, all of these studies provide results in form of tables, with no 

graphical outputs, which makes the interpretation difficult. Existing benchmarks with useful visualization 

such as Squash [12], are limited to general-purpose compressors. 

The variety of available specialized and general-purpose compressors is overwhelming. At the same 

time the field was lacking a thorough investigation of comparative merits of these compressors for sequence 

data. Therefore we set out to benchmark all available practically useful compressors on a variety of relevant 

sequence data. Specifically, we focused on the common task of compressing DNA, RNA and protein 

sequences, stored in FASTA format, without using reference sequence. The benchmark results are available 

in the Sequence Compression Benchmark database (SCB database,  http://kirr.dyndns.org/sequence-

compression-benchmark/). 

Scope, compressors and test data 



We considered the common scenario of archiving, transferring and working with large datasets of 

biological sequences. In this study we did not investigate compression of raw sequencing data in FASTQ 

format, which was previously thoroughly reviewed in [11]. Instead we focused on typical FASTA-formatted 

datasets, which includes individual genomes and single gene sets. Consequently we also did not consider 

referential compression, but only reference-free compression, which is typically used for such data. We 

evaluated standalone compression tools (rather than libraries), working under Linux OS on a modern 

workstation PC. In this study we only consider lossless compression. 

We tested all DNA sequence compressors that are available and functional in 2020: dnaX [13], XM 

[14], DELIMINATE [15], Pufferfish [16], DNA-COMPACT [17], MFCompress [18], UHT [19], GeCo [20], 

GeCo2 [21], JARVIS [22], NAF [23], and NUHT [24]. We also included the relatively compact among 

homology search database formats: BLAST [25] and 2bit - a database format of BLAT [26]. 

Since compressors designed for FASTQ data can be trivially adopted for FASTA-formatted inputs, 

we also included a comprehensive array of compressors designed primarily or specifically for FASTQ data: 

BEETL [27], Quip [28], fastqz [10], fqzcomp [10], DSRC 2 [29], Leon [30], LFQC [31], KIC [32], ALAPY 

[33], GTX.Zip [34], HARC [35], LFastqC [36], SPRING [37], Minicom [38], and FQSqueezer [39]. We also 

included AC - a compressor designed exclusively for protein sequences [40]. We also tested a 

comprehensive array of general-purpose compressors: bcm [41], brieflz[42], brotli [43], bsc [44], bzip2 [45], 

cmix [46], gzip [47], lizard [48], lz4 [49], lzop [50], lzturbo [51], nakamichi [52], pbzip2 [53], pigz [54], 

snzip [55], xz [56], zpaq [57], zpipe [57] and zstd [58]. See Table 1 for the list of compressors we used. 

For the test data, we selected a variety of commonly used sequence datasets in FASTA format: (1) 

Individual genomes of various sizes, as examples of non-repetitive data [59,60]; (2) DNA and RNA datasets, 

such as collections of mitochondrial genomes, influenza virus sequences [60,61,62,59], 16S rRNA gene 

sequences [63], and genomic multiple DNA sequence alignments [64]; (3) Standard protein datasets 

[65,66,61,67]. Individual genomes are less repetitive, while other datasets are more repetitive. In total we 

used 27 test datasets. See Table 2 for the list of test data. All test data is available at the GigaDB repository 

[68]. 

Benchmark 



We benchmarked each compressor on every test dataset, except in cases of incompatibility (e.g., 

DNA compressors cannot compress protein data) or excessive time requirement (some compressors are so 

slow that they would take weeks on larger datasets). For compressors with adjustable compression level, we 

tested the relevant range of levels. We tested both 1 and 4-thread variants of compressors that support multi-

threading. In total, we used 430 settings of 48 compressors. We also included the non-compressing "cat" 

command as control. For compressors using non-trivial wrappers, we also benchmarked the wrappers. 

Currently many sequence analysis tools accept gzip-compressed files as input. Switching to another 

compressor may require either adding support of new format to those tools, or passing the data in 

uncompressed form. The latter solution can be achieved with the help of Unix pipes, if both the compressor 

and the analysis tool support streaming mode. Therefore, we benchmarked all compressors in streaming 

mode (streaming uncompressed data in both compression and decompression). 

For each combination of compressor setting and test dataset we recorded compressed size, 

compression time, decompression time, peak compression memory and peak decompression memory. The 

details of the method and raw benchmark data are available in the Methods section and Supplementary Data, 

respectively. We share benchmark results at the online SCB database: http://kirr.dyndns.org/sequence-

compression-benchmark/. All benchmark code is available at https://github.com/KirillKryukov/scb. 

The choice of measure for evaluating compressor performance depends on a prospective application. 

For a long-term data storage, compactness may be the single most important criterion. For a public sequence 

database, the key measure is how long time it takes from initiating the download of compressed files until 

accessing the decompressed data. This time consists of transfer time plus decompression time (TD-Time). 

Corresponding transfer-decompression speed (TD-Speed) is computed as Original Size / TD-Time. In this 

use case, compression time is relatively unimportant, since compression happens only once, while transfer 

and decompression times affect every user of the database. For a one-time data transfer, all three steps of 

compression, transfer and decompression are timed (CTD-Time), and used for computing the resulting 

overall speed (CTD-Speed). 

A total of 17 measures, including the above-mentioned ones, are available in our results data (See 

Methods for the list of measures). Any of these measures can be used for selecting the best setting of each 

compressor and for sorting the list of compressors. These measures can be then shown in a table and 



visualized in form of column charts and scatterplots. This allows tailoring the output to answer specific 

questions, such as what compressor is better at compressing particular kind of data, or which setting of each 

compressor performs best at particular task. The link speed that is used for estimating transfer times is 

configurable. The default speed of 100 Mbit/sec corresponds to the common speed of a fixed broadband 

internet connection. 

Fig.1 compares the performance of best settings of 36 compressors on human genome. It shows that 

specialized sequence compressors achieve excellent compression ratio on this genome. However, when total 

TD-Speed or CTD-Speed is considered (measures that are important in practical applications), most 

sequence compressors fall behind the general-purpose ones. The best compressors for this dataset in terms of 

compression ratio, TD-Speed and CTD-Speed are "fastqz-slow", "naf-22" and "naf-1", respectively (numbers 

in each compressor name indicate compression level and other settings). Interestingly, the non-compressing 

"cat" command used as a control, while naturally showing at the last place on compression ratio (Fig.1A), is 

not the slowest in terms of TD-Speed and CTD-Speed (Figs.1B and 1C, respectively). In case of CTD-

Speed, for example, it means that some compressors are so slow that their compression + transfer + 

decompression time turns out to be longer than the time required for transferring raw uncompressed data 

(using a particular link speed, in this case 100 Mbit/sec). 

Fig.2 compares all compressor settings on the same data (human genome). Fig.2A shows that the 

strongest compressors often provide a very low decompression speed (shown using logarithmic scale due to 

the enormous range of values), which means that quick data transfer (resulting from strong compression) 

offered by those compressors is offset by significant waiting time required for decompressing the data. 

Fig.2B shows TD-Speed plotted against the CTD-Speed. Similar figures can be constructed for other data 

and performance measures on the SCB database website. 

Visualizing results from multiple test datasets simultaneously is possible, with or without 

aggregation of data. With aggregation, the numbers will be summed or averaged, and a single measurement 

will be shown for each setting of each compressor. Without aggregation, the results of each compressor 

setting will be shown separately on each dataset. Since the resulting number of data points can be huge, in 

such case it is useful to request only the best setting of each compressor to be shown. The criteria for 

choosing the best setting is selectable among the 17 measurements. In case of a column chart, any of the 17 



measures can be used for ordering the shown compressors, independently of the measure used for selecting 

best version, and independently of the measure actually shown in the chart. 

One useful capability of the SCB database is showing measurements relative to the specified 

compressor (and setting). This allows selecting a reference compressor and comparing the other compressors 

to this reference. For example, we can compare compressors to gzip as shown on Fig.3. In this example, we 

compare only the best settings of each compressor, selected using specific measures (transfer+decompression 

speed and compression+transfer+decompression speed on Figs.3A and 3B, respectively). We also used a 

fixed scale to show only range above 0.5 on both axes, which means that only performances that are at least 

half as good as gzip on both axes as shown. In this example, we can see that some compressors improve 

compactness and some improve speed compared to gzip, but few compressors improve both at the same 

time, such as lizard, naf, pigz, pbzip, and zstd. 

It is important to be aware of the memory requirements when choosing a compressor (Fig.4). In 

these charts we plotted data size on the x-axis, and disabled aggregation. This allows seeing how much 

memory a particular compressor used on each test dataset. As this example shows, memory requirement 

reaches saturation point for most compressors. On the other hand, some compressors have unbounded 

growth of consumed memory, which makes them unusable for large data. Interestingly, gzip apparently has 

the smallest memory footprint, which may be one of the reasons for its popularity. Most compressors can 

function on a typical desktop hardware, but some require larger memory, which is important to consider 

when choosing a compressor that will be run by the consumers of distributed data. 

A wide variety of charts can be produced on the benchmark website by selecting specific 

combinations of test data, compressors, and performance measures. At any point the currently visualized data 

can be obtained in textual form using Table output option. Also, all charts can be downloaded in SVG 

format. 

Conclusions 

Our benchmark reveals complex relationship between compressors and between their settings, based 

on various measures. We found that continued use of gzip is usually far from an optimal choice. 

Transitioning from gzip to a better compressor brings significant gains for genome and protein data, and is 

especially beneficial with repetitive DNA/RNA datasets. The optimal choice of compressor depends on 



many factors, including properties of the data to be compressed (such as sequence type, data size, and 

amount of redundancy), relative importance of compression strength, compression speed and decompression 

speed for particular use scenario, as well as amount of memory available on data machines used for 

compression and decompression. Our benchmark allows comparing compressors on individual performance 

metrics, as well as on their combinations. 

The Sequence Compression Benchmark (SCB) database will help in navigating the complex 

landscape of sequence data compression. With dozens of compressors available, making an informed choice 

is not an easy task and requires careful analysis of the project requirements, data type and compressor 

capabilities. Our benchmark is the first resource providing a detailed practical evaluation of various 

compressors on a wide range of molecular sequence datasets. Using the SCB database, users can analyze 

compressor performances on a variety of metrics, and construct custom reports for answering project-

specific questions. 

In contrast to previous studies that showed their results in static tables, our project is dynamic in two 

important senses: (1) the result tables and charts can be dynamically constructed for a custom selection of 

test data, compressors, and measured performance numbers, and (2) our study is not a one-off benchmark, 

but marks the start of a project where we will continue to add compressors and test data. 

Making an informed choice of a compressor with the help of our benchmark will lead to increased 

compactness of sequence databases, with shorter time required for downloading and decompressing. This 

will reduce the load on network and storage infrastructure, and increase the speed and efficiency in 

biological and medical research. 

Methods 

Benchmarked task 

The task is to compress and decompress a FASTA-formatted file containing DNA, RNA or protein 

sequences. The process has to be lossless, i.e., decompressed data must be byte-to-byte identical to the 

original data. Compression and decompression are done without using any reference genome. Each 

compression and decompression task is executed under the Linux OS, via a command line interface. Input 

data for compression and output data during decompression are streamed using Unix pipes. 



Only well-formed FASTA files are used in the benchmark: They must contain no empty lines and all 

long sequence lines have to be wrapped at the same position. Both upper- and lower-case (soft-masked) 

letters can be present, as well as common ambiguity codes. In multiple sequence alignments, additionally, 

dashes ("-") are used for indicating gaps. Each test dataset is compressed separately from other datasets. 

Compressor selection 

We used all specialized sequence compressors that we could find and make to work for the above 

specified task. For general-purpose compressors we used only the major ones, in terms of performance, 

historical importance, or popularity. For each compressor with configurable compression level (or other 

parameters related to compression strength of speed), we used the relevant range of settings, including the 

default. 

Benchmark machine 

 CPU: dual Xeon E5-2643v3 (3.4 GHz, 6 cores), hyperthreading: off 

 RAM: 128 GB DDR4-2133 ECC Registered 

 Storage: 4 x 2 TB SSD, in RAID 0, XFS filesystem, block size: 4096 bytes (blockdev --getbsz) 

 OS: Ubuntu 18.04.1 LTS, kernel: 4.15.0 

 GCC: 7.4.0 

Compressor/dataset combinations that were tested 

Each setting of each compressor is tested on every test dataset, except when it's difficult or 

impossible due to compressor limitations: 

 AC is a protein-specific compressor, and was tested only on protein datasets. 

 Due to their extreme slowness, these compressors are not tested on any data larger than 10 MB: 

cmix, DNA-COMPACT, GeCo, JARVIS, Leon, and XM. 

 UHT fails on the 245 MB dataset and on larger data. 

 Nakamichi was only used on data smaller than 200 MB due to its slowness and memory 

requirements. 

 Among sequence compressors, only DELIMINATE, MFCompress and NAF support multiple 

sequence alignments. 



 Among sequence compressors, only AC, BLAST and NAF support protein sequences. 

 Some settings of XM crash and/or produce wrong decompressed output on some data - such results 

are not included. 

 NUHT's memory requirement makes it impossible to use on 13.4 GB Picea abies genome. 

 LFastqC fails on 2.7 GB dataset and larger data. 

Benchmark process 

The entire benchmark is orchestrated by a perl script. This script loads the lists of compressor 

settings and test data, and proceeds to test each combination that still has its measurements missing in the 

output directory. For each such combination (of compressor setting and test dataset), the following steps are 

performed: 

1. Compression is performed by piping the test data into the compressor. Compressed size and 

compression time is recorded. For compressed formats consisting of multiple files, sizes of all files 

are summed together. 

2. If compression time did not exceed 10 seconds, 9 more compression runs are performed, recording 

compression times. Compressed data from previous run is deleted before each next compression run. 

3. The next set of compression runs is performed to measure peak memory consumption. This set 

consists of the same number of runs as in steps 1-2 (either 1 or 10 runs). That is, for fast compressors 

and for small data the measurement is repeated 10 times. 

4. Decompression test run is performed. In this run decompressed data is piped to the "md5sum -b -" 

command. The resulting md5 signature is compared with that of the original file. In case of any 

mismatch this combination of compressor setting and dataset is disqualified and its measurements 

are discarded. 

5. Decompression time is measured. This time decompressed data is piped to /dev/null. 

6. If decompression completed within 10 seconds, 9 more decompression runs are performed and 

timed. 

7. Peak decompression memory is measured. The number of runs is same as in steps 5-6. 

8. The measurements are stored to a file. All compressed and temporary files are removed. 



Measurement methods 

Measuring time: Wall clock time was measured using Perl's Time::HiRes module (gettimeofday and 

tv_interval subroutines). The resulting time was recorded with millisecond precision. 

Measuring peak memory consumption: First, each compression command was stored in a temporary 

shell script file. Then it was executed via GNU Time, as /usr/bin/time -v cmd.sh >output.txt. "Maximum 

resident set size" value was extracted from the output. 1638 was then subtracted from this value and the 

result was stored as peak memory measurement. 1638 is the average "Maximum resident set size" measured 

by GNU Time in the same way for an empty shell script. 

Memory consumption and time were measured separately because measuring memory makes the 

task slower, especially for very fast tasks. 

Collected measurements 

For each combination of compressor and dataset that was tested, the following measurements were 

collected: 

 Compressed size (in bytes) 

 Compression time (in milliseconds) 

 Decompression time (in milliseconds) 

 Peak compression memory (in GNU Time's "Kbytes") 

 Peak decompression memory (in GNU Time's "Kbytes") 

In cases where 10 values are collected, the average value is used by the benchmark web-site. 

Computed values 

The following values were calculated based on the measured values: 

 Compressed size relative to original (%) = Compressed size / Uncompressed size * 100 

 Compression ratio (times) = Uncompressed size / Compressed size 

 Compression speed (MB/s) = Uncompressed size in MB / Compression time 

 Decompression speed (MB/s) = Uncompressed size in MB / Decompression time 

 Compression + decompression time (s) = Compression time + Decompression time 



 Compression + decompression speed (MB/s) = Uncompressed size in MB / (Compression time + 

Decompression time) 

 Transfer time (s) = Uncompressed size / Link speed in B/s 

 Transfer speed (MB/s) = Uncompressed size in MB / Transfer time 

 Transfer + decompression time (s) = Transfer time + Decompression time 

 Transfer + decompression speed (MB/s) = Uncompressed size in MB / (Transfer time + 

Decompression time) 

 Compression + transfer + decompression time (s) = Compression time + Transfer time + 

Decompression time 

 Compression + transfer + decompression speed (MB/s) = Uncompressed size in MB / (Compression 

time + Transfer time + Decompression time) 

Rationale for non-constant number of runs 

Variable number of runs is the only way to have both accurate measurements and large test data 

(under the constraints of using one test machine, and running benchmark within reasonable time). 

On one hand, benchmark takes lot of time. So much that some compressors can't be even tested at all 

on dataset larger than 10 MB in reasonable time. Therefore repeating every measurement 10 times is 

impractical. Or, it would imply restricting the test data to only small datasets. 

On the other hand, measurements are slightly noisy. The shorter measured time, the more noisy its 

measurement. Thus for very quick runs, multiple runs allow for substantial noise suppression. For longer 

runs it does not make much difference, because the relative error is already small with longer times. 

Using a threshold of 10 seconds seems to be a reasonable compromise between suppressing noise 

and including larger test data (and slow compressors). 

Streaming mode 

For compression, each compressor was reading the input data streamed via unix pipe ("|" in the 

command line). For decompression, each compressor was set up to stream decompressed data via pipe. This 

was done to better approximate a common pattern of using compressors in a practical data analysis scenario. 

In an actual sequence analysis workflow, often decompressed data is piped directly into a downstream 



analysis command. Also, when compressing the sequences, often the data is first pre-processed with another 

command, which then pipes processed sequences to a compressor. 

Some compressors don't implement the streaming mode, and only work with actual files. Since we 

have to benchmark all compressors on the same task, we added streaming mode to such compressors via 

wrapper scripts. For compression, a wrapper reads input data from "stdin" and writes it into a temporary file, 

then executes a compressor on that file, and finally deletes the file. For decompression the reverse process 

occurs: The wrapper script executes a decompressor, which writes the decompressed data into a temporary 

file; then the wrapper reads this file and streams it to "stdout", before deleting the file. 

The entire process is timed for the benchmark. Normally such wrapping has minimal impact on the 

overall compression/decompression speed, because we use fast SSD storage, and because the actual 

compression and decompression takes comparatively much longer time than simply streaming the data 

to/from a file. 

FASTA format compatibility 

Many specialized compressors don't support the full-featured modern FASTA format, such as the 

one used in genome databases. Specifically, modern FASTA files often store masked sequence (use a mix of 

upper- and lower-case letters), and include ambiguity codes. The degree of completeness of FASTA support 

varies wildly among compressors. At one end of the spectrum, there are compressors with comprehensive 

support for all FASTA format features. At another end, there are compressors that only work with a string of 

capital ACGT and nothing else, not even sequence names or newlines. Majority of sequence compressors are 

somewhere in-between these two extremes. 

Essentially this means that each sequence compressor performs its own task, different from that of 

the others. If a compressor does not need to care about upper vs lower-case letters, or about storing sequence 

names, it can possibly work faster. Thus comparing compressors each doing their own thing would not be 

fair, or very useful to the user. Since full-featured FASTA is in fact commonly used in today's databases, we 

decided to require complete lossless support of full-featured FASTA files from all benchmarked 

compressors. In practice this means that we had to create a custom wrapper for each incomplete compressor, 

implementing the missing compatibility features. 



A typical wrapper takes the original FASTA-formatted input and transforms it into a format 

acceptable by the compressor being wrapped. For instance, if a compressor only expects upper-case 

nucleotide codes, then the positions of upper- and lowe-case characters are extracted and saved in a separate 

file. The original file is converted to all upper-case, which is then fed to the compressor. The separate "mask" 

file (storing positions of lower-case letters) is compressed with a general-purpose compressor. Entire set of 

files produces in such way counts for the compressed data size measured for this particular compressor and 

dataset, so that the overall compression strength is comparable with that achieved by other compressors (with 

or without their respective wrappers). Also the total time is measured, including the time taken by all 

transformations and by storing/compressing the additional files. 

We developed several tools for quickly processing FASTA files to extract or add various channels of 

information for the purpose of wrapping the incomplete compressors. We used C and optimized for speed, so 

that these steps have maximum speed and minimap impact on the overall compression. The wrapper scripts 

themselves are written in Perl. We used the fast mode of zstd ("-1") to compress the additional files, chosen 

because of its high speed so that it has minimal impact on measuring the speed of the wrapped compressor. 

As for compactness, the impact is minimal as well since the additional files are typically very small and 

compress well. 

For all such wrapped compressors, we benchmarked not only the complete wrapped compressor, but 

also the "wrapper-only" mode, in which only the wrapper script is executed, but not the compressor itself. 

Such results are included in the benchmark under the "wrap-NAME" names. This means that it's possible to 

compare the speed of the entire wrapped compressor with its corresponding "wrapper-only" run, for each 

dataset. This allows to see how much time is used by the wrapper, and therefore how much impact the 

wrapper makes on the overall results.  

Some of the features implemented via wrappers: 

 Supporting RNA sequences for DNA-only compressors 

 Supporting 'N' in DNA/RNA sequences 

 Supporting IUPAC's ambiguous nucleotide codes 

 Saving and restoring line lengths 

 Saving and restoring sequence names 



 Saving and restoring sequence mask (upper/lower case) 

 Supporting FASTA-formatted input 

 Supporting input with more than 1 sequence 

FASTQ compressors 

Several FASTQ compressors are included in the benchmark. All of them are tested using wrappers 

which convert FASTA sequences into their respective accepted formats. Some need only adding the artificial 

quality (constant "A" in most cases). Other expect only short reads or reads of identical lengths. These 

transformations are done in custom wrappers that we made for each FASTQ compressor. Since compression 

and decompression time recorded for benchmark is the total time of all steps, including wrapper processing, 

it means that in many cases the wrapped tool may work faster when used directly on FASTQ data. Also 

many FASTQ compressors are designed under additional assumptions typical for FASTQ data, for example 

that all reads are sampled from an underlying genome with substantial coverage (which allows meaningful 

assembly). These assumptions often don't hold on our FASTA-formatted benchmark datasets. Therefore the 

results of FASTQ compressors shown in our benchmark should not be taken as indicative of the actual 

performance of those compressors on FASTQ data that they were designed for. 

Benchmark code availability 

All scripts used for conducting the benchmark are available at the GitHub repository: 

https://github.com/KirillKryukov/scb. The main benchmark scrripts and configuration files are in the 

"benchmark" directory. All wrappers are in the "wrappers" directory. Additional tools used by the wrappers 

are in "seq-tools-c" and "seq-tools-perl"  directories. Compression and decompression commands are listed 

in files "benchmark/compressors-*.txt" and "benchmark/decompressors.txt". Benchmark data is merged 

using the "benchmark/2-collect-results.pl" script. The resulting merged data is visualized using a server-side 

script in the "website" directory. The scripts are provided for reference only. 

Update plan 

We plan to continue maintaining Sequence Compression Benchmark. This mainly involves 

benchmarking new or updated compressors, when such compressors become available. Since it's impractical 



to benchmark every existing compressor, we will continue to only benchmark compressors selected based on 

their performance, quality and usefulness for sequence compression. 
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Figure legends 

Fig. 1. Comparison of 36 compressors on human genome. The best settings of each compressor are 

selected based on different aspects of performance: (A) compression ratio, (B) transfer + decompression 

speed, and (C) compression + transfer + decompression speed. Specialized sequence compressors are shown 

in orange color, and general-purpose compressors are shown in blue. The copy-compressor ("cat" command), 

shown in red color, is included as a control. The selected settings of each compressor are shown in their 

names, after hyphen. Multi-threaded compressors have "-1t" or "-4t" at the end of their names to indicate the 

number of threads used. Test data is the 3.31 GB reference human genome (accession number 

GCA_000001405.28). Benchmark CPU: Intel Xeon E5-2643v3 (3.4 GHz). Link speed of 100 Mbit/s was 

used for estimating the transfer time. 

 

Fig. 2. Comparison of 334 settings of 36 compressors on human genome. Each point represents a 

particular setting of some compressor. Panel A shows the relationship between compression ratio and 

decompression speed. Panel B shows the transfer + decompression speed plotted against compression + 

transfer + decompression speed. Test data is the 3.31 GB reference human genome (accession number 

GCA_000001405.28). Benchmark CPU: Intel Xeon E5-2643v3 (3.4 GHz). Link speed of 100 Mbit/s was 

used for estimating the transfer time. 

 

Fig. 3. Comparison of compressor settings to gzip. Genome datasets were used as test data. Each point 

shows the performance of a compressor setting on specific genome test dataset. All values are shown relative 

to representative setting of gzip. Only performances that are at least half as good as gzip on both axes are 

shown. Panel A shows settings that performed best in Transfer+Decompression speed, B - settings that 



performed best in Compression+Transfer+Decompression speed. Link speed of 100 Mbit/s was used for 

estimating the transfer time. 

 

Fig. 4. Compressor memory consumption. The strongest setting of each compressor is shown. On the x-

axis is the test data size. On the y-axis is the peak memory used by the compressor, for compression (A) and 

decompression (B).  

Table 1. Compressor versions 

A) Specialized sequence compressors 

Compressor Version 

2bit "faToTwoBit" and "twoBitToFa" binaries dated 2018-11-07 

ac AC 1.1, 2020-01-29 

alapy ALAPY 1.3.0, 2017-07-25 

beetl BEETL, commit 327cc65, 2019-11-14 

blast 
"convert2blastmask", "makeblastdb" and "blastdbcmd" binaries from 

BLAST 2.8.1+, 2018-11-26 

dcom DNA-COMPACT, latest public source 2013-08-29 

dlim DELIMINATE, version 1.3c, 2012 

dnaX dnaX 0.1.0, 2014-08-03 

dsrc DSRC 2.02, commit 5eda82c, 2015-06-04 

fastqz fastqz 1.5, commit 39b2bbc, 2012-03-15 

fqs FQSqueezer 0.1, commit 5741fc5, 2019-05-17 

fqzcomp fqzcomp 4.6, commit 96f2f61, 2019-12-02 

geco 
GeCo: v.2.1, 2016-12-24 

GeCo2: v.1.1, 2019-02-02 

gtz GTX.Zip PROFESSIONAL-2.1.3-V-2020-03-18 07:11:20, binary  

harc HARC, commit cf35caf, 2019-10-04 

jarvis JARVIS v.1.1, commit d7daef5, 2019-04-30 

kic KIC binary, 0.2, 2015-11-25 

leon Leon, 1.0.0, 2016-02-27, Linux binary 

lfastqc LFastqC, commit 60e5fda, 2019-02-28, with fixes 

lfqc LFQC, commit 59f56e0, 2016-01-06 

mfc MFCompress,s1.01, 2013-09-03, 64-bit Linux binary 

minicom Minicom, commit 2360dd9, 2019-09-09 

naf NAF, 1.1.0, 2019-10-01 

nuht NUHT, commit 08a42a8, 2018-09-26, Linux binary 



pfish Pufferfish, v.1.0 alpha, 2012-04-11 

quip Quip, commit 9165bb5, 1.1.8-8-g9165bb5, 2017-12-17 

spring SPRING, commit 6536b1b, 2019-11-28 

uht UHT, binary from 2016-12-27 

xm XM (eXpert-Model), 3.0, commit 9b9ea57, 2019-01-07 

B) General-purpose compressors 

Compressor Version 

bcm 1.30, 2018-01-21 

brieflz 1.3.0, 2020-02-15 

brotli 1.0.7, 2018-10-23 

bsc 3.1.0, 2016-01-01 

bzip2 1.0.6, 2010-09-06 

cmix 17, 2019-03-24 

gzip 1.6, 2013-06-09 

lizard 1.0.0, 2019-03-08 

lz4 1.9.1, 2019-04-24 

lzop 1.04, 2017-08-10 

lzturbo 1.2, 2014-08-11 

nakamichi 2020-May-09 

pbzip2 1.1.13, 2015-12-18 

pigz 2.4, 2017-12-26 

snzip 1.0.4, 2016-10-02 

xz 5.2.2, 2015-09-29 

zpaq 7.15, 2016-08-17 

zpipe  2.01, 2010-12-23 

zstd 1.4.5, 2020-05-22 

Table 2. Test datasets 

A) Genome sequence datasets 

Category Organism Accession Size 

Virus Gordonia phage GAL1 [60] GCF_001884535.1 50.7 kB 

Bacteria WS1 bacterium JGI 0000059-K21 [59] GCA_000398605.1 522 kB 

Protist Astrammina rara [59] GCA_000211355.2 1.71 MB 

Fungus Nosema ceranae [59] GCA_000988165.1 5.81 MB 

Protist Cryptosporidium parvum Iowa II [59] GCA_000165345.1 9.22 MB 

Protist Spironucleus salmonicida [59] GCA_000497125.1 13.1 MB 



Protist Tieghemostelium lacteum [59] GCA_001606155.1 23.7 MB 

Fungus Fusarium graminearum PH-1 [60] GCF_000240135.3 36.9 MB 

Protist Salpingoeca rosetta [59] GCA_000188695.1 56.2 MB 

Algae Chondrus crispus [59] GCA_000350225.2 106 MB 

Algae Kappaphycus alvarezii [59] GCA_002205965.2 341 MB 

Animal Strongylocentrotus purpuratus [60] GCF_000002235.4 1.01 GB 

Plant Picea abies [59] GCA_900067695.1 13.4 GB 

B) Other DNA datasets 

Dataset 
Number of 

sequences 
Size Source Date 

Mitochondrion [60] 9,402 245 MB 

RefSeq FTP: 

ftp://ftp.ncbi.nlm.nih.gov/refseq/release/ 

mitochondrion/mitochondrion.1.1.genomic.fna.gz 

ftp://ftp.ncbi.nlm.nih.gov/refseq/release/ 

mitochondrion/mitochondrion.2.1.genomic.fna.gz 

2019-03-15 

NCBI Virus 

Complete 

Nucleotide Human 

[61] 

36,745 482 MB  
NCBI Virus: 

https://www.ncbi.nlm.nih.gov/labs/virus/vssi/ 
2020-05-11 

Influenza [62] 700,001 1.22 GB 

Influenza Virus Database: 

ftp://ftp.ncbi.nih.gov/genomes/INFLUENZA/ 

influenza.fna.gz 

2019-04-27 

Helicobacter [59] 108,292 2.76 GB 
NCBI Assembly: 

https://www.ncbi.nlm.nih.gov/assembly 
2019-04-24 

C) RNA datasets 

Dataset 
Number of 

sequences 
Size Source Date 

SILVA 132 

LSURef [63] 
198,843 610 MB 

Silva database: 

https://ftp.arb-silva.de/release_132/Exports/ 

SILVA_132_LSURef_tax_silva.fasta.gz 

2017-12-11 

SILVA 132 

SSURef Nr99 

[63] 

695,171 1.11 GB 

Silva database: 

https://ftp.arb-silva.de/release_132/Exports/ 

SILVA_132_SSURef_Nr99_tax_silva.fasta.gz 

2017-12-11 

SILVA 132 

SSURef [63] 
2,090,668 3.28 GB 

Silva database: 

https://ftp.arb-silva.de/release_132/Exports/ 

SILVA_132_SSURef_tax_silva.fasta.gz 

2017-12-11 

D) Multiple DNA sequence alignments 

Dataset 
Number of 

sequences 
Size Source Date 

UCSC hg38 7way 

knownCanonical-exonNuc 

[64] 

1,470,154 340 MB 

UCSC: 

https://hgdownload.soe.ucsc.edu/ 

goldenPath/hg38/multiz7way/alignments/ 

knownCanonical.exonNuc.fa.gz 

2014-06-06 

UCSC hg38 20way 

knownCanonical-exonNuc 

[64] 

4,211,940 969 MB 

UCSC: 

https://hgdownload.soe.ucsc.edu/ 

goldenPath/hg38/multiz20way/alignments/ 

knownCanonical.exonNuc.fa.gz 

2015-06-30 

E) Protein datasets 

Dataset 

Number 

of 

sequences 

Size Source Date 



PDB [65] 109,914 67.6 MB 
PDB database FTP: 

ftp://ftp.ncbi.nih.gov/blast/db/FASTA/pdbaa.gz 
2019-04-09 

Homo sapiens 

GRCh38 [66] 
105,961 73.2 MB 

NCBI FTP: 

ftp://ftp.ensembl.org/ 

pub/release-96/fasta/homo_sapiens/pep/ 

Homo_sapiens.GRCh38.pep.all.fa.gz 

2019-03-12 

NCBI Virus RefSeq 

Protein [61] 
373,332 122 MB 

NCBI Virus: 

https://www.ncbi.nlm.nih.gov/labs/virus/vssi/ 
2020-05-10 

UniProtKB 

Reviewed (Swiss-

Prot) [67] 

560,118 277 MB 

UniProt FTP: 

ftp://ftp.uniprot.org/ 

pub/databases/uniprot/current_release/ 

knowledgebase/complete/uniprot_sprot.fasta.gz 

2019-04-02 
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