
GigaScience

Sequence Compression Benchmark (SCB) database — a comprehensive evaluation of
reference-free compressors for FASTA-formatted sequences

--Manuscript Draft--

Manuscript Number: GIGA-D-19-00442R3

Full Title: Sequence Compression Benchmark (SCB) database — a comprehensive evaluation of
reference-free compressors for FASTA-formatted sequences

Article Type: Technical Note

Funding Information: School of Medicine, Tokai University Dr. Kirill Kryukov

KAKENHI Grants-in-Aid for Scientific
Research on Innovative Areas
(16H06429)

Dr. So Nakagawa

KAKENHI Grants-in-Aid for Scientific
Research on Innovative Areas
(16K21723)

Dr. So Nakagawa

KAKENHI Grants-in-Aid for Scientific
Research on Innovative Areas
(19H04843)

Dr. So Nakagawa

Takeda Science Foundation Dr. Tadashi Imanishi

KAKENHI Grants-in-Aid for Scientific
Research (C)
(20K06612)

Dr. Kirill Kryukov

Abstract: Background. Nearly all molecular sequence databases currently use gzip for data
compression. Ongoing rapid accumulation of stored data calls for more efficient
compression tool. Although numerous compressors exist, both specialized and
general-purpose, choosing one of them was difficult because no comprehensive
analysis of their comparative advantages for sequence compression was available.
Findings. We systematically benchmarked 430 settings of 48 compressors (including
29 specialized sequence compressors and 19 general-purpose compressors) on
representative FASTA-formatted datasets of DNA, RNA and protein sequences. Each
compressor was evaluated on 17 performance measures, including compression
strength, as well as time and memory required for compression and decompression.
We used 27 test datasets including individual genomes of various sizes, DNA and RNA
datasets, and standard protein datasets. We summarized the results as the Sequence
Compression Benchmark database (SCB database, http://kirr.dyndns.org/sequence-
compression-benchmark/) that allows building custom visualizations for selected
subsets of benchmark results.
Conclusion. We found that modern compressors offer large improvement in
compactness and speed compared to gzip. Our benchmark allows comparing
compressors and their settings using a variety of performance measures, offering the
opportunity to select the optimal compressor based on the data type and usage
scenario specific to particular application.

Corresponding Author: Kirill Kryukov, Ph.D.

JAPAN

Corresponding Author Secondary
Information:

Corresponding Author's Institution:

Corresponding Author's Secondary
Institution:

First Author: Kirill Kryukov, Ph.D.

First Author Secondary Information:

Order of Authors: Kirill Kryukov, Ph.D.

Mahoko Takahashi Ueda, Ph.D.

So Nakagawa, Ph.D.Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

Tadashi Imanishi, Ph.D.

Order of Authors Secondary Information:

Response to Reviewers: I am uploading the updated manuscript with the required changes.

>- Please add the DOI link of your GigaDB set to the bibliography (reference 68),
exchanging it for the dummy link . The link to use is : http://dx.doi.org/10.5524/100762

Done.

>- For authors who have an ORCID ID, please add this to the title page

I have added ORCID IDs of all authors.

>- Please also ensure that your revised manuscript conforms to the journal style, which
can be found in the Instructions for Authors on the journal homepage. (Note that
"Methods" should follow "Findings", but before the declaration sections and
bibliography etc).

I moved the Methods section as requested. I also checked the "Instructions to Authors"
page again. I added the "Findings" title.

>- Please upload your manuscript file in editable format (word doc or tex, or whatever
you used - it seems we only have a PDF so far)

I am uploading the manuscript in both PDF and MSWord formats.

Additional Information:

Question Response

Are you submitting this manuscript to a
special series or article collection?

No

Experimental design and statistics

Full details of the experimental design and
statistical methods used should be given
in the Methods section, as detailed in our
Minimum Standards Reporting Checklist.
Information essential to interpreting the
data presented should be made available
in the figure legends.

Have you included all the information
requested in your manuscript?

Yes

Resources

A description of all resources used,
including antibodies, cell lines, animals
and software tools, with enough

Yes

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist

information to allow them to be uniquely
identified, should be included in the
Methods section. Authors are strongly
encouraged to cite Research Resource
Identifiers (RRIDs) for antibodies, model
organisms and tools, where possible.

Have you included the information
requested as detailed in our Minimum
Standards Reporting Checklist?

Availability of data and materials

All datasets and code on which the
conclusions of the paper rely must be
either included in your submission or
deposited in publicly available repositories
(where available and ethically
appropriate), referencing such data using
a unique identifier in the references and in
the “Availability of Data and Materials”
section of your manuscript.

Have you have met the above
requirement as detailed in our Minimum
Standards Reporting Checklist?

Yes

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

https://scicrunch.org/resources
https://scicrunch.org/resources
https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist
https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist
https://academic.oup.com/gigascience/pages/editorial_policies_and_reporting_standards#Availability
https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist
https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist

Sequence Compression Benchmark (SCB) database —

a comprehensive evaluation of reference-free compressors for

FASTA-formatted sequences

Kirill Kryukov *, Mahoko Takahashi Ueda , So Nakagawa , Tadashi Imanishi

Department of Molecular Life Science, Tokai University School of Medicine,

Isehara, Kanagawa 259-1193, Japan.

*Correspondence: kkryukov@gmail.com

Abstract

Background. Nearly all molecular sequence databases currently use gzip for data compression. Ongoing

rapid accumulation of stored data calls for more efficient compression tool. Although numerous compressors

exist, both specialized and general-purpose, choosing one of them was difficult because no comprehensive

analysis of their comparative advantages for sequence compression was available.

Findings. We systematically benchmarked 430 settings of 48 compressors (including 29 specialized

sequence compressors and 19 general-purpose compressors) on representative FASTA-formatted datasets of

DNA, RNA and protein sequences. Each compressor was evaluated on 17 performance measures, including

compression strength, as well as time and memory required for compression and decompression. We used 27

test datasets including individual genomes of various sizes, DNA and RNA datasets, and standard protein

datasets. We summarized the results as the Sequence Compression Benchmark database (SCB database,

http://kirr.dyndns.org/sequence-compression-benchmark/) that allows building custom visualizations for

selected subsets of benchmark results.

Conclusion. We found that modern compressors offer a large improvement in compactness and speed

compared to gzip. Our benchmark allows comparing compressors and their settings using a variety of

performance measures, offering the opportunity to select the optimal compressor based on the data type and

usage scenario specific to a particular application.

Manuscript Click here to access/download;Manuscript;Text.docx

https://orcid.org/0000-0002-0286-0288
https://orcid.org/0000-0002-3960-0922
https://orcid.org/0000-0003-1760-3839
https://orcid.org/0000-0002-1182-9127
https://www.editorialmanager.com/giga/download.aspx?id=98453&guid=067e330a-fb3f-4d14-bc13-a8943fdb5609&scheme=1
https://www.editorialmanager.com/giga/download.aspx?id=98453&guid=067e330a-fb3f-4d14-bc13-a8943fdb5609&scheme=1

Keywords: compression; benchmark; DNA; RNA; protein; genome; sequence; database.

Findings

Background

Molecular sequence databases store and distribute DNA, RNA and protein sequences as compressed

FASTA-formatted files. Biological sequence compression was first proposed in 1986 [1] and the first

practical compressor was made in 1993 [2]. A lively field emerged that produced a stream of methods,

algorithms, and software tools for sequence compression [3,4]. However, despite this activity, currently

nearly all databases universally depend on gzip for compressing FASTA-formatted sequence data. This

incredible longevity of the 27-year-old compressor probably owes to multiple factors, including

conservatism of database operators, wide availability of gzip, and its generally acceptable performance.

Through all these years the amount of stored sequence data kept growing steadily [5], increasing the load on

database operators, users, storage systems and network infrastructure. However, someone thinking to replace

gzip invariably faces the questions: which of the numerous available compressors to choose? And will the

resulting gains be even worth the trouble of switching?

Previous attempts at answering these questions are limited by testing too few compressors and by

using restricted test data [6-11]. In addition, all of these studies provide results in form of tables, with no

graphical outputs, which makes the interpretation difficult. Existing benchmarks with useful visualization

such as Squash [12], are limited to general-purpose compressors.

The variety of available specialized and general-purpose compressors is overwhelming. At the same

time the field was lacking a thorough investigation of comparative merits of these compressors for sequence

data. Therefore we set out to benchmark all available practically useful compressors on a variety of relevant

sequence data. Specifically, we focused on the common task of compressing DNA, RNA and protein

sequences, stored in FASTA format, without using reference sequence. The benchmark results are available

in the Sequence Compression Benchmark database (SCB database, http://kirr.dyndns.org/sequence-

compression-benchmark/).

Scope, compressors and test data

We considered the common scenario of archiving, transferring and working with large datasets of

biological sequences. In this study we did not investigate compression of raw sequencing data in FASTQ

format, which was previously thoroughly reviewed in [11]. Instead we focused on typical FASTA-formatted

datasets, which includes individual genomes and single gene sets. Consequently we also did not consider

referential compression, but only reference-free compression, which is typically used for such data. We

evaluated standalone compression tools (rather than libraries), working under Linux OS on a modern

workstation PC. In this study we only consider lossless compression.

We tested all DNA sequence compressors that are available and functional in 2020: dnaX [13], XM

[14], DELIMINATE [15], Pufferfish [16], DNA-COMPACT [17], MFCompress [18], UHT [19], GeCo [20],

GeCo2 [21], JARVIS [22], NAF [23], and NUHT [24]. We also included the relatively compact among

homology search database formats: BLAST [25] and 2bit - a database format of BLAT [26].

Since compressors designed for FASTQ data can be trivially adopted for FASTA-formatted inputs,

we also included a comprehensive array of compressors designed primarily or specifically for FASTQ data:

BEETL [27], Quip [28], fastqz [10], fqzcomp [10], DSRC 2 [29], Leon [30], LFQC [31], KIC [32], ALAPY

[33], GTX.Zip [34], HARC [35], LFastqC [36], SPRING [37], Minicom [38], and FQSqueezer [39]. We also

included AC - a compressor designed exclusively for protein sequences [40]. We also tested a

comprehensive array of general-purpose compressors: bcm [41], brieflz[42], brotli [43], bsc [44], bzip2 [45],

cmix [46], gzip [47], lizard [48], lz4 [49], lzop [50], lzturbo [51], nakamichi [52], pbzip2 [53], pigz [54],

snzip [55], xz [56], zpaq [57], zpipe [57] and zstd [58]. See Table 1 for the list of compressors we used.

For the test data, we selected a variety of commonly used sequence datasets in FASTA format: (1)

Individual genomes of various sizes, as examples of non-repetitive data [59,60]; (2) DNA and RNA datasets,

such as collections of mitochondrial genomes, influenza virus sequences [60,61,62,59], 16S rRNA gene

sequences [63], and genomic multiple DNA sequence alignments [64]; (3) Standard protein datasets

[65,66,61,67]. Individual genomes are less repetitive, while other datasets are more repetitive. In total we

used 27 test datasets. See Table 2 for the list of test data. All test data is available at the GigaDB repository

[68].

Benchmark

We benchmarked each compressor on every test dataset, except in cases of incompatibility (e.g.,

DNA compressors cannot compress protein data) or excessive time requirement (some compressors are so

slow that they would take weeks on larger datasets). For compressors with adjustable compression level, we

tested the relevant range of levels. We tested both 1 and 4-thread variants of compressors that support multi-

threading. In total, we used 430 settings of 48 compressors. We also included the non-compressing "cat"

command as control. For compressors using non-trivial wrappers, we also benchmarked the wrappers.

Currently many sequence analysis tools accept gzip-compressed files as input. Switching to another

compressor may require either adding support of new format to those tools, or passing the data in

uncompressed form. The latter solution can be achieved with the help of Unix pipes, if both the compressor

and the analysis tool support streaming mode. Therefore, we benchmarked all compressors in streaming

mode (streaming uncompressed data in both compression and decompression).

For each combination of compressor setting and test dataset we recorded compressed size,

compression time, decompression time, peak compression memory and peak decompression memory. The

details of the method and raw benchmark data are available in the Methods section and Supplementary Data,

respectively. We share benchmark results at the online SCB database: http://kirr.dyndns.org/sequence-

compression-benchmark/. All benchmark code is available at https://github.com/KirillKryukov/scb.

The choice of measure for evaluating compressor performance depends on a prospective application.

For a long-term data storage, compactness may be the single most important criterion. For a public sequence

database, the key measure is how long time it takes from initiating the download of compressed files until

accessing the decompressed data. This time consists of transfer time plus decompression time (TD-Time).

Corresponding transfer-decompression speed (TD-Speed) is computed as Original Size / TD-Time. In this

use case, compression time is relatively unimportant, since compression happens only once, while transfer

and decompression times affect every user of the database. For a one-time data transfer, all three steps of

compression, transfer and decompression are timed (CTD-Time), and used for computing the resulting

overall speed (CTD-Speed).

A total of 17 measures, including the above-mentioned ones, are available in our results data (See

Methods for the list of measures). Any of these measures can be used for selecting the best setting of each

compressor and for sorting the list of compressors. These measures can be then shown in a table and

visualized in form of column charts and scatterplots. This allows tailoring the output to answer specific

questions, such as what compressor is better at compressing particular kind of data, or which setting of each

compressor performs best at particular task. The link speed that is used for estimating transfer times is

configurable. The default speed of 100 Mbit/sec corresponds to the common speed of a fixed broadband

internet connection.

Fig.1 compares the performance of best settings of 36 compressors on human genome. It shows that

specialized sequence compressors achieve excellent compression ratio on this genome. However, when total

TD-Speed or CTD-Speed is considered (measures that are important in practical applications), most

sequence compressors fall behind the general-purpose ones. The best compressors for this dataset in terms of

compression ratio, TD-Speed and CTD-Speed are "fastqz-slow", "naf-22" and "naf-1", respectively (numbers

in each compressor name indicate compression level and other settings). Interestingly, the non-compressing

"cat" command used as a control, while naturally showing at the last place on compression ratio (Fig.1A), is

not the slowest in terms of TD-Speed and CTD-Speed (Figs.1B and 1C, respectively). In case of CTD-

Speed, for example, it means that some compressors are so slow that their compression + transfer +

decompression time turns out to be longer than the time required for transferring raw uncompressed data

(using a particular link speed, in this case 100 Mbit/sec).

Fig.2 compares all compressor settings on the same data (human genome). Fig.2A shows that the

strongest compressors often provide a very low decompression speed (shown using logarithmic scale due to

the enormous range of values), which means that quick data transfer (resulting from strong compression)

offered by those compressors is offset by significant waiting time required for decompressing the data.

Fig.2B shows TD-Speed plotted against the CTD-Speed. Similar figures can be constructed for other data

and performance measures on the SCB database website.

Visualizing results from multiple test datasets simultaneously is possible, with or without

aggregation of data. With aggregation, the numbers will be summed or averaged, and a single measurement

will be shown for each setting of each compressor. Without aggregation, the results of each compressor

setting will be shown separately on each dataset. Since the resulting number of data points can be huge, in

such case it is useful to request only the best setting of each compressor to be shown. The criteria for

choosing the best setting is selectable among the 17 measurements. In case of a column chart, any of the 17

measures can be used for ordering the shown compressors, independently of the measure used for selecting

best version, and independently of the measure actually shown in the chart.

One useful capability of the SCB database is showing measurements relative to the specified

compressor (and setting). This allows selecting a reference compressor and comparing the other compressors

to this reference. For example, we can compare compressors to gzip as shown on Fig.3. In this example, we

compare only the best settings of each compressor, selected using specific measures (transfer+decompression

speed and compression+transfer+decompression speed on Figs.3A and 3B, respectively). We also used a

fixed scale to show only range above 0.5 on both axes, which means that only performances that are at least

half as good as gzip on both axes as shown. In this example, we can see that some compressors improve

compactness and some improve speed compared to gzip, but few compressors improve both at the same

time, such as lizard, naf, pigz, pbzip, and zstd.

It is important to be aware of the memory requirements when choosing a compressor (Fig.4). In

these charts we plotted data size on the x-axis, and disabled aggregation. This allows seeing how much

memory a particular compressor used on each test dataset. As this example shows, memory requirement

reaches saturation point for most compressors. On the other hand, some compressors have unbounded

growth of consumed memory, which makes them unusable for large data. Interestingly, gzip apparently has

the smallest memory footprint, which may be one of the reasons for its popularity. Most compressors can

function on a typical desktop hardware, but some require larger memory, which is important to consider

when choosing a compressor that will be run by the consumers of distributed data.

A wide variety of charts can be produced on the benchmark website by selecting specific

combinations of test data, compressors, and performance measures. At any point the currently visualized data

can be obtained in textual form using Table output option. Also, all charts can be downloaded in SVG

format.

Conclusions

Our benchmark reveals complex relationship between compressors and between their settings, based

on various measures. We found that continued use of gzip is usually far from an optimal choice.

Transitioning from gzip to a better compressor brings significant gains for genome and protein data, and is

especially beneficial with repetitive DNA/RNA datasets. The optimal choice of compressor depends on

many factors, including properties of the data to be compressed (such as sequence type, data size, and

amount of redundancy), relative importance of compression strength, compression speed and decompression

speed for particular use scenario, as well as amount of memory available on data machines used for

compression and decompression. Our benchmark allows comparing compressors on individual performance

metrics, as well as on their combinations.

The Sequence Compression Benchmark (SCB) database will help in navigating the complex

landscape of sequence data compression. With dozens of compressors available, making an informed choice

is not an easy task and requires careful analysis of the project requirements, data type and compressor

capabilities. Our benchmark is the first resource providing a detailed practical evaluation of various

compressors on a wide range of molecular sequence datasets. Using the SCB database, users can analyze

compressor performances on a variety of metrics, and construct custom reports for answering project-

specific questions.

In contrast to previous studies that showed their results in static tables, our project is dynamic in two

important senses: (1) the result tables and charts can be dynamically constructed for a custom selection of

test data, compressors, and measured performance numbers, and (2) our study is not a one-off benchmark,

but marks the start of a project where we will continue to add compressors and test data.

Making an informed choice of a compressor with the help of our benchmark will lead to increased

compactness of sequence databases, with shorter time required for downloading and decompressing. This

will reduce the load on network and storage infrastructure, and increase the speed and efficiency in

biological and medical research.

Methods

Benchmarked task

The task is to compress and decompress a FASTA-formatted file containing DNA, RNA or protein

sequences. The process has to be lossless, i.e., decompressed data must be byte-to-byte identical to the

original data. Compression and decompression are done without using any reference genome. Each

compression and decompression task is executed under the Linux OS, via a command line interface. Input

data for compression and output data during decompression are streamed using Unix pipes.

Only well-formed FASTA files are used in the benchmark: They must contain no empty lines and all

long sequence lines have to be wrapped at the same position. Both upper- and lower-case (soft-masked)

letters can be present, as well as common ambiguity codes. In multiple sequence alignments, additionally,

dashes ("-") are used for indicating gaps. Each test dataset is compressed separately from other datasets.

Compressor selection

We used all specialized sequence compressors that we could find and make to work for the above

specified task. For general-purpose compressors we used only the major ones, in terms of performance,

historical importance, or popularity. For each compressor with configurable compression level (or other

parameters related to compression strength of speed), we used the relevant range of settings, including the

default.

Benchmark machine

 CPU: dual Xeon E5-2643v3 (3.4 GHz, 6 cores), hyperthreading: off

 RAM: 128 GB DDR4-2133 ECC Registered

 Storage: 4 x 2 TB SSD, in RAID 0, XFS filesystem, block size: 4096 bytes (blockdev --getbsz)

 OS: Ubuntu 18.04.1 LTS, kernel: 4.15.0

 GCC: 7.4.0

Compressor/dataset combinations that were tested

Each setting of each compressor is tested on every test dataset, except when it's difficult or

impossible due to compressor limitations:

 AC is a protein-specific compressor, and was tested only on protein datasets.

 Due to their extreme slowness, these compressors are not tested on any data larger than 10 MB:

cmix, DNA-COMPACT, GeCo, JARVIS, Leon, and XM.

 UHT fails on the 245 MB dataset and on larger data.

 Nakamichi was only used on data smaller than 200 MB due to its slowness and memory

requirements.

 Among sequence compressors, only DELIMINATE, MFCompress and NAF support multiple

sequence alignments.

 Among sequence compressors, only AC, BLAST and NAF support protein sequences.

 Some settings of XM crash and/or produce wrong decompressed output on some data - such results

are not included.

 NUHT's memory requirement makes it impossible to use on 13.4 GB Picea abies genome.

 LFastqC fails on 2.7 GB dataset and larger data.

Benchmark process

The entire benchmark is orchestrated by a perl script. This script loads the lists of compressor

settings and test data, and proceeds to test each combination that still has its measurements missing in the

output directory. For each such combination (of compressor setting and test dataset), the following steps are

performed:

1. Compression is performed by piping the test data into the compressor. Compressed size and

compression time is recorded. For compressed formats consisting of multiple files, sizes of all files

are summed together.

2. If compression time did not exceed 10 seconds, 9 more compression runs are performed, recording

compression times. Compressed data from previous run is deleted before each next compression run.

3. The next set of compression runs is performed to measure peak memory consumption. This set

consists of the same number of runs as in steps 1-2 (either 1 or 10 runs). That is, for fast compressors

and for small data the measurement is repeated 10 times.

4. Decompression test run is performed. In this run decompressed data is piped to the "md5sum -b -"

command. The resulting md5 signature is compared with that of the original file. In case of any

mismatch this combination of compressor setting and dataset is disqualified and its measurements

are discarded.

5. Decompression time is measured. This time decompressed data is piped to /dev/null.

6. If decompression completed within 10 seconds, 9 more decompression runs are performed and

timed.

7. Peak decompression memory is measured. The number of runs is same as in steps 5-6.

8. The measurements are stored to a file. All compressed and temporary files are removed.

Measurement methods

Measuring time: Wall clock time was measured using Perl's Time::HiRes module (gettimeofday and

tv_interval subroutines). The resulting time was recorded with millisecond precision.

Measuring peak memory consumption: First, each compression command was stored in a temporary

shell script file. Then it was executed via GNU Time, as /usr/bin/time -v cmd.sh >output.txt. "Maximum

resident set size" value was extracted from the output. 1638 was then subtracted from this value and the

result was stored as peak memory measurement. 1638 is the average "Maximum resident set size" measured

by GNU Time in the same way for an empty shell script.

Memory consumption and time were measured separately because measuring memory makes the

task slower, especially for very fast tasks.

Collected measurements

For each combination of compressor and dataset that was tested, the following measurements were

collected:

 Compressed size (in bytes)

 Compression time (in milliseconds)

 Decompression time (in milliseconds)

 Peak compression memory (in GNU Time's "Kbytes")

 Peak decompression memory (in GNU Time's "Kbytes")

In cases where 10 values are collected, the average value is used by the benchmark web-site.

Computed values

The following values were calculated based on the measured values:

 Compressed size relative to original (%) = Compressed size / Uncompressed size * 100

 Compression ratio (times) = Uncompressed size / Compressed size

 Compression speed (MB/s) = Uncompressed size in MB / Compression time

 Decompression speed (MB/s) = Uncompressed size in MB / Decompression time

 Compression + decompression time (s) = Compression time + Decompression time

 Compression + decompression speed (MB/s) = Uncompressed size in MB / (Compression time +

Decompression time)

 Transfer time (s) = Uncompressed size / Link speed in B/s

 Transfer speed (MB/s) = Uncompressed size in MB / Transfer time

 Transfer + decompression time (s) = Transfer time + Decompression time

 Transfer + decompression speed (MB/s) = Uncompressed size in MB / (Transfer time +

Decompression time)

 Compression + transfer + decompression time (s) = Compression time + Transfer time +

Decompression time

 Compression + transfer + decompression speed (MB/s) = Uncompressed size in MB / (Compression

time + Transfer time + Decompression time)

Rationale for non-constant number of runs

Variable number of runs is the only way to have both accurate measurements and large test data

(under the constraints of using one test machine, and running benchmark within reasonable time).

On one hand, benchmark takes lot of time. So much that some compressors can't be even tested at all

on dataset larger than 10 MB in reasonable time. Therefore repeating every measurement 10 times is

impractical. Or, it would imply restricting the test data to only small datasets.

On the other hand, measurements are slightly noisy. The shorter measured time, the more noisy its

measurement. Thus for very quick runs, multiple runs allow for substantial noise suppression. For longer

runs it does not make much difference, because the relative error is already small with longer times.

Using a threshold of 10 seconds seems to be a reasonable compromise between suppressing noise

and including larger test data (and slow compressors).

Streaming mode

For compression, each compressor was reading the input data streamed via unix pipe ("|" in the

command line). For decompression, each compressor was set up to stream decompressed data via pipe. This

was done to better approximate a common pattern of using compressors in a practical data analysis scenario.

In an actual sequence analysis workflow, often decompressed data is piped directly into a downstream

analysis command. Also, when compressing the sequences, often the data is first pre-processed with another

command, which then pipes processed sequences to a compressor.

Some compressors don't implement the streaming mode, and only work with actual files. Since we

have to benchmark all compressors on the same task, we added streaming mode to such compressors via

wrapper scripts. For compression, a wrapper reads input data from "stdin" and writes it into a temporary file,

then executes a compressor on that file, and finally deletes the file. For decompression the reverse process

occurs: The wrapper script executes a decompressor, which writes the decompressed data into a temporary

file; then the wrapper reads this file and streams it to "stdout", before deleting the file.

The entire process is timed for the benchmark. Normally such wrapping has minimal impact on the

overall compression/decompression speed, because we use fast SSD storage, and because the actual

compression and decompression takes comparatively much longer time than simply streaming the data

to/from a file.

FASTA format compatibility

Many specialized compressors don't support the full-featured modern FASTA format, such as the

one used in genome databases. Specifically, modern FASTA files often store masked sequence (use a mix of

upper- and lower-case letters), and include ambiguity codes. The degree of completeness of FASTA support

varies wildly among compressors. At one end of the spectrum, there are compressors with comprehensive

support for all FASTA format features. At another end, there are compressors that only work with a string of

capital ACGT and nothing else, not even sequence names or newlines. Majority of sequence compressors are

somewhere in-between these two extremes.

Essentially this means that each sequence compressor performs its own task, different from that of

the others. If a compressor does not need to care about upper vs lower-case letters, or about storing sequence

names, it can possibly work faster. Thus comparing compressors each doing their own thing would not be

fair, or very useful to the user. Since full-featured FASTA is in fact commonly used in today's databases, we

decided to require complete lossless support of full-featured FASTA files from all benchmarked

compressors. In practice this means that we had to create a custom wrapper for each incomplete compressor,

implementing the missing compatibility features.

A typical wrapper takes the original FASTA-formatted input and transforms it into a format

acceptable by the compressor being wrapped. For instance, if a compressor only expects upper-case

nucleotide codes, then the positions of upper- and lowe-case characters are extracted and saved in a separate

file. The original file is converted to all upper-case, which is then fed to the compressor. The separate "mask"

file (storing positions of lower-case letters) is compressed with a general-purpose compressor. Entire set of

files produces in such way counts for the compressed data size measured for this particular compressor and

dataset, so that the overall compression strength is comparable with that achieved by other compressors (with

or without their respective wrappers). Also the total time is measured, including the time taken by all

transformations and by storing/compressing the additional files.

We developed several tools for quickly processing FASTA files to extract or add various channels of

information for the purpose of wrapping the incomplete compressors. We used C and optimized for speed, so

that these steps have maximum speed and minimap impact on the overall compression. The wrapper scripts

themselves are written in Perl. We used the fast mode of zstd ("-1") to compress the additional files, chosen

because of its high speed so that it has minimal impact on measuring the speed of the wrapped compressor.

As for compactness, the impact is minimal as well since the additional files are typically very small and

compress well.

For all such wrapped compressors, we benchmarked not only the complete wrapped compressor, but

also the "wrapper-only" mode, in which only the wrapper script is executed, but not the compressor itself.

Such results are included in the benchmark under the "wrap-NAME" names. This means that it's possible to

compare the speed of the entire wrapped compressor with its corresponding "wrapper-only" run, for each

dataset. This allows to see how much time is used by the wrapper, and therefore how much impact the

wrapper makes on the overall results.

Some of the features implemented via wrappers:

 Supporting RNA sequences for DNA-only compressors

 Supporting 'N' in DNA/RNA sequences

 Supporting IUPAC's ambiguous nucleotide codes

 Saving and restoring line lengths

 Saving and restoring sequence names

 Saving and restoring sequence mask (upper/lower case)

 Supporting FASTA-formatted input

 Supporting input with more than 1 sequence

FASTQ compressors

Several FASTQ compressors are included in the benchmark. All of them are tested using wrappers

which convert FASTA sequences into their respective accepted formats. Some need only adding the artificial

quality (constant "A" in most cases). Other expect only short reads or reads of identical lengths. These

transformations are done in custom wrappers that we made for each FASTQ compressor. Since compression

and decompression time recorded for benchmark is the total time of all steps, including wrapper processing,

it means that in many cases the wrapped tool may work faster when used directly on FASTQ data. Also

many FASTQ compressors are designed under additional assumptions typical for FASTQ data, for example

that all reads are sampled from an underlying genome with substantial coverage (which allows meaningful

assembly). These assumptions often don't hold on our FASTA-formatted benchmark datasets. Therefore the

results of FASTQ compressors shown in our benchmark should not be taken as indicative of the actual

performance of those compressors on FASTQ data that they were designed for.

Benchmark code availability

All scripts used for conducting the benchmark are available at the GitHub repository:

https://github.com/KirillKryukov/scb. The main benchmark scrripts and configuration files are in the

"benchmark" directory. All wrappers are in the "wrappers" directory. Additional tools used by the wrappers

are in "seq-tools-c" and "seq-tools-perl" directories. Compression and decompression commands are listed

in files "benchmark/compressors-*.txt" and "benchmark/decompressors.txt". Benchmark data is merged

using the "benchmark/2-collect-results.pl" script. The resulting merged data is visualized using a server-side

script in the "website" directory. The scripts are provided for reference only.

Update plan

We plan to continue maintaining Sequence Compression Benchmark. This mainly involves

benchmarking new or updated compressors, when such compressors become available. Since it's impractical

to benchmark every existing compressor, we will continue to only benchmark compressors selected based on

their performance, quality and usefulness for sequence compression.

Declarations

Availability of data and material

All benchmark data is available at the online SCB database:

http://kirr.dyndns.org/sequence-compression-benchmark/

An archival copy of benchmark data is also available via the GigaScience database GigaDB [68].

Availability of supporting source code and requirements

All code used for conducting the benchmark is available at the SCB GitHub repository.

Project name: Sequence Compression Benchmark

Project home page: https://github.com/KirillKryukov/scb

Operating system(s): Linux

Programming language: Perl

Other requirements: None

License: Public Domain

Competing interests

The authors declare no competing interests.

Funding

This work was supported by the 2019 Tokai University School of Medicine Research Aid (to KK), JSPS

KAKENHI Grants-in-Aid for Scientific Research (C) (20K06612 to KK) and Scientific Research on

Innovative Areas (16H06429, 16K21723, 19H04843 to SN), and Takeda Science Foundation (to TI).

Authors' contributions

KK conceived the study idea and implemented the benchmark. SN provided benchmark hardware. KK,

MTU, SN and TI interpreted the data and wrote the manuscript. KK and MTU prepared figures and tables.

All authors read and approved the final manuscript.

Acknowledgements

Not applicable.

References

1. Walker JR, Willett P. Compression of nucleic acid and protein sequence data. Comput. Appl. Biosci.

1986;2(2):89-93.

2. Grumbach S, Tahi F. Compression of DNA sequences. Data Compression Conference, Snowbird, Utah,

IEEE Computer Society. 1993. p. 340-50. doi:10.1109/DCC.1993.253115.

3. Deorowicz S, Grabowski S. Data compression for sequencing data. Algorithms for Molecular Biology.

2013;8:25. doi:10.1186/1748-7188-8-25.

4. Hernaez M, Pavlichin D, Weissman T, Ochoa I. Genomic Data Compression. Annual Review of

Biomedical Data Science. 2019;2:19-37. doi:10.1146/annurev-biodatasci-072018-021229.

5. Karsch-Mizrachi I, Takagi T, Cochrane G. The international nucleotide sequence database collaboration.

Nucleic Acids Res. 2018;46(Database issue):D48–D51. doi:10.1093/nar/gkx1097.

6. Zhu Z, Zhang Y, Ji Z, He S, Yang X. High-throughput DNA sequence data compression. Brief.

Bioinform. 2013; 16(1):1-15. doi:10.1093/bib/bbt087.

7. Hosseini M, Pratas D, Pinho AJ. A Survey on Data Compression Methods for Biological Sequences.

Information. 2016;7(4):56. doi:10.3390/info7040056.

8. Sardaraz M, Tahir M. Advances in high throughput DNA sequence data compression. J. Bioinform.

Comput. Biol. 2016;14(3):1630002. doi:10.1142/S0219720016300021.

9. Biji CL, Achuthsankar SN. Benchmark Dataset for Whole Genome Sequence Compression. IEEE/ACM

Trans. Comput. Biol. Bioinform. 2017;14(6):1228-36. doi:10.1109/TCBB.2016.2568186.

10. Bonfield JK, Mahoney MV. Compression of FASTQ and SAM Format Sequencing Data. PLoS One.

2013;8(3): e59190, doi:10.1371/journal.pone.0059190.

11. Numanagic I, Bonfield JK, Hach F, Voges J, Ostermann J, Alberti C, Mattavelli M. Comparison of high-

throughput sequencing data compression tools. Nature Methods. 2016;13(12):1005-8,

doi:10.1038/nmeth.4037.

12. Squash Compression Benchmark. 2015. https://quixdb.github.io/squash-benchmark/. Accessed July 15,

2019.

13. Manzini G, Rastero M. A simple and fast DNA compressor. Software - Practice and Experience.

2004;34:1397-411, doi:10.1002/spe.619.

14. Cao MD, Dix TI, Allison L. Mears C. A simple statistical algorithm for biological sequence

compression. Data Compression Conference. DCC '07, Snowbird, UT, IEEE Computer Society. 2007. p.

43-52. doi:10.1109/DCC.2007.7.

15. Mohammed MH, Dutta A, Bose T, Chadaram S, Mande SS. DELIMINATE — a fast and efficient

method for loss-less compression of genomic sequences. Bioinformatics. 2012;28:2527–29.

doi:10.1093/bioinformatics/bts467.

16. Pufferfish. 2012. https://github.com/alexholehouse/pufferfish. Accessed May 23, 2019.

17. Li P, Wang S, Kim J, Xiong H, Ohno-Machado L, Jiang X. DNA-COMPACT: DNA COMpression

Based on a Pattern-Aware Contextual Modeling Technique. PLoS ONE. 2013;8(11):e80377.

doi:10.1371/journal.pone.0080377.

18. Pinho AJ, Pratas D. MFCompress: a compression tool for FASTA and multi-FASTA data.

Bioinformatics. 2014;30:117-8. doi:10.1093/bioinformatics/btt594.

19. Al-Okaily A, Almarri B, Al Yami S, Huang CH. Toward a Better Compression for DNA Sequences

Using Huffman Encoding. J. Comp. Biol. 2017;24(4):280–8. doi:10.1089/cmb.2016.0151.

20. Pratas D, Pinho AJ, Ferreira PJSG. Efficient compression of genomic sequences. Data Compression

Conference, DCC-2016, Snowbird, Utah, IEEE Computer Society. 2016. p.231-240. doi:

10.1109/DCC.2016.60.

21. Pratas D, Hosseini M, Pinho AJ. GeCo2: An Optimized Tool for Lossless Compression and Analysis of

DNA Sequences. Practical Applications of Computational Biology and Bioinformatics, 13th

International Conference, PACBB 2019, Advances in Intelligent Systems and Computing, vol 1005,

Springer, Cham, 2019a. p.137-145. doi: 10.1007/978-3-030-23873-5_17.

22. Pratas D, Hosseini M, Silva J, Pinho AJ. A Reference-Free Lossless Compression Algorithm for DNA

Sequences Using a Competitive Prediction of Two Classes of Weighted Models. Entropy,

2019b;21:1074. doi:10.3390/e21111074.

23. Kryukov K, Ueda MT, Nakagawa S, Imanishi T. Nucleotide Archival Format (NAF) enables efficient

lossless reference-free compression of DNA sequences. Bioinformatics. 2019;35(19):3826-28.

doi:10.1093/bioinformatics/btz144.

24. Alyami S, Huang CH. Nongreedy Unbalanced Huffman Tree Compressor for Single and Multifasta

Files. Journal of Computational Biology. 2019; 26(0):1-9. doi:10.1089/cmb.2019.0249.

25. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J. Mol. Biol.

1990;215(3):403-10. doi:10.1016/S0022-2836(05)80360-2.

26. Kent WJ. BLAT - The BLAST-Like Alignment Tool. Genome Research. 2002;12(4):656-64.

doi:10.1101/gr.229202.

27. Bauer MJ, Cox AJ, Rosone G. Lightweight BWT Construction for Very Large String Collections.

Combinatorial Pattern Matching 2011, proceedings of the CPM 2011, 2011. p.219-231.

doi:10.1007/978-3-642-21458-5_20.

28. Jones DC, Ruzzo WL, Peng X, Katze MG. Compression of next-generation sequencing reads aided by

highly efficient de novo assembly. Nucleic Acids Research. 2012;40(22):e171. doi:10.1093/nar/gks754.

29. Roguski L, Deorowicz S. DSRC 2—Industry-oriented compression of FASTQ files. Bioinformatics.

2014; 30(15):2213-5. doi:10.1093/bioinformatics/btu208.

30. Benoit G, Lemaitre C, Lavenier D, Drezen E, Dayris T, Uricaru R, Rizk G. Reference-free compression

of high throughput sequencing data with a probabilistic de Bruijn graph. BMC Bioinformatics.

2015;16:288. doi:10.1186/s12859-015-0709-7.

31. Nicolae M, Pathak S, Rajasekaran S. LFQC: a lossless compression algorithm for FASTQ files.

Bioinformatics. 2015;31(20):3276-81. doi:10.1093/bioinformatics/btv384.

32. Zhang Y, Patel K, Endrawis T, Bowers A, Sun Y. A FASTQ compressor based on integer-mapped k-mer

indexing for biologist. Gene. 2016;579(1):75-81. doi:10.1016/j.gene.2015.12.053.

33. ALAPY 2017. http://alapy.com/services/alapy-compressor/. Accessed December 2, 2019.

34. Xing Y, Li G, Wang Z, Feng B, Song Z, Wu C. GTZ: a fast compression and cloud transmission tool

optimized for FASTQ files. BMC Bioinformatics. 2017;18(Suppl 16):549. doi:10.1186/s12859-017-

1973-5.

35. Chandak S, Tatwawadi K, Weissman T. Compression of genomic sequencing reads via hash-based

reordering: algorithm and analysis. Bioinformatics. 2018;34(4):558-67.

doi:10.1093/bioinformatics/btx639.

36. Al Yami S, Huang CH. LFastqC: A lossless non-reference-based FASTQ compressor. PLoS One.

2019;14(11):e0224806, doi:10.1371/journal.pone.0224806.

37. Chandak S, Tatwawadi K, Ochoa I, Hernaez M, Weissman T. SPRING: a next-generation compressor

for FASTQ data. Bioinformatics. 2019;35(15):2674-6. doi:10.1093/bioinformatics/bty1015.

38. Liu Y, Yu Z, Dinger ME, Li J. Index suffix-prefix overlaps by (w, k)-minimizer to generate long contigs

for reads compression. Bioinformatics. 2019. 35(12):2066-2074, doi:10.1093/bioinformatics/bty936.

39. Deorowicz S. FQSqueezer: k-mer-based compression of sequencing data. Scientific Reports.

2020;10:578. doi:10.1038/s41598-020-57452-6.

40. Hosseini M, Pratas D, Pinho AJ. AC: A Compression Tool for Amino Acid Sequences. Interdisciplinary

Sciences: Computational Life Sciences. 2019;11:68-76. doi:10.1007/s12539-019-00322-1.

41. BCM. https://github.com/encode84/bcm. Accessed June 6 2019.

42. BriefLZ - small fast Lempel-Ziv. https://github.com/jibsen/brieflz. Accessed May 12 2020.

43. Alakuijala J, Szabadka Z. Brotli Compressed Data Format. RFC 7932. 2016. Accessed April 14 2019.

44. libbsc. https://github.com/IlyaGrebnov/libbsc. Accessed June 22 2019.

45. bzip2. https://www.sourceware.org/bzip2/. Accessed January 20 2019.

46. cmix. https://github.com/byronknoll/cmix. Accessed April 25 2019.

47. GNU Gzip. https://www.gnu.org/software/gzip/. Accessed November 8 2019.

48. Lizard - efficient compression with very fast decompression. https://github.com/inikep/lizard. Accessed

June 16 2019.

49. LZ4 - Extremely fast compression. https://github.com/lz4/lz4. Accessed April 25 2019.

50. Lzop. 2017. https://www.lzop.org/. Accessed December 6 2018.

51. LzTurbo - World's fastest compressor. https://sites.google.com/site/powturbo/. Accessed February 11

2019.

52. Nakamichi. http://www.sanmayce.com/Nakamichi/index.html. Accessed May 12 2020.

53. pbzip2. https://launchpad.net/pbzip2/. Accessed April 26 2019.

54. pigz. https://zlib.net/pigz/. Accessed April 26 2019.

55. Snzip, a compression/decompression tool based on snappy. https://github.com/kubo/snzip. Accessed

November 11 2018.

56. XZ Utils. https://tukaani.org/xz/. Accessed December 17 2018.

57. ZPAQ Incremental Journaling Backup Utility and Archiver. http://www.mattmahoney.net/dc/zpaq.html.

Accessed November 7 2018.

58. Zstandard - Fast real-time compression algorithm. https://github.com/facebook/zstd. Accessed May 22

2020.

59. Clark K, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW. GenBank. Nucleic Acids Res.

2016;44(D1):D67–D72. doi:10.1093/nar/gkv1276.

60. O'Leary NA, Wright MW, Brister JR, Ciufo S, Haddad D, McVeigh R, et al. Reference sequence

(RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic

Acids Res. 2016;44(D1):D733-45. doi:10.1093/nar/gkv1189.

61. Brister JR, Ako-Adjei D, Bao Y, Blinkova O. NCBI viral genomes resource. Nucleic Acids Res.

2015;43(D1):D571-7. doi:10.1093/nar/gku1207.

62. Bao Y, Bolotov P, Dernovoy D, Kiryutin B, Zaslavsky L, Tatusova T, Ostell J, Lipman D. The Influenza

Virus Resource at the National Center for Biotechnology Information. J Virol. 2008;82(2):596-601.

doi:10.1128/JVI.02005-07.

63. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO. The SILVA

ribosomal RNA gene database project: improved data processing and web-based tools. Nucl. Acids Res.

2013;41(D1):D590-D596. doi:10.1093/nar/gks1219.

64. Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM, Haussler D. The human genome

browser at UCSC. Genome Res. 2002;12(6):996-1006. doi:10.1101/gr.229102.

65. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE. The

Protein Data Bank. Nucleic Acids Res. 2000;28:235-42. doi:10.1093/nar/28.1.235.

66. Yates AD, Achuthan P, Akanni W, Allen J, Allen J, Alvarez-Jarreta J, et al. Ensembl 2020. Nucleic

Acids Res. 2020;48(D1):D682–8. doi:10.1093/nar/gkz966.

67. The UniProt Consortium. UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res.

2019;47(D1):D506-15. doi:10.1093/nar/gky1049.

68. Kryukov K, Ueda MT, Nakagawa S, Imanishi T. Supporting data for "Sequence Compression

Benchmark (SCB) database — a comprehensive evaluation of reference-free compressors for FASTA-

formatted sequences". GigaScience Database. 2020. http://dx.doi.org/10.5524/100762

Figure legends

Fig. 1. Comparison of 36 compressors on human genome. The best settings of each compressor are

selected based on different aspects of performance: (A) compression ratio, (B) transfer + decompression

speed, and (C) compression + transfer + decompression speed. Specialized sequence compressors are shown

in orange color, and general-purpose compressors are shown in blue. The copy-compressor ("cat" command),

shown in red color, is included as a control. The selected settings of each compressor are shown in their

names, after hyphen. Multi-threaded compressors have "-1t" or "-4t" at the end of their names to indicate the

number of threads used. Test data is the 3.31 GB reference human genome (accession number

GCA_000001405.28). Benchmark CPU: Intel Xeon E5-2643v3 (3.4 GHz). Link speed of 100 Mbit/s was

used for estimating the transfer time.

Fig. 2. Comparison of 334 settings of 36 compressors on human genome. Each point represents a

particular setting of some compressor. Panel A shows the relationship between compression ratio and

decompression speed. Panel B shows the transfer + decompression speed plotted against compression +

transfer + decompression speed. Test data is the 3.31 GB reference human genome (accession number

GCA_000001405.28). Benchmark CPU: Intel Xeon E5-2643v3 (3.4 GHz). Link speed of 100 Mbit/s was

used for estimating the transfer time.

Fig. 3. Comparison of compressor settings to gzip. Genome datasets were used as test data. Each point

shows the performance of a compressor setting on specific genome test dataset. All values are shown relative

to representative setting of gzip. Only performances that are at least half as good as gzip on both axes are

shown. Panel A shows settings that performed best in Transfer+Decompression speed, B - settings that

performed best in Compression+Transfer+Decompression speed. Link speed of 100 Mbit/s was used for

estimating the transfer time.

Fig. 4. Compressor memory consumption. The strongest setting of each compressor is shown. On the x-

axis is the test data size. On the y-axis is the peak memory used by the compressor, for compression (A) and

decompression (B).

Table 1. Compressor versions

A) Specialized sequence compressors

Compressor Version

2bit "faToTwoBit" and "twoBitToFa" binaries dated 2018-11-07

ac AC 1.1, 2020-01-29

alapy ALAPY 1.3.0, 2017-07-25

beetl BEETL, commit 327cc65, 2019-11-14

blast
"convert2blastmask", "makeblastdb" and "blastdbcmd" binaries from

BLAST 2.8.1+, 2018-11-26

dcom DNA-COMPACT, latest public source 2013-08-29

dlim DELIMINATE, version 1.3c, 2012

dnaX dnaX 0.1.0, 2014-08-03

dsrc DSRC 2.02, commit 5eda82c, 2015-06-04

fastqz fastqz 1.5, commit 39b2bbc, 2012-03-15

fqs FQSqueezer 0.1, commit 5741fc5, 2019-05-17

fqzcomp fqzcomp 4.6, commit 96f2f61, 2019-12-02

geco
GeCo: v.2.1, 2016-12-24

GeCo2: v.1.1, 2019-02-02

gtz GTX.Zip PROFESSIONAL-2.1.3-V-2020-03-18 07:11:20, binary

harc HARC, commit cf35caf, 2019-10-04

jarvis JARVIS v.1.1, commit d7daef5, 2019-04-30

kic KIC binary, 0.2, 2015-11-25

leon Leon, 1.0.0, 2016-02-27, Linux binary

lfastqc LFastqC, commit 60e5fda, 2019-02-28, with fixes

lfqc LFQC, commit 59f56e0, 2016-01-06

mfc MFCompress,s1.01, 2013-09-03, 64-bit Linux binary

minicom Minicom, commit 2360dd9, 2019-09-09

naf NAF, 1.1.0, 2019-10-01

nuht NUHT, commit 08a42a8, 2018-09-26, Linux binary

pfish Pufferfish, v.1.0 alpha, 2012-04-11

quip Quip, commit 9165bb5, 1.1.8-8-g9165bb5, 2017-12-17

spring SPRING, commit 6536b1b, 2019-11-28

uht UHT, binary from 2016-12-27

xm XM (eXpert-Model), 3.0, commit 9b9ea57, 2019-01-07

B) General-purpose compressors

Compressor Version

bcm 1.30, 2018-01-21

brieflz 1.3.0, 2020-02-15

brotli 1.0.7, 2018-10-23

bsc 3.1.0, 2016-01-01

bzip2 1.0.6, 2010-09-06

cmix 17, 2019-03-24

gzip 1.6, 2013-06-09

lizard 1.0.0, 2019-03-08

lz4 1.9.1, 2019-04-24

lzop 1.04, 2017-08-10

lzturbo 1.2, 2014-08-11

nakamichi 2020-May-09

pbzip2 1.1.13, 2015-12-18

pigz 2.4, 2017-12-26

snzip 1.0.4, 2016-10-02

xz 5.2.2, 2015-09-29

zpaq 7.15, 2016-08-17

zpipe 2.01, 2010-12-23

zstd 1.4.5, 2020-05-22

Table 2. Test datasets

A) Genome sequence datasets

Category Organism Accession Size

Virus Gordonia phage GAL1 [60] GCF_001884535.1 50.7 kB

Bacteria WS1 bacterium JGI 0000059-K21 [59] GCA_000398605.1 522 kB

Protist Astrammina rara [59] GCA_000211355.2 1.71 MB

Fungus Nosema ceranae [59] GCA_000988165.1 5.81 MB

Protist Cryptosporidium parvum Iowa II [59] GCA_000165345.1 9.22 MB

Protist Spironucleus salmonicida [59] GCA_000497125.1 13.1 MB

Protist Tieghemostelium lacteum [59] GCA_001606155.1 23.7 MB

Fungus Fusarium graminearum PH-1 [60] GCF_000240135.3 36.9 MB

Protist Salpingoeca rosetta [59] GCA_000188695.1 56.2 MB

Algae Chondrus crispus [59] GCA_000350225.2 106 MB

Algae Kappaphycus alvarezii [59] GCA_002205965.2 341 MB

Animal Strongylocentrotus purpuratus [60] GCF_000002235.4 1.01 GB

Plant Picea abies [59] GCA_900067695.1 13.4 GB

B) Other DNA datasets

Dataset
Number of

sequences
Size Source Date

Mitochondrion [60] 9,402 245 MB

RefSeq FTP:

ftp://ftp.ncbi.nlm.nih.gov/refseq/release/

mitochondrion/mitochondrion.1.1.genomic.fna.gz

ftp://ftp.ncbi.nlm.nih.gov/refseq/release/

mitochondrion/mitochondrion.2.1.genomic.fna.gz

2019-03-15

NCBI Virus

Complete

Nucleotide Human

[61]

36,745 482 MB
NCBI Virus:

https://www.ncbi.nlm.nih.gov/labs/virus/vssi/
2020-05-11

Influenza [62] 700,001 1.22 GB

Influenza Virus Database:

ftp://ftp.ncbi.nih.gov/genomes/INFLUENZA/

influenza.fna.gz

2019-04-27

Helicobacter [59] 108,292 2.76 GB
NCBI Assembly:

https://www.ncbi.nlm.nih.gov/assembly
2019-04-24

C) RNA datasets

Dataset
Number of

sequences
Size Source Date

SILVA 132

LSURef [63]
198,843 610 MB

Silva database:

https://ftp.arb-silva.de/release_132/Exports/

SILVA_132_LSURef_tax_silva.fasta.gz

2017-12-11

SILVA 132

SSURef Nr99

[63]

695,171 1.11 GB

Silva database:

https://ftp.arb-silva.de/release_132/Exports/

SILVA_132_SSURef_Nr99_tax_silva.fasta.gz

2017-12-11

SILVA 132

SSURef [63]
2,090,668 3.28 GB

Silva database:

https://ftp.arb-silva.de/release_132/Exports/

SILVA_132_SSURef_tax_silva.fasta.gz

2017-12-11

D) Multiple DNA sequence alignments

Dataset
Number of

sequences
Size Source Date

UCSC hg38 7way

knownCanonical-exonNuc

[64]

1,470,154 340 MB

UCSC:

https://hgdownload.soe.ucsc.edu/

goldenPath/hg38/multiz7way/alignments/

knownCanonical.exonNuc.fa.gz

2014-06-06

UCSC hg38 20way

knownCanonical-exonNuc

[64]

4,211,940 969 MB

UCSC:

https://hgdownload.soe.ucsc.edu/

goldenPath/hg38/multiz20way/alignments/

knownCanonical.exonNuc.fa.gz

2015-06-30

E) Protein datasets

Dataset

Number

of

sequences

Size Source Date

PDB [65] 109,914 67.6 MB
PDB database FTP:

ftp://ftp.ncbi.nih.gov/blast/db/FASTA/pdbaa.gz
2019-04-09

Homo sapiens

GRCh38 [66]
105,961 73.2 MB

NCBI FTP:

ftp://ftp.ensembl.org/

pub/release-96/fasta/homo_sapiens/pep/

Homo_sapiens.GRCh38.pep.all.fa.gz

2019-03-12

NCBI Virus RefSeq

Protein [61]
373,332 122 MB

NCBI Virus:

https://www.ncbi.nlm.nih.gov/labs/virus/vssi/
2020-05-10

UniProtKB

Reviewed (Swiss-

Prot) [67]

560,118 277 MB

UniProt FTP:

ftp://ftp.uniprot.org/

pub/databases/uniprot/current_release/

knowledgebase/complete/uniprot_sprot.fasta.gz

2019-04-02

Sequence Compression Benchmark (SCB) database —

a comprehensive evaluation of reference-free compressors for

FASTA-formatted sequences

Kirill Kryukov *, Mahoko Takahashi Ueda , So Nakagawa , Tadashi Imanishi

Department of Molecular Life Science, Tokai University School of Medicine,

Isehara, Kanagawa 259-1193, Japan.

*Correspondence: kkryukov@gmail.com

Abstract

Background. Nearly all molecular sequence databases currently use gzip for data compression. Ongoing

rapid accumulation of stored data calls for more efficient compression tool. Although numerous compressors

exist, both specialized and general-purpose, choosing one of them was difficult because no comprehensive

analysis of their comparative advantages for sequence compression was available.

Findings. We systematically benchmarked 430 settings of 48 compressors (including 29 specialized

sequence compressors and 19 general-purpose compressors) on representative FASTA-formatted datasets of

DNA, RNA and protein sequences. Each compressor was evaluated on 17 performance measures, including

compression strength, as well as time and memory required for compression and decompression. We used 27

test datasets including individual genomes of various sizes, DNA and RNA datasets, and standard protein

datasets. We summarized the results as the Sequence Compression Benchmark database (SCB database,

http://kirr.dyndns.org/sequence-compression-benchmark/) that allows building custom visualizations for

selected subsets of benchmark results.

Conclusion. We found that modern compressors offer a large improvement in compactness and speed

compared to gzip. Our benchmark allows comparing compressors and their settings using a variety of

performance measures, offering the opportunity to select the optimal compressor based on the data type and

usage scenario specific to a particular application.

Manuscript Click here to access/download;Manuscript;Text.pdf

https://orcid.org/0000-0002-0286-0288
https://orcid.org/0000-0002-3960-0922
https://orcid.org/0000-0003-1760-3839
https://orcid.org/0000-0002-1182-9127
https://www.editorialmanager.com/giga/download.aspx?id=98454&guid=a0f898b9-9b46-4f8c-9242-58b64698b50d&scheme=1
https://www.editorialmanager.com/giga/download.aspx?id=98454&guid=a0f898b9-9b46-4f8c-9242-58b64698b50d&scheme=1

Keywords: compression; benchmark; DNA; RNA; protein; genome; sequence; database.

Findings

Background

Molecular sequence databases store and distribute DNA, RNA and protein sequences as compressed

FASTA-formatted files. Biological sequence compression was first proposed in 1986 [1] and the first

practical compressor was made in 1993 [2]. A lively field emerged that produced a stream of methods,

algorithms, and software tools for sequence compression [3,4]. However, despite this activity, currently

nearly all databases universally depend on gzip for compressing FASTA-formatted sequence data. This

incredible longevity of the 27-year-old compressor probably owes to multiple factors, including

conservatism of database operators, wide availability of gzip, and its generally acceptable performance.

Through all these years the amount of stored sequence data kept growing steadily [5], increasing the load on

database operators, users, storage systems and network infrastructure. However, someone thinking to replace

gzip invariably faces the questions: which of the numerous available compressors to choose? And will the

resulting gains be even worth the trouble of switching?

Previous attempts at answering these questions are limited by testing too few compressors and by

using restricted test data [6-11]. In addition, all of these studies provide results in form of tables, with no

graphical outputs, which makes the interpretation difficult. Existing benchmarks with useful visualization

such as Squash [12], are limited to general-purpose compressors.

The variety of available specialized and general-purpose compressors is overwhelming. At the same

time the field was lacking a thorough investigation of comparative merits of these compressors for sequence

data. Therefore we set out to benchmark all available practically useful compressors on a variety of relevant

sequence data. Specifically, we focused on the common task of compressing DNA, RNA and protein

sequences, stored in FASTA format, without using reference sequence. The benchmark results are available

in the Sequence Compression Benchmark database (SCB database, http://kirr.dyndns.org/sequence-

compression-benchmark/).

Scope, compressors and test data

We considered the common scenario of archiving, transferring and working with large datasets of

biological sequences. In this study we did not investigate compression of raw sequencing data in FASTQ

format, which was previously thoroughly reviewed in [11]. Instead we focused on typical FASTA-formatted

datasets, which includes individual genomes and single gene sets. Consequently we also did not consider

referential compression, but only reference-free compression, which is typically used for such data. We

evaluated standalone compression tools (rather than libraries), working under Linux OS on a modern

workstation PC. In this study we only consider lossless compression.

We tested all DNA sequence compressors that are available and functional in 2020: dnaX [13], XM

[14], DELIMINATE [15], Pufferfish [16], DNA-COMPACT [17], MFCompress [18], UHT [19], GeCo [20],

GeCo2 [21], JARVIS [22], NAF [23], and NUHT [24]. We also included the relatively compact among

homology search database formats: BLAST [25] and 2bit - a database format of BLAT [26].

Since compressors designed for FASTQ data can be trivially adopted for FASTA-formatted inputs,

we also included a comprehensive array of compressors designed primarily or specifically for FASTQ data:

BEETL [27], Quip [28], fastqz [10], fqzcomp [10], DSRC 2 [29], Leon [30], LFQC [31], KIC [32], ALAPY

[33], GTX.Zip [34], HARC [35], LFastqC [36], SPRING [37], Minicom [38], and FQSqueezer [39]. We also

included AC - a compressor designed exclusively for protein sequences [40]. We also tested a

comprehensive array of general-purpose compressors: bcm [41], brieflz[42], brotli [43], bsc [44], bzip2 [45],

cmix [46], gzip [47], lizard [48], lz4 [49], lzop [50], lzturbo [51], nakamichi [52], pbzip2 [53], pigz [54],

snzip [55], xz [56], zpaq [57], zpipe [57] and zstd [58]. See Table 1 for the list of compressors we used.

For the test data, we selected a variety of commonly used sequence datasets in FASTA format: (1)

Individual genomes of various sizes, as examples of non-repetitive data [59,60]; (2) DNA and RNA datasets,

such as collections of mitochondrial genomes, influenza virus sequences [60,61,62,59], 16S rRNA gene

sequences [63], and genomic multiple DNA sequence alignments [64]; (3) Standard protein datasets

[65,66,61,67]. Individual genomes are less repetitive, while other datasets are more repetitive. In total we

used 27 test datasets. See Table 2 for the list of test data. All test data is available at the GigaDB repository

[68].

Benchmark

We benchmarked each compressor on every test dataset, except in cases of incompatibility (e.g.,

DNA compressors cannot compress protein data) or excessive time requirement (some compressors are so

slow that they would take weeks on larger datasets). For compressors with adjustable compression level, we

tested the relevant range of levels. We tested both 1 and 4-thread variants of compressors that support multi-

threading. In total, we used 430 settings of 48 compressors. We also included the non-compressing "cat"

command as control. For compressors using non-trivial wrappers, we also benchmarked the wrappers.

Currently many sequence analysis tools accept gzip-compressed files as input. Switching to another

compressor may require either adding support of new format to those tools, or passing the data in

uncompressed form. The latter solution can be achieved with the help of Unix pipes, if both the compressor

and the analysis tool support streaming mode. Therefore, we benchmarked all compressors in streaming

mode (streaming uncompressed data in both compression and decompression).

For each combination of compressor setting and test dataset we recorded compressed size,

compression time, decompression time, peak compression memory and peak decompression memory. The

details of the method and raw benchmark data are available in the Methods section and Supplementary Data,

respectively. We share benchmark results at the online SCB database: http://kirr.dyndns.org/sequence-

compression-benchmark/. All benchmark code is available at https://github.com/KirillKryukov/scb.

The choice of measure for evaluating compressor performance depends on a prospective application.

For a long-term data storage, compactness may be the single most important criterion. For a public sequence

database, the key measure is how long time it takes from initiating the download of compressed files until

accessing the decompressed data. This time consists of transfer time plus decompression time (TD-Time).

Corresponding transfer-decompression speed (TD-Speed) is computed as Original Size / TD-Time. In this

use case, compression time is relatively unimportant, since compression happens only once, while transfer

and decompression times affect every user of the database. For a one-time data transfer, all three steps of

compression, transfer and decompression are timed (CTD-Time), and used for computing the resulting

overall speed (CTD-Speed).

A total of 17 measures, including the above-mentioned ones, are available in our results data (See

Methods for the list of measures). Any of these measures can be used for selecting the best setting of each

compressor and for sorting the list of compressors. These measures can be then shown in a table and

visualized in form of column charts and scatterplots. This allows tailoring the output to answer specific

questions, such as what compressor is better at compressing particular kind of data, or which setting of each

compressor performs best at particular task. The link speed that is used for estimating transfer times is

configurable. The default speed of 100 Mbit/sec corresponds to the common speed of a fixed broadband

internet connection.

Fig.1 compares the performance of best settings of 36 compressors on human genome. It shows that

specialized sequence compressors achieve excellent compression ratio on this genome. However, when total

TD-Speed or CTD-Speed is considered (measures that are important in practical applications), most

sequence compressors fall behind the general-purpose ones. The best compressors for this dataset in terms of

compression ratio, TD-Speed and CTD-Speed are "fastqz-slow", "naf-22" and "naf-1", respectively (numbers

in each compressor name indicate compression level and other settings). Interestingly, the non-compressing

"cat" command used as a control, while naturally showing at the last place on compression ratio (Fig.1A), is

not the slowest in terms of TD-Speed and CTD-Speed (Figs.1B and 1C, respectively). In case of CTD-

Speed, for example, it means that some compressors are so slow that their compression + transfer +

decompression time turns out to be longer than the time required for transferring raw uncompressed data

(using a particular link speed, in this case 100 Mbit/sec).

Fig.2 compares all compressor settings on the same data (human genome). Fig.2A shows that the

strongest compressors often provide a very low decompression speed (shown using logarithmic scale due to

the enormous range of values), which means that quick data transfer (resulting from strong compression)

offered by those compressors is offset by significant waiting time required for decompressing the data.

Fig.2B shows TD-Speed plotted against the CTD-Speed. Similar figures can be constructed for other data

and performance measures on the SCB database website.

Visualizing results from multiple test datasets simultaneously is possible, with or without

aggregation of data. With aggregation, the numbers will be summed or averaged, and a single measurement

will be shown for each setting of each compressor. Without aggregation, the results of each compressor

setting will be shown separately on each dataset. Since the resulting number of data points can be huge, in

such case it is useful to request only the best setting of each compressor to be shown. The criteria for

choosing the best setting is selectable among the 17 measurements. In case of a column chart, any of the 17

measures can be used for ordering the shown compressors, independently of the measure used for selecting

best version, and independently of the measure actually shown in the chart.

One useful capability of the SCB database is showing measurements relative to the specified

compressor (and setting). This allows selecting a reference compressor and comparing the other compressors

to this reference. For example, we can compare compressors to gzip as shown on Fig.3. In this example, we

compare only the best settings of each compressor, selected using specific measures (transfer+decompression

speed and compression+transfer+decompression speed on Figs.3A and 3B, respectively). We also used a

fixed scale to show only range above 0.5 on both axes, which means that only performances that are at least

half as good as gzip on both axes as shown. In this example, we can see that some compressors improve

compactness and some improve speed compared to gzip, but few compressors improve both at the same

time, such as lizard, naf, pigz, pbzip, and zstd.

It is important to be aware of the memory requirements when choosing a compressor (Fig.4). In

these charts we plotted data size on the x-axis, and disabled aggregation. This allows seeing how much

memory a particular compressor used on each test dataset. As this example shows, memory requirement

reaches saturation point for most compressors. On the other hand, some compressors have unbounded

growth of consumed memory, which makes them unusable for large data. Interestingly, gzip apparently has

the smallest memory footprint, which may be one of the reasons for its popularity. Most compressors can

function on a typical desktop hardware, but some require larger memory, which is important to consider

when choosing a compressor that will be run by the consumers of distributed data.

A wide variety of charts can be produced on the benchmark website by selecting specific

combinations of test data, compressors, and performance measures. At any point the currently visualized data

can be obtained in textual form using Table output option. Also, all charts can be downloaded in SVG

format.

Conclusions

Our benchmark reveals complex relationship between compressors and between their settings, based

on various measures. We found that continued use of gzip is usually far from an optimal choice.

Transitioning from gzip to a better compressor brings significant gains for genome and protein data, and is

especially beneficial with repetitive DNA/RNA datasets. The optimal choice of compressor depends on

many factors, including properties of the data to be compressed (such as sequence type, data size, and

amount of redundancy), relative importance of compression strength, compression speed and decompression

speed for particular use scenario, as well as amount of memory available on data machines used for

compression and decompression. Our benchmark allows comparing compressors on individual performance

metrics, as well as on their combinations.

The Sequence Compression Benchmark (SCB) database will help in navigating the complex

landscape of sequence data compression. With dozens of compressors available, making an informed choice

is not an easy task and requires careful analysis of the project requirements, data type and compressor

capabilities. Our benchmark is the first resource providing a detailed practical evaluation of various

compressors on a wide range of molecular sequence datasets. Using the SCB database, users can analyze

compressor performances on a variety of metrics, and construct custom reports for answering project-

specific questions.

In contrast to previous studies that showed their results in static tables, our project is dynamic in two

important senses: (1) the result tables and charts can be dynamically constructed for a custom selection of

test data, compressors, and measured performance numbers, and (2) our study is not a one-off benchmark,

but marks the start of a project where we will continue to add compressors and test data.

Making an informed choice of a compressor with the help of our benchmark will lead to increased

compactness of sequence databases, with shorter time required for downloading and decompressing. This

will reduce the load on network and storage infrastructure, and increase the speed and efficiency in

biological and medical research.

Methods

Benchmarked task

The task is to compress and decompress a FASTA-formatted file containing DNA, RNA or protein

sequences. The process has to be lossless, i.e., decompressed data must be byte-to-byte identical to the

original data. Compression and decompression are done without using any reference genome. Each

compression and decompression task is executed under the Linux OS, via a command line interface. Input

data for compression and output data during decompression are streamed using Unix pipes.

Only well-formed FASTA files are used in the benchmark: They must contain no empty lines and all

long sequence lines have to be wrapped at the same position. Both upper- and lower-case (soft-masked)

letters can be present, as well as common ambiguity codes. In multiple sequence alignments, additionally,

dashes ("-") are used for indicating gaps. Each test dataset is compressed separately from other datasets.

Compressor selection

We used all specialized sequence compressors that we could find and make to work for the above

specified task. For general-purpose compressors we used only the major ones, in terms of performance,

historical importance, or popularity. For each compressor with configurable compression level (or other

parameters related to compression strength of speed), we used the relevant range of settings, including the

default.

Benchmark machine

 CPU: dual Xeon E5-2643v3 (3.4 GHz, 6 cores), hyperthreading: off

 RAM: 128 GB DDR4-2133 ECC Registered

 Storage: 4 x 2 TB SSD, in RAID 0, XFS filesystem, block size: 4096 bytes (blockdev --getbsz)

 OS: Ubuntu 18.04.1 LTS, kernel: 4.15.0

 GCC: 7.4.0

Compressor/dataset combinations that were tested

Each setting of each compressor is tested on every test dataset, except when it's difficult or

impossible due to compressor limitations:

 AC is a protein-specific compressor, and was tested only on protein datasets.

 Due to their extreme slowness, these compressors are not tested on any data larger than 10 MB:

cmix, DNA-COMPACT, GeCo, JARVIS, Leon, and XM.

 UHT fails on the 245 MB dataset and on larger data.

 Nakamichi was only used on data smaller than 200 MB due to its slowness and memory

requirements.

 Among sequence compressors, only DELIMINATE, MFCompress and NAF support multiple

sequence alignments.

 Among sequence compressors, only AC, BLAST and NAF support protein sequences.

 Some settings of XM crash and/or produce wrong decompressed output on some data - such results

are not included.

 NUHT's memory requirement makes it impossible to use on 13.4 GB Picea abies genome.

 LFastqC fails on 2.7 GB dataset and larger data.

Benchmark process

The entire benchmark is orchestrated by a perl script. This script loads the lists of compressor

settings and test data, and proceeds to test each combination that still has its measurements missing in the

output directory. For each such combination (of compressor setting and test dataset), the following steps are

performed:

1. Compression is performed by piping the test data into the compressor. Compressed size and

compression time is recorded. For compressed formats consisting of multiple files, sizes of all files

are summed together.

2. If compression time did not exceed 10 seconds, 9 more compression runs are performed, recording

compression times. Compressed data from previous run is deleted before each next compression run.

3. The next set of compression runs is performed to measure peak memory consumption. This set

consists of the same number of runs as in steps 1-2 (either 1 or 10 runs). That is, for fast compressors

and for small data the measurement is repeated 10 times.

4. Decompression test run is performed. In this run decompressed data is piped to the "md5sum -b -"

command. The resulting md5 signature is compared with that of the original file. In case of any

mismatch this combination of compressor setting and dataset is disqualified and its measurements

are discarded.

5. Decompression time is measured. This time decompressed data is piped to /dev/null.

6. If decompression completed within 10 seconds, 9 more decompression runs are performed and

timed.

7. Peak decompression memory is measured. The number of runs is same as in steps 5-6.

8. The measurements are stored to a file. All compressed and temporary files are removed.

Measurement methods

Measuring time: Wall clock time was measured using Perl's Time::HiRes module (gettimeofday and

tv_interval subroutines). The resulting time was recorded with millisecond precision.

Measuring peak memory consumption: First, each compression command was stored in a temporary

shell script file. Then it was executed via GNU Time, as /usr/bin/time -v cmd.sh >output.txt. "Maximum

resident set size" value was extracted from the output. 1638 was then subtracted from this value and the

result was stored as peak memory measurement. 1638 is the average "Maximum resident set size" measured

by GNU Time in the same way for an empty shell script.

Memory consumption and time were measured separately because measuring memory makes the

task slower, especially for very fast tasks.

Collected measurements

For each combination of compressor and dataset that was tested, the following measurements were

collected:

 Compressed size (in bytes)

 Compression time (in milliseconds)

 Decompression time (in milliseconds)

 Peak compression memory (in GNU Time's "Kbytes")

 Peak decompression memory (in GNU Time's "Kbytes")

In cases where 10 values are collected, the average value is used by the benchmark web-site.

Computed values

The following values were calculated based on the measured values:

 Compressed size relative to original (%) = Compressed size / Uncompressed size * 100

 Compression ratio (times) = Uncompressed size / Compressed size

 Compression speed (MB/s) = Uncompressed size in MB / Compression time

 Decompression speed (MB/s) = Uncompressed size in MB / Decompression time

 Compression + decompression time (s) = Compression time + Decompression time

 Compression + decompression speed (MB/s) = Uncompressed size in MB / (Compression time +

Decompression time)

 Transfer time (s) = Uncompressed size / Link speed in B/s

 Transfer speed (MB/s) = Uncompressed size in MB / Transfer time

 Transfer + decompression time (s) = Transfer time + Decompression time

 Transfer + decompression speed (MB/s) = Uncompressed size in MB / (Transfer time +

Decompression time)

 Compression + transfer + decompression time (s) = Compression time + Transfer time +

Decompression time

 Compression + transfer + decompression speed (MB/s) = Uncompressed size in MB / (Compression

time + Transfer time + Decompression time)

Rationale for non-constant number of runs

Variable number of runs is the only way to have both accurate measurements and large test data

(under the constraints of using one test machine, and running benchmark within reasonable time).

On one hand, benchmark takes lot of time. So much that some compressors can't be even tested at all

on dataset larger than 10 MB in reasonable time. Therefore repeating every measurement 10 times is

impractical. Or, it would imply restricting the test data to only small datasets.

On the other hand, measurements are slightly noisy. The shorter measured time, the more noisy its

measurement. Thus for very quick runs, multiple runs allow for substantial noise suppression. For longer

runs it does not make much difference, because the relative error is already small with longer times.

Using a threshold of 10 seconds seems to be a reasonable compromise between suppressing noise

and including larger test data (and slow compressors).

Streaming mode

For compression, each compressor was reading the input data streamed via unix pipe ("|" in the

command line). For decompression, each compressor was set up to stream decompressed data via pipe. This

was done to better approximate a common pattern of using compressors in a practical data analysis scenario.

In an actual sequence analysis workflow, often decompressed data is piped directly into a downstream

analysis command. Also, when compressing the sequences, often the data is first pre-processed with another

command, which then pipes processed sequences to a compressor.

Some compressors don't implement the streaming mode, and only work with actual files. Since we

have to benchmark all compressors on the same task, we added streaming mode to such compressors via

wrapper scripts. For compression, a wrapper reads input data from "stdin" and writes it into a temporary file,

then executes a compressor on that file, and finally deletes the file. For decompression the reverse process

occurs: The wrapper script executes a decompressor, which writes the decompressed data into a temporary

file; then the wrapper reads this file and streams it to "stdout", before deleting the file.

The entire process is timed for the benchmark. Normally such wrapping has minimal impact on the

overall compression/decompression speed, because we use fast SSD storage, and because the actual

compression and decompression takes comparatively much longer time than simply streaming the data

to/from a file.

FASTA format compatibility

Many specialized compressors don't support the full-featured modern FASTA format, such as the

one used in genome databases. Specifically, modern FASTA files often store masked sequence (use a mix of

upper- and lower-case letters), and include ambiguity codes. The degree of completeness of FASTA support

varies wildly among compressors. At one end of the spectrum, there are compressors with comprehensive

support for all FASTA format features. At another end, there are compressors that only work with a string of

capital ACGT and nothing else, not even sequence names or newlines. Majority of sequence compressors are

somewhere in-between these two extremes.

Essentially this means that each sequence compressor performs its own task, different from that of

the others. If a compressor does not need to care about upper vs lower-case letters, or about storing sequence

names, it can possibly work faster. Thus comparing compressors each doing their own thing would not be

fair, or very useful to the user. Since full-featured FASTA is in fact commonly used in today's databases, we

decided to require complete lossless support of full-featured FASTA files from all benchmarked

compressors. In practice this means that we had to create a custom wrapper for each incomplete compressor,

implementing the missing compatibility features.

A typical wrapper takes the original FASTA-formatted input and transforms it into a format

acceptable by the compressor being wrapped. For instance, if a compressor only expects upper-case

nucleotide codes, then the positions of upper- and lowe-case characters are extracted and saved in a separate

file. The original file is converted to all upper-case, which is then fed to the compressor. The separate "mask"

file (storing positions of lower-case letters) is compressed with a general-purpose compressor. Entire set of

files produces in such way counts for the compressed data size measured for this particular compressor and

dataset, so that the overall compression strength is comparable with that achieved by other compressors (with

or without their respective wrappers). Also the total time is measured, including the time taken by all

transformations and by storing/compressing the additional files.

We developed several tools for quickly processing FASTA files to extract or add various channels of

information for the purpose of wrapping the incomplete compressors. We used C and optimized for speed, so

that these steps have maximum speed and minimap impact on the overall compression. The wrapper scripts

themselves are written in Perl. We used the fast mode of zstd ("-1") to compress the additional files, chosen

because of its high speed so that it has minimal impact on measuring the speed of the wrapped compressor.

As for compactness, the impact is minimal as well since the additional files are typically very small and

compress well.

For all such wrapped compressors, we benchmarked not only the complete wrapped compressor, but

also the "wrapper-only" mode, in which only the wrapper script is executed, but not the compressor itself.

Such results are included in the benchmark under the "wrap-NAME" names. This means that it's possible to

compare the speed of the entire wrapped compressor with its corresponding "wrapper-only" run, for each

dataset. This allows to see how much time is used by the wrapper, and therefore how much impact the

wrapper makes on the overall results.

Some of the features implemented via wrappers:

 Supporting RNA sequences for DNA-only compressors

 Supporting 'N' in DNA/RNA sequences

 Supporting IUPAC's ambiguous nucleotide codes

 Saving and restoring line lengths

 Saving and restoring sequence names

 Saving and restoring sequence mask (upper/lower case)

 Supporting FASTA-formatted input

 Supporting input with more than 1 sequence

FASTQ compressors

Several FASTQ compressors are included in the benchmark. All of them are tested using wrappers

which convert FASTA sequences into their respective accepted formats. Some need only adding the artificial

quality (constant "A" in most cases). Other expect only short reads or reads of identical lengths. These

transformations are done in custom wrappers that we made for each FASTQ compressor. Since compression

and decompression time recorded for benchmark is the total time of all steps, including wrapper processing,

it means that in many cases the wrapped tool may work faster when used directly on FASTQ data. Also

many FASTQ compressors are designed under additional assumptions typical for FASTQ data, for example

that all reads are sampled from an underlying genome with substantial coverage (which allows meaningful

assembly). These assumptions often don't hold on our FASTA-formatted benchmark datasets. Therefore the

results of FASTQ compressors shown in our benchmark should not be taken as indicative of the actual

performance of those compressors on FASTQ data that they were designed for.

Benchmark code availability

All scripts used for conducting the benchmark are available at the GitHub repository:

https://github.com/KirillKryukov/scb. The main benchmark scrripts and configuration files are in the

"benchmark" directory. All wrappers are in the "wrappers" directory. Additional tools used by the wrappers

are in "seq-tools-c" and "seq-tools-perl" directories. Compression and decompression commands are listed

in files "benchmark/compressors-*.txt" and "benchmark/decompressors.txt". Benchmark data is merged

using the "benchmark/2-collect-results.pl" script. The resulting merged data is visualized using a server-side

script in the "website" directory. The scripts are provided for reference only.

Update plan

We plan to continue maintaining Sequence Compression Benchmark. This mainly involves

benchmarking new or updated compressors, when such compressors become available. Since it's impractical

to benchmark every existing compressor, we will continue to only benchmark compressors selected based on

their performance, quality and usefulness for sequence compression.

Declarations

Availability of data and material

All benchmark data is available at the online SCB database:

http://kirr.dyndns.org/sequence-compression-benchmark/

An archival copy of benchmark data is also available via the GigaScience database GigaDB [68].

Availability of supporting source code and requirements

All code used for conducting the benchmark is available at the SCB GitHub repository.

Project name: Sequence Compression Benchmark

Project home page: https://github.com/KirillKryukov/scb

Operating system(s): Linux

Programming language: Perl

Other requirements: None

License: Public Domain

Competing interests

The authors declare no competing interests.

Funding

This work was supported by the 2019 Tokai University School of Medicine Research Aid (to KK), JSPS

KAKENHI Grants-in-Aid for Scientific Research (C) (20K06612 to KK) and Scientific Research on

Innovative Areas (16H06429, 16K21723, 19H04843 to SN), and Takeda Science Foundation (to TI).

Authors' contributions

KK conceived the study idea and implemented the benchmark. SN provided benchmark hardware. KK,

MTU, SN and TI interpreted the data and wrote the manuscript. KK and MTU prepared figures and tables.

All authors read and approved the final manuscript.

Acknowledgements

Not applicable.

References

1. Walker JR, Willett P. Compression of nucleic acid and protein sequence data. Comput. Appl. Biosci.

1986;2(2):89-93.

2. Grumbach S, Tahi F. Compression of DNA sequences. Data Compression Conference, Snowbird, Utah,

IEEE Computer Society. 1993. p. 340-50. doi:10.1109/DCC.1993.253115.

3. Deorowicz S, Grabowski S. Data compression for sequencing data. Algorithms for Molecular Biology.

2013;8:25. doi:10.1186/1748-7188-8-25.

4. Hernaez M, Pavlichin D, Weissman T, Ochoa I. Genomic Data Compression. Annual Review of

Biomedical Data Science. 2019;2:19-37. doi:10.1146/annurev-biodatasci-072018-021229.

5. Karsch-Mizrachi I, Takagi T, Cochrane G. The international nucleotide sequence database collaboration.

Nucleic Acids Res. 2018;46(Database issue):D48–D51. doi:10.1093/nar/gkx1097.

6. Zhu Z, Zhang Y, Ji Z, He S, Yang X. High-throughput DNA sequence data compression. Brief.

Bioinform. 2013; 16(1):1-15. doi:10.1093/bib/bbt087.

7. Hosseini M, Pratas D, Pinho AJ. A Survey on Data Compression Methods for Biological Sequences.

Information. 2016;7(4):56. doi:10.3390/info7040056.

8. Sardaraz M, Tahir M. Advances in high throughput DNA sequence data compression. J. Bioinform.

Comput. Biol. 2016;14(3):1630002. doi:10.1142/S0219720016300021.

9. Biji CL, Achuthsankar SN. Benchmark Dataset for Whole Genome Sequence Compression. IEEE/ACM

Trans. Comput. Biol. Bioinform. 2017;14(6):1228-36. doi:10.1109/TCBB.2016.2568186.

10. Bonfield JK, Mahoney MV. Compression of FASTQ and SAM Format Sequencing Data. PLoS One.

2013;8(3): e59190, doi:10.1371/journal.pone.0059190.

11. Numanagic I, Bonfield JK, Hach F, Voges J, Ostermann J, Alberti C, Mattavelli M. Comparison of high-

throughput sequencing data compression tools. Nature Methods. 2016;13(12):1005-8,

doi:10.1038/nmeth.4037.

12. Squash Compression Benchmark. 2015. https://quixdb.github.io/squash-benchmark/. Accessed July 15,

2019.

13. Manzini G, Rastero M. A simple and fast DNA compressor. Software - Practice and Experience.

2004;34:1397-411, doi:10.1002/spe.619.

14. Cao MD, Dix TI, Allison L. Mears C. A simple statistical algorithm for biological sequence

compression. Data Compression Conference. DCC '07, Snowbird, UT, IEEE Computer Society. 2007. p.

43-52. doi:10.1109/DCC.2007.7.

15. Mohammed MH, Dutta A, Bose T, Chadaram S, Mande SS. DELIMINATE — a fast and efficient

method for loss-less compression of genomic sequences. Bioinformatics. 2012;28:2527–29.

doi:10.1093/bioinformatics/bts467.

16. Pufferfish. 2012. https://github.com/alexholehouse/pufferfish. Accessed May 23, 2019.

17. Li P, Wang S, Kim J, Xiong H, Ohno-Machado L, Jiang X. DNA-COMPACT: DNA COMpression

Based on a Pattern-Aware Contextual Modeling Technique. PLoS ONE. 2013;8(11):e80377.

doi:10.1371/journal.pone.0080377.

18. Pinho AJ, Pratas D. MFCompress: a compression tool for FASTA and multi-FASTA data.

Bioinformatics. 2014;30:117-8. doi:10.1093/bioinformatics/btt594.

19. Al-Okaily A, Almarri B, Al Yami S, Huang CH. Toward a Better Compression for DNA Sequences

Using Huffman Encoding. J. Comp. Biol. 2017;24(4):280–8. doi:10.1089/cmb.2016.0151.

20. Pratas D, Pinho AJ, Ferreira PJSG. Efficient compression of genomic sequences. Data Compression

Conference, DCC-2016, Snowbird, Utah, IEEE Computer Society. 2016. p.231-240. doi:

10.1109/DCC.2016.60.

21. Pratas D, Hosseini M, Pinho AJ. GeCo2: An Optimized Tool for Lossless Compression and Analysis of

DNA Sequences. Practical Applications of Computational Biology and Bioinformatics, 13th

International Conference, PACBB 2019, Advances in Intelligent Systems and Computing, vol 1005,

Springer, Cham, 2019a. p.137-145. doi: 10.1007/978-3-030-23873-5_17.

22. Pratas D, Hosseini M, Silva J, Pinho AJ. A Reference-Free Lossless Compression Algorithm for DNA

Sequences Using a Competitive Prediction of Two Classes of Weighted Models. Entropy,

2019b;21:1074. doi:10.3390/e21111074.

23. Kryukov K, Ueda MT, Nakagawa S, Imanishi T. Nucleotide Archival Format (NAF) enables efficient

lossless reference-free compression of DNA sequences. Bioinformatics. 2019;35(19):3826-28.

doi:10.1093/bioinformatics/btz144.

24. Alyami S, Huang CH. Nongreedy Unbalanced Huffman Tree Compressor for Single and Multifasta

Files. Journal of Computational Biology. 2019; 26(0):1-9. doi:10.1089/cmb.2019.0249.

25. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J. Mol. Biol.

1990;215(3):403-10. doi:10.1016/S0022-2836(05)80360-2.

26. Kent WJ. BLAT - The BLAST-Like Alignment Tool. Genome Research. 2002;12(4):656-64.

doi:10.1101/gr.229202.

27. Bauer MJ, Cox AJ, Rosone G. Lightweight BWT Construction for Very Large String Collections.

Combinatorial Pattern Matching 2011, proceedings of the CPM 2011, 2011. p.219-231.

doi:10.1007/978-3-642-21458-5_20.

28. Jones DC, Ruzzo WL, Peng X, Katze MG. Compression of next-generation sequencing reads aided by

highly efficient de novo assembly. Nucleic Acids Research. 2012;40(22):e171. doi:10.1093/nar/gks754.

29. Roguski L, Deorowicz S. DSRC 2—Industry-oriented compression of FASTQ files. Bioinformatics.

2014; 30(15):2213-5. doi:10.1093/bioinformatics/btu208.

30. Benoit G, Lemaitre C, Lavenier D, Drezen E, Dayris T, Uricaru R, Rizk G. Reference-free compression

of high throughput sequencing data with a probabilistic de Bruijn graph. BMC Bioinformatics.

2015;16:288. doi:10.1186/s12859-015-0709-7.

31. Nicolae M, Pathak S, Rajasekaran S. LFQC: a lossless compression algorithm for FASTQ files.

Bioinformatics. 2015;31(20):3276-81. doi:10.1093/bioinformatics/btv384.

32. Zhang Y, Patel K, Endrawis T, Bowers A, Sun Y. A FASTQ compressor based on integer-mapped k-mer

indexing for biologist. Gene. 2016;579(1):75-81. doi:10.1016/j.gene.2015.12.053.

33. ALAPY 2017. http://alapy.com/services/alapy-compressor/. Accessed December 2, 2019.

34. Xing Y, Li G, Wang Z, Feng B, Song Z, Wu C. GTZ: a fast compression and cloud transmission tool

optimized for FASTQ files. BMC Bioinformatics. 2017;18(Suppl 16):549. doi:10.1186/s12859-017-

1973-5.

35. Chandak S, Tatwawadi K, Weissman T. Compression of genomic sequencing reads via hash-based

reordering: algorithm and analysis. Bioinformatics. 2018;34(4):558-67.

doi:10.1093/bioinformatics/btx639.

36. Al Yami S, Huang CH. LFastqC: A lossless non-reference-based FASTQ compressor. PLoS One.

2019;14(11):e0224806, doi:10.1371/journal.pone.0224806.

37. Chandak S, Tatwawadi K, Ochoa I, Hernaez M, Weissman T. SPRING: a next-generation compressor

for FASTQ data. Bioinformatics. 2019;35(15):2674-6. doi:10.1093/bioinformatics/bty1015.

38. Liu Y, Yu Z, Dinger ME, Li J. Index suffix-prefix overlaps by (w, k)-minimizer to generate long contigs

for reads compression. Bioinformatics. 2019. 35(12):2066-2074, doi:10.1093/bioinformatics/bty936.

39. Deorowicz S. FQSqueezer: k-mer-based compression of sequencing data. Scientific Reports.

2020;10:578. doi:10.1038/s41598-020-57452-6.

40. Hosseini M, Pratas D, Pinho AJ. AC: A Compression Tool for Amino Acid Sequences. Interdisciplinary

Sciences: Computational Life Sciences. 2019;11:68-76. doi:10.1007/s12539-019-00322-1.

41. BCM. https://github.com/encode84/bcm. Accessed June 6 2019.

42. BriefLZ - small fast Lempel-Ziv. https://github.com/jibsen/brieflz. Accessed May 12 2020.

43. Alakuijala J, Szabadka Z. Brotli Compressed Data Format. RFC 7932. 2016. Accessed April 14 2019.

44. libbsc. https://github.com/IlyaGrebnov/libbsc. Accessed June 22 2019.

45. bzip2. https://www.sourceware.org/bzip2/. Accessed January 20 2019.

46. cmix. https://github.com/byronknoll/cmix. Accessed April 25 2019.

47. GNU Gzip. https://www.gnu.org/software/gzip/. Accessed November 8 2019.

48. Lizard - efficient compression with very fast decompression. https://github.com/inikep/lizard. Accessed

June 16 2019.

49. LZ4 - Extremely fast compression. https://github.com/lz4/lz4. Accessed April 25 2019.

50. Lzop. 2017. https://www.lzop.org/. Accessed December 6 2018.

51. LzTurbo - World's fastest compressor. https://sites.google.com/site/powturbo/. Accessed February 11

2019.

52. Nakamichi. http://www.sanmayce.com/Nakamichi/index.html. Accessed May 12 2020.

53. pbzip2. https://launchpad.net/pbzip2/. Accessed April 26 2019.

54. pigz. https://zlib.net/pigz/. Accessed April 26 2019.

55. Snzip, a compression/decompression tool based on snappy. https://github.com/kubo/snzip. Accessed

November 11 2018.

56. XZ Utils. https://tukaani.org/xz/. Accessed December 17 2018.

57. ZPAQ Incremental Journaling Backup Utility and Archiver. http://www.mattmahoney.net/dc/zpaq.html.

Accessed November 7 2018.

58. Zstandard - Fast real-time compression algorithm. https://github.com/facebook/zstd. Accessed May 22

2020.

59. Clark K, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW. GenBank. Nucleic Acids Res.

2016;44(D1):D67–D72. doi:10.1093/nar/gkv1276.

60. O'Leary NA, Wright MW, Brister JR, Ciufo S, Haddad D, McVeigh R, et al. Reference sequence

(RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic

Acids Res. 2016;44(D1):D733-45. doi:10.1093/nar/gkv1189.

61. Brister JR, Ako-Adjei D, Bao Y, Blinkova O. NCBI viral genomes resource. Nucleic Acids Res.

2015;43(D1):D571-7. doi:10.1093/nar/gku1207.

62. Bao Y, Bolotov P, Dernovoy D, Kiryutin B, Zaslavsky L, Tatusova T, Ostell J, Lipman D. The Influenza

Virus Resource at the National Center for Biotechnology Information. J Virol. 2008;82(2):596-601.

doi:10.1128/JVI.02005-07.

63. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO. The SILVA

ribosomal RNA gene database project: improved data processing and web-based tools. Nucl. Acids Res.

2013;41(D1):D590-D596. doi:10.1093/nar/gks1219.

64. Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM, Haussler D. The human genome

browser at UCSC. Genome Res. 2002;12(6):996-1006. doi:10.1101/gr.229102.

65. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE. The

Protein Data Bank. Nucleic Acids Res. 2000;28:235-42. doi:10.1093/nar/28.1.235.

66. Yates AD, Achuthan P, Akanni W, Allen J, Allen J, Alvarez-Jarreta J, et al. Ensembl 2020. Nucleic

Acids Res. 2020;48(D1):D682–8. doi:10.1093/nar/gkz966.

67. The UniProt Consortium. UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res.

2019;47(D1):D506-15. doi:10.1093/nar/gky1049.

68. Kryukov K, Ueda MT, Nakagawa S, Imanishi T. Supporting data for "Sequence Compression

Benchmark (SCB) database — a comprehensive evaluation of reference-free compressors for FASTA-

formatted sequences". GigaScience Database. 2020. http://dx.doi.org/10.5524/100762

Figure legends

Fig. 1. Comparison of 36 compressors on human genome. The best settings of each compressor are

selected based on different aspects of performance: (A) compression ratio, (B) transfer + decompression

speed, and (C) compression + transfer + decompression speed. Specialized sequence compressors are shown

in orange color, and general-purpose compressors are shown in blue. The copy-compressor ("cat" command),

shown in red color, is included as a control. The selected settings of each compressor are shown in their

names, after hyphen. Multi-threaded compressors have "-1t" or "-4t" at the end of their names to indicate the

number of threads used. Test data is the 3.31 GB reference human genome (accession number

GCA_000001405.28). Benchmark CPU: Intel Xeon E5-2643v3 (3.4 GHz). Link speed of 100 Mbit/s was

used for estimating the transfer time.

Fig. 2. Comparison of 334 settings of 36 compressors on human genome. Each point represents a

particular setting of some compressor. Panel A shows the relationship between compression ratio and

decompression speed. Panel B shows the transfer + decompression speed plotted against compression +

transfer + decompression speed. Test data is the 3.31 GB reference human genome (accession number

GCA_000001405.28). Benchmark CPU: Intel Xeon E5-2643v3 (3.4 GHz). Link speed of 100 Mbit/s was

used for estimating the transfer time.

Fig. 3. Comparison of compressor settings to gzip. Genome datasets were used as test data. Each point

shows the performance of a compressor setting on specific genome test dataset. All values are shown relative

to representative setting of gzip. Only performances that are at least half as good as gzip on both axes are

shown. Panel A shows settings that performed best in Transfer+Decompression speed, B - settings that

performed best in Compression+Transfer+Decompression speed. Link speed of 100 Mbit/s was used for

estimating the transfer time.

Fig. 4. Compressor memory consumption. The strongest setting of each compressor is shown. On the x-

axis is the test data size. On the y-axis is the peak memory used by the compressor, for compression (A) and

decompression (B).

Table 1. Compressor versions

A) Specialized sequence compressors

Compressor Version

2bit "faToTwoBit" and "twoBitToFa" binaries dated 2018-11-07

ac AC 1.1, 2020-01-29

alapy ALAPY 1.3.0, 2017-07-25

beetl BEETL, commit 327cc65, 2019-11-14

blast
"convert2blastmask", "makeblastdb" and "blastdbcmd" binaries from

BLAST 2.8.1+, 2018-11-26

dcom DNA-COMPACT, latest public source 2013-08-29

dlim DELIMINATE, version 1.3c, 2012

dnaX dnaX 0.1.0, 2014-08-03

dsrc DSRC 2.02, commit 5eda82c, 2015-06-04

fastqz fastqz 1.5, commit 39b2bbc, 2012-03-15

fqs FQSqueezer 0.1, commit 5741fc5, 2019-05-17

fqzcomp fqzcomp 4.6, commit 96f2f61, 2019-12-02

geco
GeCo: v.2.1, 2016-12-24

GeCo2: v.1.1, 2019-02-02

gtz GTX.Zip PROFESSIONAL-2.1.3-V-2020-03-18 07:11:20, binary

harc HARC, commit cf35caf, 2019-10-04

jarvis JARVIS v.1.1, commit d7daef5, 2019-04-30

kic KIC binary, 0.2, 2015-11-25

leon Leon, 1.0.0, 2016-02-27, Linux binary

lfastqc LFastqC, commit 60e5fda, 2019-02-28, with fixes

lfqc LFQC, commit 59f56e0, 2016-01-06

mfc MFCompress,s1.01, 2013-09-03, 64-bit Linux binary

minicom Minicom, commit 2360dd9, 2019-09-09

naf NAF, 1.1.0, 2019-10-01

nuht NUHT, commit 08a42a8, 2018-09-26, Linux binary

pfish Pufferfish, v.1.0 alpha, 2012-04-11

quip Quip, commit 9165bb5, 1.1.8-8-g9165bb5, 2017-12-17

spring SPRING, commit 6536b1b, 2019-11-28

uht UHT, binary from 2016-12-27

xm XM (eXpert-Model), 3.0, commit 9b9ea57, 2019-01-07

B) General-purpose compressors

Compressor Version

bcm 1.30, 2018-01-21

brieflz 1.3.0, 2020-02-15

brotli 1.0.7, 2018-10-23

bsc 3.1.0, 2016-01-01

bzip2 1.0.6, 2010-09-06

cmix 17, 2019-03-24

gzip 1.6, 2013-06-09

lizard 1.0.0, 2019-03-08

lz4 1.9.1, 2019-04-24

lzop 1.04, 2017-08-10

lzturbo 1.2, 2014-08-11

nakamichi 2020-May-09

pbzip2 1.1.13, 2015-12-18

pigz 2.4, 2017-12-26

snzip 1.0.4, 2016-10-02

xz 5.2.2, 2015-09-29

zpaq 7.15, 2016-08-17

zpipe 2.01, 2010-12-23

zstd 1.4.5, 2020-05-22

Table 2. Test datasets

A) Genome sequence datasets

Category Organism Accession Size

Virus Gordonia phage GAL1 [60] GCF_001884535.1 50.7 kB

Bacteria WS1 bacterium JGI 0000059-K21 [59] GCA_000398605.1 522 kB

Protist Astrammina rara [59] GCA_000211355.2 1.71 MB

Fungus Nosema ceranae [59] GCA_000988165.1 5.81 MB

Protist Cryptosporidium parvum Iowa II [59] GCA_000165345.1 9.22 MB

Protist Spironucleus salmonicida [59] GCA_000497125.1 13.1 MB

Protist Tieghemostelium lacteum [59] GCA_001606155.1 23.7 MB

Fungus Fusarium graminearum PH-1 [60] GCF_000240135.3 36.9 MB

Protist Salpingoeca rosetta [59] GCA_000188695.1 56.2 MB

Algae Chondrus crispus [59] GCA_000350225.2 106 MB

Algae Kappaphycus alvarezii [59] GCA_002205965.2 341 MB

Animal Strongylocentrotus purpuratus [60] GCF_000002235.4 1.01 GB

Plant Picea abies [59] GCA_900067695.1 13.4 GB

B) Other DNA datasets

Dataset
Number of

sequences
Size Source Date

Mitochondrion [60] 9,402 245 MB

RefSeq FTP:

ftp://ftp.ncbi.nlm.nih.gov/refseq/release/

mitochondrion/mitochondrion.1.1.genomic.fna.gz

ftp://ftp.ncbi.nlm.nih.gov/refseq/release/

mitochondrion/mitochondrion.2.1.genomic.fna.gz

2019-03-15

NCBI Virus

Complete

Nucleotide Human

[61]

36,745 482 MB
NCBI Virus:

https://www.ncbi.nlm.nih.gov/labs/virus/vssi/
2020-05-11

Influenza [62] 700,001 1.22 GB

Influenza Virus Database:

ftp://ftp.ncbi.nih.gov/genomes/INFLUENZA/

influenza.fna.gz

2019-04-27

Helicobacter [59] 108,292 2.76 GB
NCBI Assembly:

https://www.ncbi.nlm.nih.gov/assembly
2019-04-24

C) RNA datasets

Dataset
Number of

sequences
Size Source Date

SILVA 132

LSURef [63]
198,843 610 MB

Silva database:

https://ftp.arb-silva.de/release_132/Exports/

SILVA_132_LSURef_tax_silva.fasta.gz

2017-12-11

SILVA 132

SSURef Nr99

[63]

695,171 1.11 GB

Silva database:

https://ftp.arb-silva.de/release_132/Exports/

SILVA_132_SSURef_Nr99_tax_silva.fasta.gz

2017-12-11

SILVA 132

SSURef [63]
2,090,668 3.28 GB

Silva database:

https://ftp.arb-silva.de/release_132/Exports/

SILVA_132_SSURef_tax_silva.fasta.gz

2017-12-11

D) Multiple DNA sequence alignments

Dataset
Number of

sequences
Size Source Date

UCSC hg38 7way

knownCanonical-exonNuc

[64]

1,470,154 340 MB

UCSC:

https://hgdownload.soe.ucsc.edu/

goldenPath/hg38/multiz7way/alignments/

knownCanonical.exonNuc.fa.gz

2014-06-06

UCSC hg38 20way

knownCanonical-exonNuc

[64]

4,211,940 969 MB

UCSC:

https://hgdownload.soe.ucsc.edu/

goldenPath/hg38/multiz20way/alignments/

knownCanonical.exonNuc.fa.gz

2015-06-30

E) Protein datasets

Dataset

Number

of

sequences

Size Source Date

PDB [65] 109,914 67.6 MB
PDB database FTP:

ftp://ftp.ncbi.nih.gov/blast/db/FASTA/pdbaa.gz
2019-04-09

Homo sapiens

GRCh38 [66]
105,961 73.2 MB

NCBI FTP:

ftp://ftp.ensembl.org/

pub/release-96/fasta/homo_sapiens/pep/

Homo_sapiens.GRCh38.pep.all.fa.gz

2019-03-12

NCBI Virus RefSeq

Protein [61]
373,332 122 MB

NCBI Virus:

https://www.ncbi.nlm.nih.gov/labs/virus/vssi/
2020-05-10

UniProtKB

Reviewed (Swiss-

Prot) [67]

560,118 277 MB

UniProt FTP:

ftp://ftp.uniprot.org/

pub/databases/uniprot/current_release/

knowledgebase/complete/uniprot_sprot.fasta.gz

2019-04-02

fas
tqz
-slo
w
ala
py-
b
mfc
-3
lfqc
-4t dlim

spr
ing
-s-
1t

gtz
-9-
4t

har
c-1
t
naf
-22

zpa
q-5
-4t

fqz
com

p-7

bcm
-b2
047 qui

p

bsc
-b1
024
cfe
2

lztu
rbo
-49
-1t

zpi
pe-
3

bee
tl-b
500
-z…

bro
tli-1
1w
30

kic
-2-
8-4
t
xz-
e9

dsr
c-m
2-4
t

zst
d-2
2-4
t

leo
n-3
1
pfis
h
nuh
t

bzi
p2-
9

pbz
ip2
-9-
4t

liza
rd-
49

pig
z-1
1-4
t

brie
flz-
9-3
60… 2bi

t
gzi
p-9 bla

st
lzo
p-9 lz4

-9
snz
ip

cop
y-c
at

0

1

2

3

4

5

6

naf
-22

lztu
rbo
-49
-1t

zst
d-1
9-4
t

liza
rd-
49

bro
tli-1
1w
30

pbz
ip2
-7-
4t

pig
z-1
1-1
t

bsc
-b1
6cf
e1

zpa
q-2
-1t

gtz
-1-
4t

brie
flz-
9-3
60… 2bi

t

dsr
c-m
1-4
t
gzi
p-9 xz-

e7 lz4
-9
lzo
p-9

fas
tqz
-fa
st

spr
ing
-s-
4t

leo
n-3
0
bla
st
snz
ip
pfis
h

fqz
com

p-1
bzi
p2-
1
har
c-4
t

kic
-0-
4t dlim qui

p

cop
y-c
at
mfc
-1
ala
py-
f

bcm
-b1
6
zpi
pe-
1

bee
tl-b
50-
zst
… nuh

t
lfqc
-4t

0

10

20

30

40

50

60

naf
-1

zst
d-1
-4t

lztu
rbo
-30
-4t
bro
tli-0

pig
z-4
-4t

gtz
-1-
4t

dsr
c-m
1-4
t

liza
rd-
40 2bi

t

zpa
q-1
-4t

brie
flz-
1

pbz
ip2
-2-
4t
lzo
p-1 lz4

-2
gzi
p-2

fas
tqz
-fa
st
snz
ip
leo
n-1
2
pfis
h

fqz
com

p-1 bla
st

cop
y-c
at xz-

0
bzi
p2-
1
qui
p

bsc
-b1
6cf
e1 dlim

ala
py-
f
mfc
-1

spr
ing
-l-4
t

har
c-4
t

bcm
-b1
6

bee
tl-b
50-
zst
1
zpi
pe-
1
kic
-0-
4t nuh

t
lfqc
-4t

0

10

20

30

40

50

Figure 1 Click here to access/download;Figure;Fig1.pdf

https://www.editorialmanager.com/giga/download.aspx?id=98446&guid=975fe8a4-d076-4b88-87b6-2cb11e2f113e&scheme=1
https://www.editorialmanager.com/giga/download.aspx?id=98446&guid=975fe8a4-d076-4b88-87b6-2cb11e2f113e&scheme=1

0 10 20 30 40 50 60
0

5

10

15

20

25

30

35

40

45
Figure 2 Click here to access/download;Figure;Fig2.pdf

https://www.editorialmanager.com/giga/download.aspx?id=98447&guid=d487842e-d6fa-4702-b5dd-b40175b55f9f&scheme=1
https://www.editorialmanager.com/giga/download.aspx?id=98447&guid=d487842e-d6fa-4702-b5dd-b40175b55f9f&scheme=1

A B

0.50 0.75 1.00 1.25 1.50 1.75 2.00

1

2

3

4

5

6

7

8

9

0.6 0.8 1.0 1.2 1.4

1

2

3

4

5

6

7

8

9

10 2bit

blast

brieflz-1

brotli-0

dsrc-m0-4t

fastqz-fast

gtz-1-4t

gzip-2

lizard-40

lz4-1

lzop-1

lzturbo-30-4t

naf-1

pbzip2-2-4t

pigz-4-4t

snzip

zpaq-1-4t

zstd-1-4t

Figure 3 Click here to access/download;Figure;Fig3.pdf

https://www.editorialmanager.com/giga/download.aspx?id=98448&guid=80972236-5830-4fd5-bb74-acc223832e69&scheme=1
https://www.editorialmanager.com/giga/download.aspx?id=98448&guid=80972236-5830-4fd5-bb74-acc223832e69&scheme=1

A B

0.1 1 10 100 1,000 10,000
0.1

0.5

1

5

10

50

100

500

1,000

5,000

10,000

50,000

100,000

0.1 1 10 100 1,000 10,000
0.05

0.1

0.5

1

5

10

50

100

500

1,000

5,000

10,000

50,000

100,000
2bit

ac-seq-7

alapy-b

bcm-b2047

beetl-b500-zst22

blast

brieflz-9-3600m

brotli-11w30

bsc-b1024cfe2

bzip2-9

cmix

copy-cat

dcom-22

dlim

dnax-3

dsrc-m2-4t

fastqz-slow

fqs-1t

fqzcomp-8

geco2-14

gtz-9-4t

gzip-9

harc-1t

jarvis-4

kic-2-8-4t

leon-28

lfastqc

lfqc-4t

lizard-49

lz4-9

lzop-9

lzturbo-49-1t

mfc-3

minicom-4t

naf-22

nakamichi

nuht

pbzip2-9-4t

pfish

pigz-11-4t

quip

snzip

spring-s-1t

uht

xm-12-0.15

xz-e9

zpaq-5-4t

zpipe-3

zstd-22-4t

Figure 4 Click here to access/download;Figure;Fig4.pdf

https://www.editorialmanager.com/giga/download.aspx?id=98449&guid=28c14d6c-e1b3-4354-a02d-bdf0eb87e71f&scheme=1
https://www.editorialmanager.com/giga/download.aspx?id=98449&guid=28c14d6c-e1b3-4354-a02d-bdf0eb87e71f&scheme=1

Supplementary Data

Click here to access/download
Supplementary Material
Supplementary-Data.csv

https://www.editorialmanager.com/giga/download.aspx?id=98450&guid=6d6a10b0-b831-48c4-bfe9-a0445a5ae6f7&scheme=1

