SUPPLEMENTARY MATERIAL

The role of *Lactobacillus reuteri* Cell and Mucus Binding protein A (CmbA) in adhesion to intestinal epithelial cells and mucus *in vitro*

Hanne Jensen, Stefan Roos, Hans Jonsson, Ida Rud, Stine Grimmer, Jan-Peter van Pijkeren,

Robert A. Britton, Lars Axelsson*

Journal: Microbiology

* Corresponding author
Address: Nofima - Norwegian Institute of Food, Fisheries, and Aquaculture Research, P.O.
Box 210, NO-1431 Ås, Norway
Email: lars.axelsson@nofima.no

Supplementary material, Figure S1

aaqqataattctaaaqqtctacttqqaataattqatcatttacaqqcqqtaaaqtaqaat qaaagtgttaaaaaataaattttgtttaaattttaaggcttgtatttaggagggttaata 1 ΑΤG**C**ΤΑΤCΑΑGAAAAAATTATAAGGAAACTATACGAAAACAGACACCTACAAAACAGTAC 60 1 M L S R K N Y K E T I R K Q T P T K Q Y 20 61 TATACTATTAAGAAATTAACTGTTGGGGTTACTTCGGTATTAATTGGTCTATCCTTTATG 120 21 Y T I K K L T V G V T S V L I G L S F M 40 YSIRK-G/S type signal sequence 41 G E L E G D S V H A D T M T A S S E S T 60 cleavage ↑ 181 AGTGTTACGTCGACGACTGCTCAGGATGGTTTAAAAAAATCTCCACAACTCTATTTGCAA 240 61 S V T S T T A Q D G L K K S P Q L Y L Q 80 241 GTTACTGATACAAATAACCCAAGTACACCATTAAGTGCTTCATCCACAGGGACTAGTAAG 300 81 V T D T N N P S T P L S A S S T G T S K 100 301 AATGTTACCTCATCAGCTGCGGTACAAGTGAAGTCCGCTAGTGATGAAGAAGATAGTGAT 360 101 N V T S S A A V Q V K S A S D E E D S D 120 361 TCTACACTAGCTAAGGGAGAAAATAAATTTGCTCGGTCAGCAGTAAAAGATTCAGTCACT 420 121 S T L A K G E N K F A R S A V K D S V T 140 421 GATGGGAAAACAAGTACAGCAGAAATTAATCCGGCAAAATTAAGCAGTCCTGCTTTAATA 480 141 D G K T S T A E I N P A K L S S P A L I 160 481 ACGCAACTCAACCAATCCTTAGCTAAGAGCAGTACGAGTGATGCAGCAAAAGCTAATGAT 540 161 T Q L N Q S L A K S S T S D A A K A N D 180 541 GAGTTAGAAATTAAAGCAACAGATCCGACTAATTATCCAAACTGTGGCGATGTGTATGGG 600 181 E L E I K A T D P T N Y P N C G D V Y G 200 601 CCATTATTTGAATTGGATGCTAGCGGACAGCTTGTTAATAAAGATGAAGTTATATCTCTT 660 201 P L F E L D A S G Q L V N K D E V I S L 220 661 ΑΑΑGATATGTATATTTTCCAAATATTGAAATTAGTAAATACAAAAGATAGTGACTTTCAA 720 221 K D M Y I F Q I L K L V N T K D S D F Q 240 721 TATGTAATATTAACAATGAATCGTAAAGATACTGCAGATAGGTCTGTATATCTTTTTGTA 780 241 Y V I L T M N R K D T A D R S V Y L F V 260 781 ACTGGAAGCAATTATAGTAATGCTGTTGTTGTTGTTAAAGTAAAGCCAAATGATACTTATGAA 840 261 T G S N Y S N A V V V K V K P N D T Y E 280 841 TTAAGTAAAACTGGATATAGTGTTACTTATACAGAACCAACAACTATAAATGGACATTAT 900 281 L S K T G Y S V T Y T E P T T I N G H Y 300 901 GTTGATGGAACTTTTTATGTTACAGGAAGTACTTACGATGATGGTTTTATAATGCCAGAT 960 301 V D G T F Y V T G S T Y D D G F I M P D 320 961 TGGCAACTGCAGCACCTTCAGATTATATATAGTTTAGGAAATTATGATCCAAGCAATACT 1020 321 W Q L Q H L Q I I Y S L G N Y D P S N T 340 1021 GACGCAACATCAGTTTGTGAAATAATGCCAAGTTATGAAAAGGTACCGGTAATTAAATAT 1080 341 D A T S V C E I M P S Y E K V P V I K Y 360 1081 AGTGGAGTACCTTCAAATATTAGCCAACCTAAGGTTTACATTACCGGGTTTACGGGTCAA 1140 361 S G V P S N I S Q P K V Y I T G F T G Q 380 1141 GAGTTTAACGTTACAGATATTATTAACAATTATAAGAAAGTTTTTAAGGGCTACTATCTT 1200 381 E F N V T D I I N N Y K K V F K G Y Y L 400

1201	CAAAATCCTAATGTGGCGTC \mathbf{C} ATGGGAACTCTTTCCCAATTTGAGAATGGTGGTTATTA	C 1260
401	Q N P N V A S M G T L S Q F E N G G Y Y	420
1261	TTAAAGACATATTATGATAATGATGGTAATGTTGACTTTAAGGGCTTGTATCATCAAAT	T 1320
421	L K T Y Y D N D G N V D F K G L Y H Q I	440
1321 441	GATGATCAGGGAACAATGAGTGTGAGTGTTCTTAATGCAGATAATAAAACAATTGTTGG D D Q G T M S V S V L N A D N K T I V G	A 1380 460
1381	CCTGAAAATATTCTTGCTGGTAAATCGCATAACTTTAACTTTAATGGTCATAACTGGAT	T 1440
461	P E N I L A G K S H N F N F N G H N W I	480
1441	GCGCGGAATCCTTATGTCACTAGTTCAGCTCACGAAGTCATATTAAAGTATGCTAAGTT	A 1500
481	A R N P Y V T S S A H E V I L K Y A K L	500
1501 501	GGTTCAGTTATTCCTGTTGATGAAAACGGAAATAAAATA	T 1560 520
1561	AATGATCCAGATGATGCTTCCAAAGCCACTAGCCCATATGAAAAAGCGCCAGTTATCGA	T 1620
521	N D P D D A S K A T S P Y E K A P V I D	540
1621	GGTTATGTAGCTGTAAATCCAGATGAAACGATCGTTCTTCCTCATAACTTAAGTAGTGA	C 1680
541	G Y V A V N P D E T I V L P H N L S S D	560
1681 561	ACAAAGATTTATTACCGAAAGAGGATTAAAGTTACCTATAGTGGTAGTGACAGCAAGAC T K I Y Y R K R I K V T Y S G S D S K T repeat $1 \rightarrow$	C 1740 580
1741	TACGATGGTAACCCAGCTAACTTCGAGCCAACGACAGTTCAGTGGAGTGGCTTGAAAGG	A 1800
581	Y D G N P A N F E P T T V O W S G L K G	600
1801	CTGAACACTTCAACCTTAACGTCCGCTGACTTCACGTGGAATACTGCGGATAAGAAGGC	A 1860
601	L N T S T L T S A D F T W N T A D K K A	620
1861	CCAACGGATGCCGGTAAGTACACACTTAGTTTGAATACGACCGGAGAAGCAGCCTTACG	T 1920
621	P T D A G K Y T L S L N T T G E A A L R	640
1921	AAGGCTAACCCGAACTATGATCTCAAGACAATTAGCGGTAGTTACACCTACACGATTAA	T 1980
641	K A N P N Y D L K T I S G S Y T Y T I N	660
1981	CCACTAGGGATTGATAAAGTTACCTATAGTGGTAGTGACAGCAAGACCTACGATGGTAA	C 2040
661	<u>P_L_G_I_</u> D_ <u>K_V_T_Y_S_G_S_D_S_K_T_Y_D_G_N</u>	680
2041	CCAGCTAACTTCGAGCCAACGACAGTTCAGTGGAGTGGCTTGAAAGGACTGAACACTTC	A 2100
681	P A N F E P T T V Q W S G L K G L N T S	~ 700
2101	ACCTTAACGTCCGCTGACTTCACGTGGAATACTGCGGATAAGAAGGCACCAACGGATGC	C 2160
701	TLTSAD_FTWNTADKKAPTDA	720
2161	GGTAAGTACACACTTAGTTTGAATACGACCGGAGAAGCAGCCTTACGTAAGGCTAACCC	G 2220
721	GK.Y.T.L.S.L.N.T.T.G.E.A.A.L.R.K.A.N.P	740
2221	AACTATGATCTCAAGACAATTAGCGGTAGTTACACCTACACGATTAATCCACTAGGGAT	T 2280
741	NYDLKTISGSYTYTINPLGI	760
2281	GATAAAGTTACCTATAGTGGTAGTGACAGCAAGACCTACGATGGTAACCCAGCTAACTT	C 2340
761	D <u>K V T Y S G S D S K T Y D G N P A N F</u>	780
2341	GAGCCAACGACAGTTCAGTGGAGTGGCTTGAAAGGACTGAACACTTCAACCTTAACGTC	C 2400
781	E P T T V O W S G L K G L N T S T L T S	800
2401	GCTGACTTCACGTGGAATACTGCGGATAAGAAGGCACCAACGGATGCCGGTAAGTACAC	A 2460
801	<u>A D F T W N T A D K K A P T D A G K Y T</u>	820
2461	CTTAGTTTGAATACGACCGGAGAAGCAGCCTTACGTAAGGCTAACCCGAACTATGATCT	C 2520
821	L S L N T T G E A A L R K A N P N Y D L	840
2521	AAGACAATTAGCGGTAGTTACCCCTACGACTAATCCACTAGGGATTGTGACTGTAAA	T 2580
841	<u>K T I S G S Y T Y T I N P L G I</u> V T V N	860

2581 TACAAGGGCTATGATAAGAAAGTCTATGATGGTCAACCTGGAACGATTAATCCGGGTAAA 2640 861 Y K G Y D K K V Y D G Q P G T I N P G K 880 2641 TTAACGTGGAGTAAGTTGCCAGATGGTACTTCATTGAAGATGCCAACATGGAGTATAGAT 2700 881 L T W S K L P D G T S L K M P T W S I D 900 2701 GATTTCGCTTGGGAAACAGCTGATGGCTTAGCACCAACGGCAGTAGGAACTTATCGGATT 2760 901 D F A W E T A D G L A P T A V G T Y R I 920 2761 ATCTTGACGGATGCTGGTAAGGCTGCACTAAAGAAGATTAATCCAAATTATGACTTAAGC 2820 921 I L T D A G K A A L K K I N P N Y D L S 940 2821 AGTATTACTGGTGTCTTTACTTATGAAATTAAGCCAGCACAGAACACCAGAAATCTTAGGC 2880 941 S I T G V F T Y E I K P A Q T P E I L G 960 961 Q T P E Q Q P G Q N T N Q S G A E N G F 980 2941 GGTTCTTCTACAAGGCCTAATGCATCAACTAACTCCAATCTTAATCAACTTCCACAGACT 3000 981 G S S T R P N A S T N S N L N Q <u>L P Q T</u> 1000 3001 GGTAATGAGCATTCTAATACTGCACTTGCTGGTCTAGCATTGGCTTTCTTGACTGCTATG 3060 1001 <u>G</u> N E H S N T <u>A L A G L A L A F L T A M</u> 1020 3061 CTTGGTTTGGGCAAGAAGCGTAAACATGATTAGttattctaaagcttagtagattttaaa 3090 1030 1021 <u>L G L G K K R K H D</u> agctatgtagtgtttcgtaattgtttgagaaagagattagtgcttcgtcaagaagtactg atgagaaaatagaataagttttcaagca<math>gctcqtqtctqqaatttqqcatqaqctqttct

Fig S1. Nucleotide sequence and the deduced amino acid sequence of *cmbA* based on the draft genome sequence of *L. reuteri* ATCC PTA 6475 (GenBank: ACGX02000000). Features of the sequence are indicated as follows: underlined nucleotide sequence: putative promoter sequence (last nucleotide, position -60, predicted transcription start) and a predicted transcription termination sequence; dotted underlined nucleotide sequence: consensus Shine Dalgarno sequence; nucleotides in bold at positions 4 and 1221: these Cs were changed to Gs in the cloned gene to introduce and remove *Nco*I sites, respectively (see main text for details); amino acid sequence in bold: YSIRK-G/S like motif in signal sequence; underlined amino acid sequence: membrane spanning domain; double underlined amino acid sequence: positively charged tail (membrane anchoring). The signal sequence and the tandem repeats are indicated under the amino acid sequence. Greyed out region represents the sequence missing in the cloned *cmbA* obtained in this study.

(Promoter predicted by: Neural Network Promoter Prediction,

http://www.fruitfly.org/seq_tools/promoter.html; Transcription terminator predicted by:

ARNold, http://rna.igmors.u-psud.fr/toolbox/arnold/; Signal sequence predicted by: SignalP

4.1 Server, http://www.cbs.dtu.dk/services/SignalP/)

Supplementary material, Table S1

Mutagenesis scheme for putative surface protein genes and sortase gene in *L. reuteri* 6475. All mutations were done by creating a stop codon early in the genes (leading to truncated proteins of a size 15% or less of the full proteins). The sites for the mutations were generally chosen based on the ease of creating a suitable restriction site used in the screening. Mutants were verified with sequencing. For details of the procedure, see van Pijkeren & Britton (2012).

Locus tag	Designation	Amino acid	Recombineering oligo ^a	Screen oligo#1	Screen oligo#2	Screen oligo#3
HMPREF0536		change	(5' -> 3')	(5' -> 3')	(5' -> 3')	(5' -> 3')
10633	cmbA	(I35X), (G36I)	tactattaagaaattaactgttggggt	gcaaactcaaaatat	ctagttctcccataa	NA ^b
			tacttcggtatta TGAAT tctatcctt	gaagaagctatagaa	aggatagaattca	
			tatgggagaactagaaggggatagcgt			
			tcatgcgga			
10255	srtA	(V26X)	tccctactaagtaagacttaatctgtt	ttgtactgttactgg	actttacaaaatcag	atcgattaataccat
			ggttaaaaattaa CTA aactgatacca	tatcagtttag	aaaacatttgcgt	tggagcaattac
			gtaacagtacaacaaccgctgtccacc			
			gt			
10146	10146	(A88X), (D89I)	tctttcgtttgtttaacttgattctta	aacgaatgggattaa	attcttattagaatc	NA
			ttagaatcgacattttga ATTCA gtct	agattagtttcaatg	gacattttgaattca	
			gccaaattttgattagcaatattaaga			
			tcattattt			
11993	11993	(Y51X), (A52I)	gattgcaattgtgcaagttgctgatca	gttgcaagagatgct	caagtaagtaatgac	cgtgggaacaggttt
			gcagttgcccgaacttg AATTC aagta	tcagcattttt	caagttacttgaatt	gaaaaaatttaaatt
			acttggtcattacttacttgtgcatta			
			ttttgacta			
10154	10154	(Y70X), (Q71A),	ccatgcaggtcattgattcctaaaatc	tgggatattaacggt	taaaatctgaactgg	agtatggttgcattc
		(N72Y)	tgaactggaatgtcat AAGCT tatttg	gagtggtaaat	aatgtcataagct	caaatgggatt
			gctaggtcagaccaatcagtagtcgtt			
			tgcggagta			
10802	10802	(D73E), (Q74A),	attttttgatatgtatcattaactaac	acaagacaaaatgga	ttcttaaggaaccac	NA
		(Q75X)	tgttgactatcgattt AAGCT tcttta	ttgctatgtgg	cagcatcattt	
			acttgttgtgcagttacaagagctgat			
			tgattttca			

Table S1. Mutation of putative surface protein genes and sortase gene in *L. reuteri* 6475.

^a mutated bases are in bold uppercase; ^b NA, not applicable

Supplementary material, Table S2

Name	Direction	Oligonucleotide primer sequence
Primers used for cl	oning of cmbA	
cmbA-f1	Forward start	5'-ATGCACCATGGTATCAAGAAAAAATTATAAGGAAAC-3'
cmbA-f2	Forward middle	5'- ATCTTCAAAATCCTAATGTGGCGTCGATGGGAACTCTTTCCCA ATTTG-3'
cmbA-r1	Reverse middle	5'-GACGCCACATTAGGATTTTGA-3'
cmbA-r2	Reverse end	5'-ATGCATCTAGACTAATCATGTTTACGCTTC-3'
Destance and a fam.	· · · · · · · · · · · · · · · · · · ·	
cmbA-seqf1	Forward (1)	5'-CTCCACAACTCTATTTGCAA-3'
cmbA-seqf2	Forward (2)	5'-GTGACTTTCAATATGTAATATTAA-3'
cmbA-seqf3	Forward (3)	5'-GTCGATGGGAACTCTTTCC- 3'
cmbA-seqf4	Forward (4)	5'-GGGCTATGATAAGAAAGTCTA-3'
cmbA-seqr3	Reverse	5'CGTTCCAGGTTGACCATCA-3'
Sip3	pSIP411 forward	5'-GTCTAAGGAATTGTCAGATAGGC-3'
Sip16	pSIP411 reverse	5'-ATTAGTCTCGGACATTCTGC-3'
Primar/Prohausad	for real-time PCR	
CmbA (lar_0958)	Forward	5'-ATCCAAACTGTGGCGATGTG-3'
CmbA (lar_0958)	Reverse	5'-AAGCTGTCCGCTAGCATCCA-3'
CmbA (lar_0958)	Probe ¹	6FAM-ATGGGCCATTATTTG-MGBNFQ
SecY (lr_0469)	Forward	5'-CCGCGTTTTGTTGAATGGA-3'
SecY (lr_0469)	Reverse	5'-TCGGGTTGCTTGATTAAGTTTTC-3'
SecY (lr_0469)	Probe ¹	6FAM-TAAACAAGGAGAAGTAGGACGG-MGBNFQ

Table S2. Primer/probes used in this study

¹Taq probes, 6-FAM (6-carboxyfluorescein), MGB (6-carboxytetramethylrhodamine).

Supplementary material, Table S3

Strain	Fold change ^a Mean	Fold change ^a SD
6475(pSIP- $cmbA$) vs 6475(pSIP Δ) ^b	355.9	88.2
6475 $cmbA^{-}(pSIP-cmbA)$ vs 6475 $cmbA^{-}(pSIP\Delta)^{b}$	456.2	179.2
6475 <i>cmbA</i> ⁻ (pSIP- <i>cmbA</i>) vs 6475(pSIP- <i>cmbA</i>) ^b	0.9	0.1

Table S3. Expression of *cmbA* (qRT-PCR)

^aFold change in *cmbA* expression was calculated by the $\Delta\Delta C_{T}$ method (2^{- $\Delta\Delta CT$}). The presented values are mean±SD from two independent experiments.

^bComparison of SppIP induced cultures

Quantitative real-time reverse transcription PCR of *cmbA* expression

cmbA gene expression was determined by quantitative real-time reverse transcription PCR (qRT-PCR) in samples from Caco-2 adhesion assay to determine chromosomal and vector expression of *cmbA*. At the start of the Caco-2 adhesion experiments, an aliquot of the bacteria culture was mixed with RNA protect Bacteria Reagent (Qiagen) and frozen at -80 °C until RNA isolation. Purification and extraction of total RNA was done using the RNeasy Mini kit (Qiagen) according to manufacturer's instructions. NanoDrop was used to test the quality of RNA, and only samples with satisfactory quality were used for qRT-PCR. The qRT-PCR was performed as described previously (Rode *et al.*, 2007) using primers and Taqman® probes designed with Primer Express® Software v3.0 (Applied Biosystem) (primer and probes are listed in Table S1). The target site of the *cmbA* primer and probe set was upstream of the *cmbA* nonsense mutation. Relative gene expression was calculated by the ΔC_T method, using *secY* as the endogenous reference gene (Wall *et al.*, 2007). There was no difference in the amplification efficiencies of *cmbA* and *secY*. Fold change in gene expression was calculated using the $\Delta\Delta C_T$ method (2^{-AACT}) (Livak & Schmittgen, 2001).

References

Livak, K. J. & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. *Methods* 25, 402-408.

Rode, T. M., Langsrud, S., Holck, A. & Moretro, T. (2007). Different patterns of biofilm formation in *Staphylococcus aureus* under food-related stress conditions. *Int J Food Microbiol* **116**, 372-383.

van Pijkeren, J. P. & Britton, R. A. (2012). High efficiency recombineering in lactic acid bacteria. *Nucl Acids Res* 40, e76.

Wall, T., Bath, K., Britton, R. A., Jonsson, H., Versalovic, J. & Roos, S. (2007). The early response to acid shock in *Lactobacillus reuteri* involves the ClpL chaperone and a putative cell wall-altering esterase. *Appl Environ Microbiol* **73**, 3924-3935.