The impact of *Spodoptera exigua* herbivory on *Meloidogyne incognita* induced root responses depends on the nematodes' life cycle stages Crispus M. Mbaluto^{1,4}, Esraa M. Ahmad², Melody Fu³, Ainhoa Martínez-Medina^{1,5}, Nicole M. van Dam^{1,4*}

Supporting Information

Figure S1 the number of root galls counted in tomato plants roots upon root infection by *Meloidogyne incognita*. Average number of root galls counted in tomato roots infected with *Meloidogyne incognita* (Mi) or co-infected with both shoot herbivore *Spodoptera exigua* (Se) and *M. incognita* (MiSe). Roots were harvested at the nematodes' invasion (A), galling (B), and reproduction (C) stages. Data are the mean \pm standard error (*n*=10).

Table S1 List of primers sequences used for qPCR

Target gene	Hormone pathway	Primer orientation	Primer sequences (5'-3')			
Linomaga D (LorD)		Forward	GGCTTTATTTCACACAGAGATA			
Lipoxygenuse D (LoxD)*	Jacmania agid (IA)	Reverse	ATGTGCTGCCAATATAAATGGTTCC			
Louine aminepentidase (Lan 1)b	Jasmonic acid (JA)	Forward	ATCTCAGGTTTCCTGGTGGAAGGA			
Leucine aminopepilaase (LapA) ²		Reverse	AGTTGCTATGGCAGAGGCAGAG			
Pagia R 1.2 aluganaga (ChuP)	Ethylong (ET)	Forward	CCATCACAGGGTTCATTTAGG			
Basic-p-1,3-giucanase (GiuB)	Eurylene (ET)	Reverse	CCATCCACTCTCTGACACAACT			
Abscisic acid-responsive (Le4) ^c	Abagisia agid (ADA)	Forward	ACTCAAGGCATGGGTACTGG			
	Abscisic acid (ABA)	Reverse	CCTTCTTTCTCCTCCCACCT			
Jasmonic-responsive ETHYLENE	coordinate transcription of	Forward	TGTTTCCTCCGGTGTTACGG			
RESPONSE FACTOR (ERF)	metabolic genes in steroidal	Dovorso	CGATTTTTTCGAAACTCTTTCC			
transcription factor (JRE4) ^d	glycoalkaloids biosynthesis	Kevelse				
CI VCO ALKALOID METABOLISM 1	convert acetyl-coenzyme A	Forward	TTGCCGGATGTTCCATGATCG			
(GAME1) ^d	(<i>acetyl</i> -CoA) to steroidal glycoalkaloids	Reverse	CTAATGAAGAAACAGCGTCCTGG			
SHEE VI 4440 (House boosting comp)	Elengation factor 1 g	Forward	GATTGGTGGTATTGGAACTGTC			
SIEF X14449 (Housekeeping gene)	Elongation factor-1a	Reverse	AGCTTCGTGGTGCATCTC			

^aUppalapati et al. (2005); ^bYan et al. (2013); ^cMartínez-Medina et al. (2013); ^dAbdelkareem et al. (2017)

Table S2 Permutational Multiple Analysis of Variance (PERMANOVA) results based on Gower dissimilarities on phytohormone and α-tomatine data for herbivory effects of *Meloidogyne incognita* root-knot nematodes (RKN) and the caterpillars of *Spodoptera exigua*. Root samples were collected from tomato plants infected with *M. incognita* at different life cycle stages. At the same time, root materials were collected from control and *S. exigua* infested plants. The single and interactive effects of *M. incognita* and *S. exigua* feeding on jasmonic acid, salicylic acid, and abscisic acid were determined via a MANOVA model with *M. incognita* infection (Mi), *S. exigua* feeding (Se) and their interaction (Mi*Se) as the explanatory variables.

Plant traits	Source of variation	Df	Sum Sq	Mean Sq	Pseudo-F	R ²	P-value
	a). Invasion						
	Mi	1,16	0.04641	0.046407	1.52991	0.07675	0.235
	Se	1,16	0.06159	0.061591	2.03046	0.10186	0.135
	Mi*Se	1,16	0.01133	0.011327	0.37341	0.01873	0.812
	b) Galling						
IA SA ADA a tomotino	Mi	1,16	0.09426	0.094260	2.28677	0.11185	0.092
JA, SA, ABA, α-tomatine	Se	1,16	0.08055	0.080552	1.95422	0.09559	0.140
	Mi*Se	1,16	0.00838	0.008379	0.20328	0.00994	0.881
	c) Reproduction						
	Mi	1,16	0.89807	0.89807	36.717	0.63148	0.001
	Se	1,16	0.12972	0.12972	5.303	0.09121	0.027
	Mi*Se	1,16	0.00304	0.00304	0.124	0.00214	0.786

 $^{\$}$ JA, jasmonic acid; SA, salicylic acid; ABA, abscisic acid; D.f., degree of freedom; Sum Sq; sum of squares; Mean Sq, mean of squares; Pseudo-F, F values by permutation; P, in boldface indicates statistical significance with *p* < 0.005; P- values based on 999 permutations (lowest P-value possible 0.001)

Table S3 Two-way factorial Analysis of Variance (ANOVA) results on phytohormone and *α***-tomatine for the herbivory effects of** *Meloidogyne incognita* **root-knot nematode (RKN) and the caterpillars of** *Spodoptera exigua*. Root samples were collected from tomato plants infected with *M. incognita* at different life cycle stages. At the same time, root materials were collected from control and *S. exigua* infested plants. The impact of single and interactive effects of *M. incognita* and *S. exigua* feeding on jasmonic acid, salicylic acid, and abscisic acid were analyzed using linear models with *M. incognita* infection (Mi), *S. exigua* feeding (Se) and their interaction (Mi*Se) as the explanatory variables.

Hormone	Source of variation	Invasion			Galling			Reproduction		
		Df	F	Р	Df	F	Р	Df	F	Р
JA	Mi	1,16	2.4379	0.1380	1,16	7.2298	0.0161	1,16	9.8473	0.0064
	Se	1,16	0.8640	0.3664	1,16	0.0101	0.9211	1,16	7.7380	0.0133
	Mi*Se	1,16	0.0843	0.7753	1,16	0.0208	0.8871	1,16	3.2416	0.0907
SA	Mi	1,16	0.0032	0.9557	1,16	0.3885	0.5419	1,16	24.3945	0.0001
	Se	1,16	1.0879	0.3125	1,16	2.1073	0.1659	1,16	2.3594	0.1441
	Mi*Se	1,16	0.2350	0.6344	1,16	1.5067	0.2374	1,16	0.7271	0.4064
	Mi	1,16	1.2494	0.2802	1,16	1.3632	0.2601	1,16	64.8805	5.07e-07
ABA	Se	1,16	1.0846	0.3132	1,16	2.3191	0.1473	1,16	1.4077	0.2528
	Mi*Se	1,16	1.1625	0.2969	1,16	0.0942	0.7629	1,16	0.3680	0.5526
a-tomatine	Mi	1,16	0.4026	0.5347	1,16	0.6014	0.4493	1,16	44.5357	5.35e-06
	Se	1,16	2.4654	0.1359	1,16	1.0287	0.3256	1,16	5.3249	0.0347
	Mi*Se	1,16	2.1021	0.1664	1,16	0.0058	0.9405	1,16	0.7079	0.4125

[§] JA, jasmonic acid; SA, salicylic acid; ABA, abscisic acid; dpi, day post nematode inoculation; Df, degree of freedom; F, F test value; P, P-value, in boldface indicate significant different $p \le 0.05$

Table S4 Permutational Multiple Analysis of Variance (PERMANOVA) results based on Gower dissimilarities on gene expression data for herbivory effects of *Meloidogyne incognita* root-knot nematode (RKN) and the caterpillars of *Spodoptera exigua*. Root samples were collected from tomato plants infected with *M. incognita* at different life cycle stages. At the same time, root materials were collected from control and *S. exigua* infested plants. The single and interactive effects of *M. incognita* and *S. exigua* feeding on *Lipoxygenase D (LoxD); Leucine aminopeptidase A (LapA); Le4, abscisic acid-responsive Le4; and Basic-β-1-glucanase (GluB), jasmonate-responsive Ethylene Response Factor 4 (JRE4) and glycoalkaloids metabolism 1 (GAME1) were determined via a MANOVA model with <i>M. incognita* infection (Mi), *S. exigua* feeding (Se) and their interaction (Mi*Se) as the explanatory variables

Gene	Source of variation	Df	Sum Sq	Mean Sq	Pseudo-F	\mathbb{R}^2	P-value	
	a). Invasion							
	Mi	1,16	0.02817	0.028169	0.80237	0.04007	0.556	
	Se	1,16	0.05063	0.050630	1.44218	0.07202	0.222	
	Mi*Se	1,16	0.06247	0.062470	1.77942	0.08886	0.121	
	b). Galling							
Low D Lord Lod Chip IDEA CAMEL	Mi	1,16	0.25410	0.254097	6.7827	0.25979	0.001	
LoxD, LupA,_Le4, Glub, JKE4, GAMEI	Se	1,16	0.06018	0.060178	1.6063	0.06153	0.211	
	Mi*Se	1,16	0.06440	0.064401	1.7191	0.06584	0.178	
	c). Reproduction							
	Mi	1,16	0.30856	0.308560	11.0240	0.28658	0.001	
	Se	1,16	0.27886	0.278864	9.9630	0.25900	0.001	
	Mi*Se	1,16	0.04145	0.041447	1.4808	0.03849	0.225	

[§] LoxD, Lipoxygenase D; LapA, Leucine aminopeptidase A; Le4, abscisic acid-responsive Le4; GluB, Basic- β -1-glucanase; JRE4, jasmonate-responsive Ethylene Response Factor 4; GAME1, glycoalkaloids metabolism 1; D.f., degree of freedom; Sum Sq; sum of squares; Mean Sq, mean of squares; Pseudo-F, F values by permutation; P, in boldface indicates statistical significance with p < 0.005; P- values based on 999 permutations (lowest P-value possible 0.001)

Table S5 Two-way factorial Analysis of Variance (ANOVA) results on gene expression for the herbivory effect of *Meloidogyne incognita* root-knot nematode (RKN) and the caterpillars of Spodoptera exigua. Root samples were collected from tomato plants infected with *M. incognita* at different life cycle stages. At the same time, root materials were collected from control and *S. exigua* infested plants. The impact of single and interactive effects of *M. incognita* and *S. exigua* feeding on *Lipoxygenase D (LoxD); Leucine aminopeptidase A (LapA); Le4, abscisic acid-responsive Le4*; and *Basic-β-1-glucanase (GluB), jasmonate-responsive Ethylene Response Factor 4 (JRE4) and glycoalkaloids metabolism 1 (GAME1)* were analyzed using linear model with *M. incognita* infection (Mi), *S. exigua* feeding (Se) and their interaction (Mi*Se) as the explanatory variables.

Gene	Course of contraction	Invasion			Galling		Reproduction			
	Source of variation	Df	F	Р	Df	F	Р	Df	F	Р
LoxD	Mi	1,16	0.4725	0.5017	1,16	16.5670	0.0009	1,16	1.2412	0.2817
	Se	1,16	2.7393	0.1174	1,16	2.4657	0.1359	1,16	8.3360	0.0107
	Mi*Se	1,16	0.2754	0.6069	1,16	0.6747	0.4235	1,16	1.8034	0.1980
	Mi	1,16	2.4068	0.1404	1,16	0.0001	0.9933	1,16	0.0775	0.7843
LapA	Se	1,16	1.4937	0.2393	1,16	4.585	0.0477	1,16	14.6837	0.0015
Ŧ	Mi*Se	1,16	5.5807	0.0312	1,16	2.8774	0.1092	1,16	2.3975	0.1411
	Mi	1,16	2.7043	0.1196	1,16	2.3600	0.1440	1,16	3.4082	0.0835
Le4	Se	1,16	0.0823	0.7778	1,16	0.0100	0.9217	1,16	0.0159	0.9012
	Mi*Se	1,16	0.0584	0.8121	1,16	2.8430	0.1112	1,16	2.4099	0.1401
	Mi	1,16	1.2921	0.2724	1,16	0.9654	0.3404	1,16	1.5753	0.2275
GluB	Se	1,16	0.7648	0.3948	1,16	0.1532	0.7006	1,16	13.8329	0.0019
	Mi*Se	1,16	0.8576	0.3682	1,16	0.6618	0.4279	1,16	2.1365	0.1632
	Mi	1,16	0.2127	0.6509	1,16	15.8712	0.0011	1,16	30.2022	4.89e-05
JRE4	Se	1,16	0.0139	0.9078	1,16	1.3143	0.2685	1,16	0.0177	0.8957
	Mi*Se	1,16	4.6575	0.0465	1,16	2.5703	0.1284	1,16	4.7645	0.0443
GAME1	Mi	1,16	0.3679	0.5527	1,16	6.4438	0.0219	1,16	68.9237	3.42e-07
	Se	1,16	4.2435	0.0561	1,16	2.7830	0.1147	1,16	15.1963	0.0013
	Mi*Se	1,16	0.2399	0.6309	1,16	0.6425	0.4345	1,16	0.0708	0.7936

[§] LoxD, Lipoxygenase D; LapA, Leucine aminopeptidase A; Le4, abscisic acid-responsive Le4; GluB, Basic-β-1-glucanase; JRE4, *jasmonate-responsive Ethylene Response Factor 4; GAME1, glycoalkaloids metabolism 1*; dpi, days post nematode inoculation; Df, degree of freedom; F, F test value; P, P-value, in boldface indicate significant different $p \le 0.05$

References

Abdelkareem A, Thagun C, Nakayasu M, Mizutani M, Hashimoto T, Tsubasa Shoji. 2017. Jasmonate-induced biosynthesis of steroidal glycoalkaloids depends on COI1 proteins in tomato. *Biochemical and Biophysical Research Communications* **489**: 206–210.

Martínez-Medina A, Fernández I, Sánchez-Guzmán MJ, Jung SC, Pascual JA, Pozo MJ. 2013. Deciphering the hormonal signalling network behind the systemic resistance induced by *Trichoderma harzianum* in tomato. *Frontiers in Plant Science* 4: 1–12.

Uppalapati SR, Ayoubi P, Weng H, *et al.* 2005. The phytotoxin coronatine and methyl jasmonate impact multiple phytohormone pathways in tomato. *The Plant Journal* 42: 201–217. Yan L, Zhai Q, Wei J, *et al.* 2013. Role of tomato *lipoxygenase D* in wound-induced jasmonate biosynthesis and plant immunity to insect herbivores. *PLoS genetics* 9: 1–16.