
Supplementary data

Supplementary Figure S1

RECOLA *22

0.0

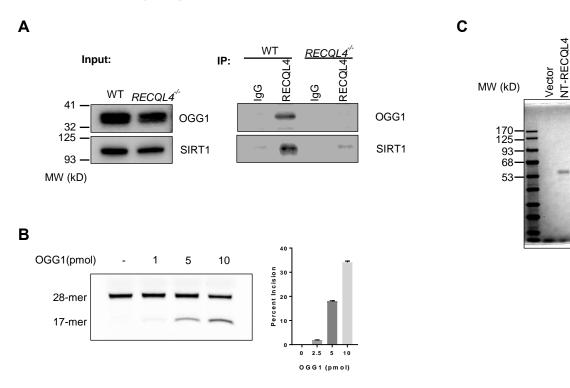
* * *

* * *

Supplementary Figure S1 | Characterization of RECQL4 knockout cells

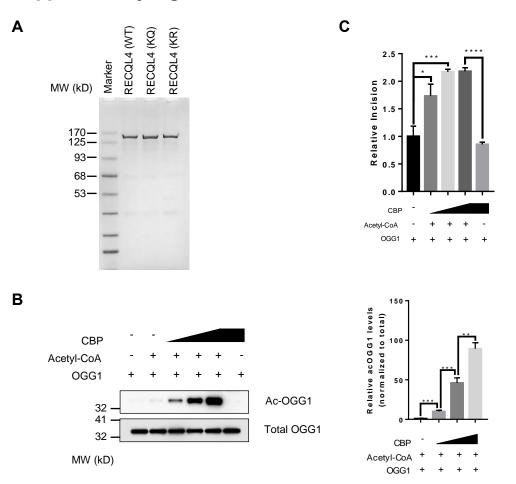
(A) Detection of EdU incorporation in WT and *RECQL4*^{-/-} cells by flow cytometry. WT and *RECQL4*^{-/-} cells were incubated with 10 μ M EdU for 1 h. A representative histogram plot of EdU-labeled cells is shown on the left. The graph on the right shows quantification of the ratio of EdU-positive cells in WT and *RECQL4*^{-/-} cells. Data are shown as mean ± SD from two independent experiments. ****P* < 0.001, using unpaired two-tailed Student's t test. (**B**) Immunofluorescence images confirm the overexpression of GFP vector or GFP-tagged WT-RECQL4 in RECQL4-/- cells. Scale bar, 10 µm. (**C**) Colony formation assay showing another RECQL4-deficient cell line (*RECQL4*^{-/-} #22) has similar clonogenic survival defects. Data are shown as mean ± SEM, n = 3. ***P < 0.001 (t-test). (**D**) mtDNA copy number in WT and RECQL4-deficient cells (*RECQL4*^{-/-} #22). Data are shown as mean ± SEM, n = 3. ***P < 0.001 (t-test). (**E**) mtDNA damage analysis in RECQL4-deficient cells (*RECQL4*^{-/-} #22). Quantifications are shown as mean ± SEM, n = 3. ***P < 0.01.

Supplementary Figure S2

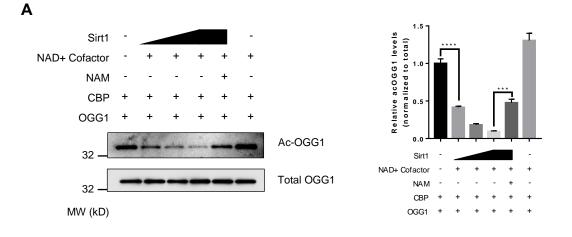


Supplementary Figure S2 | RECQL4 is required for BER of 8-oxoG

(A) MTS assay measuring cell viability of WT and RECQL4-deficient cells ($RECQL4^{-/-}$ #22) treated with menadione. Data are shown as mean ± SEM, n = 3. ****P < 0.0001 (t-test). (B) MTS assay showing cell viability of WT and RECQL4 knockout cells treated with H₂O₂. Data are shown as mean ± SEM, n = 3. ***P < 0.001 (t-test). (C) Schematic rationale of BER analysis of 8-oxoG repair *in vitro*. DNA substrates were labelled with Carboxytetramethylrhodamine (TAMRA) at the 3' terminus.


CT-RECQL4

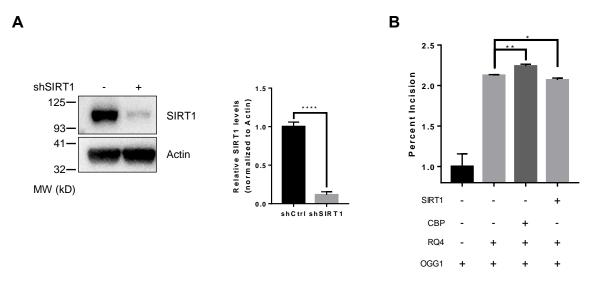
Supplementary Figure S3


Supplementary Figure S3 | RECQL4 selectively interacts with OGG1 and promotes 8-oxoG repair

(A) Co-immunoprecipitation of endogenous OGG1 and SIRT1 by RECQL4 antibody from U2OS cells extracts in the presence of benzonase nuclease. (B) Representative gel (left) and quantification (right) of the 8-oxoG incision activity of OGG1 alone. (C) Coomassie blue staining gels with purified 3xFLAG-NT-RECQL4, 3xFLAG-CT-RECQL4, and 3xFLAG-FL-RECQL4 used for *in vitro* 8-oxoG incision assay, related to Figure 3F.

Supplementary Figure S4

Supplementary Figure S4 | RECQL4 is an acetylated protein and its acetylation is stimulated by oxidative stress (A) Coomassie blue staining gels with purified RECQL4 (WT), RECQL4 (KQ), and RECQL4(KR) used for *in vitro* acetylation and deacetylation assays, related to Figure 4C and Figure 5D. (B) *In vitro* acetylation of OGG1 by CBP. Recombinant OGG1(1µg), Acetyl-CoA (2 mM), and different amounts of recombinant CBP (0.1µg, 0.2µg, 0.5µg) were incubated at 30°C for 1 h. Acetylated and total OGG1 proteins were assessed with an anti-acetylated OGG1 antibody (K338 + K341) and an anti-OGG1 antibody, respectively. A representative gel is shown on the left. The graph on the right shows quantification of relative acetylated OGG1 levels normalized to total OGG1. Data are shown as mean ± SD from two independent experiments. **P < 0.01, ***P < 0.001, using unpaired two-tailed Student's t test. (C) BER assay measuring 8-oxoG incision activity showing that acetylation of OGG1 enhances its catalytic activity in vitro. Data are shown as mean ± SD from two independent experiments. **P < 0.001, using unpaired two-tailed Student's t test.



Supplementary Figure S5

Supplementary Figure S5 | SIRT1 interacts with and deacetylates RECQL4

(A) Deacetylation of OGG1 by SIRT1 *in vitro*. Recombinant OGG1 (1 μ g) was first acetylated by CBP (0.1 μ g) for the first 1 h, then acetylated OGG1 was incubated with NAD⁺ (50 μ M), and different amounts of recombinant SIRT1 (0.5 U, 1 U, 2 U) at 30°C for an additional 1 h. Acetylated and total

OGG1 proteins were assessed with an anti-acetylated OGG1 antibody and an anti-OGG1 antibody, respectively. A representative gel is shown on the left. The graph on the right shows quantification of relative acetylated OGG1 levels normalized to total OGG1. Data are shown as mean \pm SD from two independent experiments. ****P* < 0.001, *****P* < 0.0001, using unpaired two-tailed Student's t test.

Supplementary Figure S6

Supplementary Figure S6 | SIRT1 controls the interaction between OGG1 and RECQL4 following oxidative stress and maintains RECQL4 in a hypoacetylated state (A) Western blot showing reduced SIRT1 protein levels in shRNA-mediated SIRT1-knockdown cells. A representative gel is shown on the left. The graph on the right shows quantification of relative acetylated OGG1 levels normalized to total OGG1. Data are shown as mean \pm SD from four independent experiments. *****P* < 0.0001, using unpaired two-tailed Student's t test. (B) BER assay measuring 8-oxoG incision activity shows that RECQL4 stimulates the catalytic activity of OGG1 in the presence of CBP, but not in the presence of SIRT1. Acetyl CoA and NAD+ co-substrate were used, respectively. Data are shown as mean \pm SD from two independent experiments. **P* < 0.05, ***P* < 0.01, using unpaired two-tailed Student's t test.