SUPPLEMENTAL

| Primer Name        | Sequence                                          |
|--------------------|---------------------------------------------------|
| R ntrk1 center     | GCACTCAGCAAGGAAGACCT                              |
| F ntrk1 center     | GGCAGAGGTCTCTGTTCAGG                              |
| R ntrk1 RC213091   | TTGCTGCCAGATCCTCTTCT                              |
| F ntrk1 RC213091   | GATCCGGTACCGAGGAGAT                               |
| NotI-ntrk1 R Long  | CATTAGGCGGCCGCACCTAGGCCCAGGACATCCAGGTAGACAGGAGGTG |
| NotI-ntrk1 Reverse | CATTAGGCGGCCGCACCTAGGCCCAGGACATCCAGGTAGA          |
| NotI-ntrk1 Forward | GATTACAGCGGCCGCACCATGCTGCGAGGCGGACGGCG            |
| NTRK1cDNA R2       | TTGTCCATGAAGGCAGCCAT                              |
| NTRK1 cDNA F2      | TGGTCTCATTGAGCACGGAG                              |
| NTRK1 cDNA R1      | AATGGCTCCGTGCTCAATGA                              |
| NTRK1 cDNA F1      | AGGGTTGTCCATGAAGGCAG                              |
| pIRES-MCS-ntrk1 R2 | AACGCCACAGCATCAAGGAT                              |
| pIRES-MCS-ntrk1 F2 | GTACTCACCCCAACAGCTGG                              |
| pIRES-MCS-ntrk1 R1 | CAGCATCAAGGATGTGCACG                              |
| pIRES-MCS-ntrk1 F1 | GGAGTACTCACCCCAACAGC                              |

Supplemental Table S1: NTRK primers for generation and confirmation of TrkA cell lines

| Upregulated genes |          |           |          | Downregulated genes |          |           |          |
|-------------------|----------|-----------|----------|---------------------|----------|-----------|----------|
| Gene Name         | logFC    | Gene Name | logFC    | Gene Name           | logFC    | Gene Name | logFC    |
| HIST1H2BM         | 5.300685 | TMEM126B  | 1.479312 | C1orf210            | -1.01315 | MYCL      | -1.49604 |
| HIST1H3B          | 4.232445 | ZNF165    | 1.421289 | PYGO2               | -1.02806 | OTUD1     | -1.53782 |
| FAM72D            | 3.916438 | IL1A      | 1.415549 | SCD5                | -1.063   | DSEL      | -1.57764 |
| GJB2              | 3.547973 | FDX1      | 1.363108 | ZNF57               | -1.06517 | SENP8     | -1.58834 |
| SLITRK6           | 3.305954 | B3GNT2    | 1.355046 | PERP                | -1.07004 | PRODH     | -1.62498 |
| FEN1              | 3.117373 | EEF1E1    | 1.339461 | ACOT1               | -1.1152  | SCNN1G    | -1.6784  |
| SPINK6            | 2.939614 | GPR3      | 1.325148 | SYT15               | -1.12024 | RAB7B     | -1.69222 |
| CRABP2            | 2.870189 | HS3ST3A1  | 1.310651 | PCDHB10             | -1.12618 | WBP5      | -1.71479 |
| HIST1H3I          | 2.862593 | RPL39L    | 1.306733 | UCN                 | -1.12681 | NFIL3     | -1.80119 |
| GSG2              | 2.574647 | HIST1H2BF | 1.300464 | SPDY5               | -1.13705 | MAF       | -1.96775 |
| HIST1H2AG         | 2.236954 | C2orf44   | 1.286178 | PARK2               | -1.14638 | GCSAM     | -2.24386 |
| AMTN              | 2.226482 | SLC35C1   | 1.266293 | TSHZ2               | -1.15562 | KCNB1     | -2.27449 |
| CHAC2             | 2.193323 | PGP       | 1.258337 | CFAP53              | -1.20364 | TSC22D3   | -2.37186 |
| HIST1H2AE         | 2.070118 | MZT1      | 1.234009 | ADRB2               | -1.21347 | MAFB      | -2.77564 |
| HYLS1             | 2.065507 | HIST2H2AB | 1.21936  | ARL4A               | -1.21535 | KLHL38    | -2.79431 |
| TMEM171           | 2.029894 | SOWAHC    | 1.196201 | HCAR2               | -1.2216  | GNG7      | -2.93085 |
| PMCH              | 2.020629 | LLPH      | 1.1825   | TSSK3               | -1.22651 | CRYAB     | -3.10802 |
| AMIGO2            | 2.01445  | RBPMS2    | 1.177211 | NAP1L5              | -1.2376  | CITED2    | -4.15083 |
| H2AFX             | 1.992244 | HIST1H3G  | 1.167181 | DGCR6               | -1.24567 | METTL7A   | -4.38533 |
| MT1A              | 1.970384 | TRMT10C   | 1.164855 | SPDYE2              | -1.25754 |           |          |
| HSD17B2           | 1.877982 | DNAJB5    | 1.159799 | SPDYE2B             | -1.25754 |           |          |
| HIST1H4D          | 1.835552 | AK1       | 1.153043 | IGIP                | -1.26463 |           |          |
| PIGW              | 1.807824 | RPE65     | 1.137656 | PCDHB14             | -1.26715 |           |          |
| TMEM176B          | 1.799355 | PDE12     | 1.105626 | ZBTB22              | -1.27625 |           |          |
| RTKN2             | 1.791073 | HIST1H2BC | 1.09568  | HIST2H4B            | -1.28258 |           |          |
| HIST1H2BL         | 1.664501 | TRIM59    | 1.083583 | HIST3H2A            | -1.33157 |           |          |
| MT1G              | 1.550813 | FBXO45    | 1.068118 | CHAD                | -1.3747  |           |          |
| RMI1              | 1.509626 | NXT2      | 1.062884 | BBS10               | -1.37627 |           |          |
| HIST1H2BI         | 1.505982 | HIST1H4L  | 1.047807 | DNAJC28             | -1.48722 |           |          |

Altered Genes > logFC 1

Supplemental Table S2: Genes altered in nontumorigenic breast cells with TrkA overexpression. Genes with > 1 log fold change (FC) in TrkA overexpressing cells when compared to wildtype parental control.



Figure S1: NTRK1 amplification in patients with breast cancer. Interrogation of cBioPortal revealed NTRK1 amplification in patients with breast cancer. Data represents 5762 patients / 5988 samples with amplification across 5 studies (METABRIC: 2173, The MBC Project: 237, TCGA: 117, INSERM: 17, MSK: 14). Percentages are based on total patients within study. cBioPortal was accessed in November 2019.



В

А



Figure S2: TrkA overexpression in MCF10A confers growth advantage in the presence of EGF. (A) Proliferation analysis of the MCF10A TrkA overexpression panel in the presence of 0.2 ng/mL epidermal growth factor (+EGF) and (B) + 1.5  $\mu$ M Larotrectinib. Cells were plated at a density of 30,000 cells/well in 24-well plates and cell counted on 2, 4, and 6 days. Mean ± SEM shown, \*\*\*P ≤ 0.001, by ANOVA at 6 day time point.



**Figure S3: Proliferation of CD74-NTRK1 fusions in MCF10A**. (A) Proliferation analysis of the MCF10A CD74-NTRK1 fusion panel in the presence of 0.2 ng/mL EGF and (B) + 2  $\mu$ M Larotrectinib. Cells were plated at a density of 30,000 cells/well in 24-well plates and cell counted on 2, 4, and 6 days. Mean ± SEM shown, \*\*P ≤ 0.01, by ANOVA at 6 day time point.



Figure S4: TrkA overexpression leads to increased MAPK/PI3K signaling and dysregulation of genes in oncogenic pathways. (A) Immunoblot analysis of the MCF10A and hTERT-IMEC TrkA overexpression panels in the absence of growth factors (B) Immunoblot analysis of the MCF10A TrkA overexpression panel in the presence of 0.2 ng/mL neuronal growth factor (NGF) and no epidermal growth factor (EGF).





В



**Figure S5: TrkA overexpression leads to acini formation in growth-factor reduced media** (A) MCF10A TrkA overexpressing panel and (B) hTERT-IMEC overexpressing panel were cultured at low density in matrigel in the abesence of EGF and NGF.



**Figure S6: TrkA overexpression leads to increased wound healing in MCF10A panel.** Representative images of MCF10A scratch assays at 16 hours. Quantified data presented in main figure 5A (scale bar, 50 µm).



Figure S7: TrkA overexpression leads to increased migration in MCF10A panel. Microchannel migration assays were performed in 50  $\mu$ m channels. Individual cells from the MCF10A TrkA overexpression panel were tracked along a growth factor gradient. (A) Persistence of migrating cells as a measure of net cell displacement to total distance traveled (B) + 1.5  $\mu$ M larotrectinib. (C) Instantaneous speed of migrating cells in a linear direction (D) + 1.5  $\mu$ M larotrectinib.



Figure S8: TrkA overexpression leads to increased migration in MCF10A panel in varying channel sizes. Additional microchannel migration assays were performed in 20, 10, 6, and 3  $\mu$ m channels. Individual cells from the MCF10A TrkA overexpression panel were tracked along a growth factor gradient.