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1. Materials and Methods 
 
Unless otherwise stated, reactions were performed in flame-dried glassware fitted with rubber 
septa under an argon atmosphere and were stirred with Teflon-coated magnetic stirring bars. 
Liquid reagents and solvents were transferred via syringe using standard Schlenk techniques. 
Methanol (MeOH) was distilled over magnesium under an argon atmosphere. Dichloromethane 
and triethylamine were distilled over calcium hydride under an argon atmosphere. Tetrahydrofuran 
(THF), benzene, toluene, and diethyl ether were distilled over sodium/benzophenone ketyl under 
an argon atmosphere. All other solvents and reagents were used as received from commercial 
sources, unless otherwise noted. Reaction temperatures above 23 °C refer to oil bath temperatures. 
Thin layer chromatography (TLC) was performed using SiliCycle silica gel 60 F-254 precoated 
plates (0.25 mm) and visualized under UV irradiation, with a cerium ammonium molybdate (CAM) 
stain or a potassium permanganate (KMnO4) stain. SiliCycle Silica-P silica gel (particle size: 40–
63 µm) was used for flash column chromatography. 1H and 13C NMR spectra were recorded using 
Bruker AV-500, DRX-500, and AV-400 MHz spectrometers, with 13C NMR spectroscopic 
operating frequencies of 125, 125, and 100 MHz, respectively. Chemical shifts (d) are reported in 
parts per million (ppm) relative to the residual protonated solvent: CDCl3 signal (d = 7.26 for 1H 
NMR; d = 77.2 for 13C NMR), C6D6 signal (d = 7.16 for 1H NMR; d = 128.1 for 13C NMR), or 
DMSO-d6 (d = 2.50 for 1H NMR; d = 39.5 for 13C NMR). Data for 1H NMR spectra are reported 
as follows: chemical shift, multiplicity, coupling constants (Hz), and number of hydrogen atoms. 
Data for 13C NMR spectra are reported in terms of chemical shift. The following abbreviations are 
used to describe the multiplicities: s = singlet; d = doublet; t = triplet; q = quartet; quint = quintet; 
m = multiplet; br = broad. Melting points (MP) are uncorrected and were recorded using an 
Electrothermal® capillary melting point apparatus. IR spectra were recorded on a Jasco FTIR-
4100 spectrometer with an ATR attachment. Optical rotations were recorded using an Autopol IV 
polarimeter and a 100-mm cell, at concentrations close to 1 g/100 mL. HRMS (ESI) was performed 
using a Waters LCT Premier spectrometer equipped with ACQUITY UPLC system and 
autosampler. HRMS (DART) was performed using a Thermo Fisher Scientific Exactive Plus 
spectrometer equipped with an IonSense ID-CUBE DART source. X-ray crystallographic data 
were collected using a Bruker SMART CCD-based diffractometer equipped with a low-
temperature apparatus operated at 100 K. Ozonolysis experiments were performed using a 
Globalozone GO-D3G (3 g/h) ozone generator (2.0 L/min, 50% power, O2 feed gas). 
 
Caution: Ozone is an extremely toxic and reactive oxidant that can react with some compounds 
to form explosive and shock-sensitive products. Although we have not encountered any ozone-
related safety issues in our lab, reactions with ozone should be performed only by properly trained 
individuals in a well-ventilated fume hood (use of a blast-shield is also recommended, especially 
for reactions performed on larger scales). 
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2. Starting Material Preparation 
 
The disulfides 2a, 2k and 2l were purchased from commercial sources and used as received. 
 

The substrates 1i, 1l, 1o, 1q, 4a, 4b, 4g, 6a, 6b, 6d, 6e, and 6g were purchased from commercial 
sources and used as received. 
 

 
The disulfides 2b–2j were prepared following a literature procedure.1 

 

 
Substrate 1a was prepared using the following procedure adapted from the literature:2 
 
A flame-dried round-bottom flask equipped with a magnetic stirrer bar was charged under an argon 
atmosphere with methyltriphenylphosphonium bromide (27.8 g, 78.0 mmol, 2.0 equiv) and 
anhydrous THF (0.4 M), then cooled to 0 °C in an ice-water bath. The flask was quickly charged 
with potassium tert-butoxide (8.70 g, 78.0 mmol, 2.0 equiv), and the resulting yellow suspension 
was stirred for 1 h at 0 °C. 1-(Tetrahydro-2H-pyran-4-yl)ethanone (5.00 g, 39.0 mmol, 1.0 equiv) 
was added dropwise via syringe. After the addition, the mixture was slowly warmed to room 
temperature and stirred for an additional 16 h. The reaction mixture was poured into 1.0 M aqueous 
hydrochloric acid (100 mL) and extracted with diethyl ether (3x). The combined organic fractions 
were washed with brine, dried (anhydrous sodium sulfate), filtered, and concentrated under 
reduced pressure. Purification through flash column chromatography (SiO2) provided pure 1a. 
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*39.0 mmol scale reaction 
Yield: 57% (3.60 g). 
Physical State: colorless oil. 
1H NMR (500 MHz, CDCl3): δ 4.73 (s, 1H), 4.70 (s, 1H), 4.01 (dd, J = 11.2, 4.0 Hz, 2H), 3.41 
(ddd, J = 11.7, 11.7, 1.7 Hz, 2H), 2.09 (dddd, J = 11.7, 11.7, 3.5, 3.5 Hz, 1H), 1.28 (s, 3H), 1.63 
(d, J = 11.6 Hz, 2H), 1.54 (ddd, J = 24.9, 12.2, 4.2 Hz, 2H). 
13C NMR (125 MHz, CDCl3): δ 148.9, 108.7, 68.1, 42.3, 31.5, 20.6. 
IR (neat, ATR): νmax 2936, 2918, 2840, 1645, 1132, 1091, 888 cm–1. 
HRMS (DART): calc’d for C8H15O [M + H]+ 127.1117, found 127.1121. 
Rf = 0.33 (5% EtOAc/hexanes). 
Purification: (SiO2, 5% EtOAc/hexanes). 
 

 
Substrate 1b was prepared following a literature procedure.3 

 

 
Substrate 1c was prepared following a literature procedure.4 
 

 
Substrate 1d was prepared following a literature procedure.5 
 

 
Substrate 1e was prepared following a literature procedure.2 
 

 
Substrate 1f was prepared following a literature procedure.6 
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Substrate 1g was prepared following a literature procedure.4 
 

 
Substrates 1h, 1j, and 1k were prepared following literature procedures.7 
 

 
Substrate 1m was obtained in pure trans form following a literature procedure.7 
 

 
Substrate 1n was obtained in pure cis form following a literature procedure.8 
 

 
Substrate 1p was prepared following a literature procedure.9 
 

 
Substrate 4c was prepared following a literature procedure.10 
 

 
Substrate 4d was prepared following a literature procedure.4 
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Substrate 4e was prepared following a literature procedure.11 

 

 
Substrate 4f was prepared following a literature procedure.12 
 

 
Substrate 4h was prepared following a literature procedure.12 
 

 
Substrate 6c was prepared following a literature procedure.13 
 

 
Substrate 6f was prepared following a literature procedure.14 
 

 
Substrate 6h was prepared from 1-benzosuberone by following the reaction sequence displayed 
above. 
 
A round-bottom flask equipped with a magnetic stirrer bar was charged with the ketone SI-I (697 
mg, 4.00 mmol, 1.0 equiv) and anhydrous MeOH (0.3 M), then cooled to 0 °C in an ice-water bath. 
Sodium borohydride (303 mg, 8.00 mmol, 2.0 equiv) was added in three equal portions over 10 
min. The reaction mixture was warmed to room temperature and stirred until the starting material 
had been consumed (TLC). Upon completion, the reaction was quenched with water, and the 
aqueous layer was extracted with dichloromethane (3x). The combined organic fractions were 
washed with brine, dried (anhydrous sodium sulfate), filtered, and concentrated under reduced 
pressure. Purification through flash column chromatography (SiO2) provided the alcohols SI-
II/SI-II´ (1:1 d.r.). 
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*4.0 mmol scale reaction 
Yield: 87% (615 mg). 
Diastereomeric Ratio: 1:1 (cis/trans). 
Physical State: colorless oil. 
1H NMR (500 MHz, CDCl3): δ 7.36–7.28 (m, 2H), 7.22–7.13 (m, 4H), 7.12–7.06 (m, 2H), 4.89 
(br s, 1H), 4.62 (d, J = 7.1 Hz, 1H), 3.11–2.92 (m, 2H), 2.72–2.61 (m, 2H), 2.19–1.99 (m, 3H), 
1.96–1.50 (m, 9H), 0.91 (d, J = 7.0 Hz, 3H), 0.86 (d, J = 6.5 Hz, 3H). 
13C NMR (125 MHz, CDCl3): δ 141.9, 141.7, 141.5, 141.1, 129.5, 129.4, 127.5, 127.3, 127.0, 
126.7, 125.8, 125.8, 79.4, 77.2, 37.6, 36.4, 35.5, 35.1, 34.4, 33.3, 24.7, 23.8, 17.3, 16.5. 
IR (neat, ATR): νmax 3373, 3028, 2921, 2857, 1456, 1035, 749 cm–1. 
HRMS (ESI-TOF): calc’d for C12H16ONa [M + Na]+ 199.1093, found 199.1084. 
Rf = 0.27 (10% EtOAc/hexanes). 
Purification: (SiO2, 3 ® 5% EtOAc/hexanes). 
 
A round-bottom flask equipped with a magnetic stirrer bar was charged with the alcohols SI-II/SI-
II´ (616 mg, 3.50 mmol, 1.0 equiv), p-toluenesulfonic acid (30.1 mg, 0.175 mmol, 0.05 equiv), 
and anhydrous benzene (0.2 M). The flask was equipped with a Dean–Stark apparatus and a reflux 
condenser. The mixture was heated under reflux until the starting material had been consumed 
(TLC). Upon completion, the mixture was cooled to room temperature and poured into saturated 
aqueous sodium bicarbonate. The aqueous layer was extracted with EtOAc (3x). The combined 
organic fractions were washed with brine, dried (anhydrous sodium sulfate), filtered, and 
concentrated under reduced pressure. Purification through flash column chromatography (SiO2) 
provided the dehydration product 6h. 
 

 
*3.5 mmol scale reaction 
Yield: 88% (487 mg). 
Physical State: colorless oil. 
1H NMR (500 MHz, CDCl3): δ 7.22–7.07 (m, 4H), 6.33 (br s, 1H), 2.89–2.81 (m, 2H), 2.40–2.32 
(m, 2H), 2.07–2.00 (m, 2H), 1.99 (s, 3H). 
13C NMR (125 MHz, CDCl3): δ 141.1, 140.2, 136.6, 130.2, 128.7, 126.0, 125.8, 125.7, 36.4, 35.4, 
27.3, 27.1. 
IR (neat, ATR): νmax 3056, 3020, 2925, 2893, 2865, 1496, 1436, 753, 734 cm–1. 
HRMS (DART): calc’d for C12H15 [M + H]+ 159.1168, found 159.1157. 
Rf = 0.61 (hexanes). 
Purification: (SiO2, pentane). 
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3. Reaction Optimization 
 

 
 

A 10-mL vial equipped with a magnetic stirrer bar was charged with the hydroxy ketone 1h (47.3 
mg, 0.200 mmol, 1.0 equiv) and MeOH (0.05 M), then placed in a dry-ice/acetone bath and cooled 
to –78 °C while open to air. Ozone was bubbled through the solution until complete consumption 
of the starting material (TLC, with CAM stain). The solution was then sparged with argon for 5 
min to expel excess ozone. Diphenyl disulfide (2a) was added at the specified temperature, the 
mixture was stirred for 10 min, and then the FeII salt was added. Upon complete conversion of the 
intermediate a-alkoxy hydroperoxides (TLC), 1-chloro-2,4-dinitrobenzene (40.5 mg, 0.200 mmol, 
1.0 equiv) was added to the reaction mixture. A 1.0-mL aliquot was removed and placed under 
high vacuum until the solvent had evaporated. Deuterated chloroform was added to the vial, and 
then the mixture was filtered through a short Celite plug directly into an NMR tube. 
 

Table S1. Optimization of reaction conditions 

entry Ph2S2 
(equiv) 

FeII (equiv) temp 
(˚C) cosolventa yieldb d.r.c 

1 1.2 FeSO4·7H2O (1.2) –78 - 46 8:1 
2 1.2 FeSO4·7H2O (1.2) 0 - 62 5.8:1 
3 1.2 FeSO4·7H2O (1.2) rt - 63 5.6:1 
4 1.2 FeSO4·7H2O (1.2) 30 - 61 5.1:1 
5 1.2 FeSO4·7H2O (1.2) 40 - 59 4.9:1 
6 1.2 FeSO4·7H2O (1.2) 50 - 53 4.9:1 
7 1.2 FeSO4·7H2O (1.2) 60 - 46 4.1:1 
8 1.5 FeSO4·7H2O (1.2) rt - 62 5.8:1 
9 2.0 FeSO4·7H2O (1.2) rt - 66 5.6:1 
10 2.5 FeSO4·7H2O (1.2) rt - 67 5.7:1 
11 3.0 FeSO4·7H2O (1.2) rt - 70 5.9:1 
12 4.0 FeSO4·7H2O (1.2) rt - 68 6:1 
13 5.0 FeSO4·7H2O (1.2) rt - 70 5.9:1 
14 3.0 FeSO4·7H2O (0.5) rt - 28 6:1 
15 3.0 FeSO4·7H2O (1.0) rt - 63 6:1 
16 3.0 FeSO4·7H2O (1.5) rt - 70 5.9:1 
17 3.0 FeSO4·7H2O (2.0) rt - 65 6.2:1 
18 3.0 FeCl2·4H2O (1.2) rt - trace ND 
19 3.0 Fe(NH4)2(SO4)2·6H2O (1.2) rt - 11 10:1 
20 3.0 Fe(BF4)2·6H2O (1.2) rt - 50 2.6:1 
21 3.0 Fe(ClO4)2·6H2O (1.2) rt - 28 10:1 
22 3.0 FeC2O4·2H2O (1.2) rt - 14 6:1 
23 3.0 ferrous gluconate·2H2O (1.2) rt - 14 6:1 

3ha 3ha′

+

O3, MeOH, –78 ˚C;
Ph2S2 (2a), FeII

temp

1h

O OH O OH SPh O OH SPh
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24 3.0 ferrous phthalocyanine (1.2) rt - 25 5:1 
25 3.0 Fe(OTf)2 (1.2) rt - 21 6:1 
26 3.0 FeSO4·7H2O (1.2) rt - 41d 2.2:1 
27 3.0 FeSO4·7H2O (1.2) rt - 68e 6.2:1 
28 3.0 FeSO4·7H2O (1.2) rt - 60f 6:1 
29 3.0 FeSO4·7H2O (1.2) rt DCM 52 3:1 
30 3.0 FeSO4·7H2O (1.2) rt EtOH 20 3:1 
31 3.0 FeSO4·7H2O (1.2) rt 2-PrOH 13 5.5:1 
32 3.0 FeSO4·7H2O (1.2) rt MeCN 11 4.5:1 
33 3.0 FeSO4·7H2O (1.2) rt acetone 8 7:1 
34 3.0 FeSO4·7H2O (1.2) rt benzene 23 2.8:1 
35 3.0 FeSO4·7H2O (1.2) rt THF 16 1.8:1 
36 3.0 FeSO4·7H2O (1.2) rt toluene 21 3.2:1 
37 3.0 FeSO4·7H2O (1.2) rt DCE 36 2.3:1 
38 3.0 FeSO4·7H2O (1.2) rt water 32 3.6:1 
39 3.0 FeSO4·7H2O (1.2) rt - 70g 5.4:1 
40 3.0 FeSO4·7H2O (1.2) rt - 65h 5.5:1 
41 3.0 FeSO4·7H2O (1.2) rt - 70i 6:1 
42 3.0 FeSO4·7H2O (1.2) rt - 68j 5.8:1 
43 3.0 FeSO4·7H2O (1.2) rt - 68k 6.6:1 
44 3.0 FeSO4·7H2O (1.2) 0 ˚C - 83k 5.9:1 

 
a1:1 Ratio MeOH/cosolvent. bCombined yield of 3ha + 3ha′, determined by 1H-NMR using 1-
chloro-2,4-dinitrobenzene as an internal standard. cDiastereomeric ratio determined by 1H-NMR. 
d0.01 M. e0.025 M. f0.1 M. gNaHCO3 additive (2.0 equiv). hpyridine additive (2.0 equiv). iAr 
atmosphere. joxygen atmosphere. kFeSO4·7H2O added as 5 wt/vol% aqueous solution. 
 
Note: The major byproduct formed during the dealkenylative thiylation was the 
hydrodealkenylation product SI-III along with small amounts of the elimination product SI-IV. 
Under some conditions (especially with the use of co-solvents and other iron salts), we observed 
appreciable formation of the ozonolysis product SI-V as well. The use of an aqueous solution of 
ferrous sulfate heptahydrate and an addition temperature of 0 °C minimized the formation of these 
byproducts (ca. 15% SI-III/SI-IV and trace amounts of SI-V). On larger scales (≥1.0 mmol), a 
concentration of 0.025 M provided results consistent with the optimized conditions. An analysis 
of the crude 1H NMR spectrum for entry 44 is presented in Figure S1. A proposed mechanism for 
the formation of the major byproduct (SI-III) is provided in Figure S2. 
 

 
  

OHO O
OHO H

SI-III SI-V
OHO
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Figure S1. 1H NMR spectrum of crude 3ha/3ha′ (Table S1, entry 44). 

 
 

 
Figure S2. Proposed mechanism for the formation of SI-III.  
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4. Experimental Procedures and Characterization Data 
 
4.1. General Procedure for Dealkenylative Thiylation 
 

 
 

A round-bottom flask equipped with a magnetic stirrer bar was charged with 1 (1.0 equiv) and 
MeOH (0.025 M), then cooled to –78 °C with a dry-ice/acetone bath while open to the air. Ozone 
was bubbled through the solution until complete consumption of the starting material (as indicated 
by TLC and/or a blue color in the reaction mixture). The solution was then sparged with argon for 
5 min to expel excess ozone. The aryl disulfide (2, 3.0 equiv) was added and then the reaction 
mixture was warmed to 0 °C in an ice-water bath and stirred for 10 min. An aqueous solution (5%, 
wt/vol) of ferrous sulfate heptahydrate (1.2 equiv) was added over a period of approximately 1 
min. Upon completion of the reaction (TLC), the mixture was diluted with water and transferred 
to a separatory funnel. The MeOH/water layer was extracted with dichloromethane (3x). The 
combined organic fractions were washed with brine, dried (anhydrous sodium sulfate), filtered, 
and concentrated under reduced pressure. Purification through flash column chromatography 
(SiO2) provided the thiylated product 3. 
 
Any modification of the above procedure is described below with the specific entry. 
 
Note: All solid aryl disulfides were ground to a fine powder prior to use. 
 
  

O3, MeOH (0.025 M), –78 ˚C;

Ar2S2 (2) (3.0 equiv)
aq. FeSO4·7H2O (1.2 equiv)

0 ˚C, 1 min

S Ar

1 3
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4.2. Graphical Procedure for Dealkenylative Thiylation 
 

	

	 
Figure S3. Graphical procedure for the synthesis of the thioether 3la/3la′.  
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4.3. Characterization Data 
 
Note: For products that generated a stereocenter at the newly formed C–S bond, structural 
assignments were based on a combination of 1D and 2D NMR spectroscopy experiments. It is 
known that tertiary and secondary axial/equatorial protons in cyclohexane derivatives typically 
appear at different fields (an axial proton resonance shift is upfield relative to the resonance shift 
of an equatorial proton).18 Additionally, the coupling constant between neighboring axial protons 
is generally 2–3 times as large as the coupling constant between two neighboring equatorial 
protons. As a result, the signal for an axial a-proton is much broader relative to that of an equatorial 
a-proton. All structural assignments are consistent with these observations, which were further 
supported by single-crystal X-ray diffraction of the thioether 3la´ and the sulfone 8. 
 

 
*1.0 mmol scale reaction 
Yield: 80% (155 mg). 
Physical State: colorless oil. 
1H NMR (500 MHz, CDCl3): δ 7.45–7.40 (m, 2H), 7.24–7.28 (m, 2H), 7.28–7.23 (m, 1H), 3.97 
(ddd, J = 11.7, 3.7, 3.7 Hz, 2H), 3.43 (ddd, J = 11.2, 11.2, 2.5 Hz, 2H), 3.27 (dddd, J = 10.6, 10.6, 
4.0, 4.0 Hz, 1H), 1.95–1.87 (m, 2H), 1.67 (dddd, J = 13.7, 10.7, 10.7, 4.2 Hz, 2H). 
13C NMR (125 MHz, CDCl3): δ 133.6, 132.6, 128.8, 127.2, 67.2, 43.3, 33.1. 
IR (neat, ATR): νmax 3073, 3058, 2946, 2843, 1085, 740, 691 cm–1. 
HRMS (DART): calc’d for C11H14OSNa [M + Na]+ 217.0658, found 217.0661. 
Rf = 0.40 (10% EtOAc/hexanes). 
Purification: (SiO2, 2 ® 5%  EtOAc/hexanes). 
 

 
*1.0 mmol scale reaction 
Yield: 77% (160 mg). 
Physical State: colorless oil. 
1H NMR (500 MHz, CDCl3): δ 7.42–7.37 (m, 1H), 7.24–7.19 (m, 1H), 7.19–7.12 (m, 2H), 3.98 
(ddd, J = 11.7, 3.8, 3.8 Hz, 2H), 3.44 (ddd, J = 11.2, 11.2, 2.3 Hz, 2H), 3.27 (dddd, J = 10.5, 10.5, 
4.0, 4.0 Hz, 1H), 2.44 (s, 3H), 1.96–1.87 (m, 2H), 1.76–1.65 (m, 2H). 
13C NMR (125 MHz, CDCl3): δ 140.0, 133.1, 132.3, 130.3, 127.0, 126.2, 67.2, 42.7, 33.1, 20.8. 
IR (neat, ATR): νmax 3059, 2944, 2921, 2843, 1468, 1085, 743, 691 cm–1. 
HRMS (DART): calc’d for C12H17OS [M + H]+ 209.0995, found 209.0955. 
Rf = 0.42 (10% EtOAc/hexanes). 
Purification: (SiO2, 2 ® 5%  EtOAc/hexanes). 
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3ab1a
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*1.0 mmol scale reaction 
Yield: 64% (133 mg). 
Physical State: colorless oil. 
1H NMR (500 MHz, CDCl3): δ 7.26–7.16 (m, 3H), 7.09–7.05 (m, 1H), 3.97 (ddd, J = 11.7, 3.7, 
3.7 Hz, 2H), 3.43 (ddd, J = 11.2, 11.2, 2.5 Hz, 2H), 3.26 (dddd, J = 10.6, 10.6, 4.0, 4.0 Hz, 1H), 
2.34 (s, 3H), 1.94–1.87 (m, 2H), 1.72–1.62 (m, 2H). 
13C NMR (125 MHz, CDCl3): δ 138.6, 133.3, 133.2, 129.6, 128.6, 128.0, 67.2, 43.3, 33.1, 21.2. 
IR (neat, ATR): νmax 3058, 2945, 2843, 1591, 1131, 1085, 778 cm–1. 
HRMS (DART): calc’d for C12H17OS [M + H]+ 209.0995, found 209.0985. 
Rf = 0.45 (10% EtOAc/hexanes). 
Purification: (SiO2, 2 ® 5%  EtOAc/hexanes). 
 

 
*1.0 mmol scale reaction 
Yield: 71% (148 mg). 
Physical State: colorless oil. 
1H NMR (500 MHz, CDCl3): δ 7.34 (d, J = 8.1 Hz, 2H), 7.12 (d, J = 7.9 Hz, 2H), 3.96 (ddd, J = 
11.6, 3.7, 3.7 Hz, 2H), 3.41 (ddd, J = 11.3, 11.3, 2.1 Hz, 2H), 3.18 (dddd, J = 10.7, 10.7, 4.0, 4.0 
Hz, 1H), 2.34 (s, 3H), 1.92–1.84 (m, 2H), 1.65 (dddd, J = 13.7, 10.7, 10.7, 4.1 Hz, 2H). 
13C NMR (125 MHz, CDCl3): δ 137.5, 133.4, 129.7, 129.6, 67.3, 43.8, 33.1, 21.0. 
Rf = 0.48 (10% EtOAc/hexanes). 
Purification: (SiO2, 2 ® 5%  EtOAc/hexanes). 
All characterization data are consistent with that reported in the literature.19 
 

 
*1.0 mmol scale reaction 
Yield: 70% (156 mg). 
Physical State: white solid. 
1H NMR (500 MHz, CDCl3): δ 7.16–7.08 (m, 3H), 3.95 (ddd, J = 11.6, 3.7, 3.7 Hz, 2H), 3.36 
(ddd, J = 11.2, 11.2, 2.6 Hz, 2H), 3.02 (dddd, J = 10.5, 10.5, 4.3, 4.3 Hz, 1H), 2.55 (s, 6H), 1.81–
1.74 (m, 2H), 1.74–1.65 (m, 2H). 
13C NMR (125 MHz, CDCl3): δ 143.4, 131.8, 128.2, 128.0, 67.4, 43.7, 33.4, 22.2. 
MP: 40 ˚C. 
IR (neat, ATR): νmax 3056, 2996, 2842, 1459, 1085, 830, 770 cm–1. 
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HRMS (DART): calc’d for C13H19OS [M + H]+ 223.1151, found 223.1178. 
Rf = 0.57 (10% EtOAc/hexanes). 
Purification: (SiO2, 2 ® 5%  EtOAc/hexanes). 
 

 
*1.0 mmol scale reaction 
Yield: 62% (138 mg). 
Physical State: colorless oil. 
1H NMR (500 MHz, CDCl3): δ 7.23 (d, J = 1.2 Hz, 1H), 7.18 (dd, J = 7.7, 1.8 Hz, 1H), 7.07 (d, 
J = 7.8 Hz, 1H), 3.96 (ddd, J = 11.6, 3.7, 3.7 Hz, 2H), 3.41 (ddd, J = 11.3, 11.3, 2.2 Hz, 2H), 3.18 
(dddd, J = 10.7, 10.7, 4.0, 4.0 Hz, 1H), 2.24 (s, 6H), 1.92–1.85 (m, 2H), 1.70–1.61 (m, 2H). 
13C NMR (125 MHz, CDCl3): δ 137.2, 136.2, 134.6, 130.8, 130.0, 129.9, 67.3, 43.7, 33.1, 19.6, 
19.3. 
IR (neat, ATR): νmax 3014, 2942, 2920, 2843, 1130, 1085, 884, 815 cm–1. 
HRMS (DART): calc’d for C13H19OS [M + H]+ 223.1151, found 223.1162. 
Rf = 0.48 (10% EtOAc/hexanes). 
Purification: (SiO2, 2 ® 5%  EtOAc/hexanes). 
 

 
*1.0 mmol scale reaction 
Yield: 51% (114 mg). 
Physical State: colorless oil. 
1H NMR (500 MHz, CDCl3): δ 7.38 (dd, J = 7.6, 1.6 Hz, 1H), 7.25 (ddd, J = 8.1, 7.5, 1.6 Hz, 
1H), 6.96–6.85 (m, 2H), 3.97 (ddd, J = 11.7, 3.8, 3.8 Hz, 2H), 3.89 (s, 3H), 3.44 (ddd, J = 11.2, 
11.2, 2.4 Hz, 2H), 3.41–3.35 (m, 1H), 1.93–1.84 (m, 2H), 1.73–1.60 (m, 2H). 
13C NMR (125 MHz, CDCl3): δ 158.7, 133.5, 128.6, 121.5, 120.8, 110.7, 67.2, 55.7, 41.2, 32.9. 
IR (neat, ATR): νmax 3059, 2944, 2838, 1473, 1239, 1020, 746 cm–1. 
HRMS (DART): calc’d for C12H17O2S [M + H]+ 225.0944, found 225.0954. 
Rf = 0.27 (10% EtOAc/hexanes). 
Purification: (SiO2, 5 ® 10%  EtOAc/hexanes). 
 

 
*1.0 mmol scale reaction 
Yield: 75% (167 mg). 
Physical State: colorless oil. 
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1H NMR (500 MHz, CDCl3): δ 7.44–7.37 (m, 2H), 6.88–6.82 (m, 2H), 3.95 (ddd, J = 11.6, 3.6, 
3.6 Hz, 2H), 3.80 (s, 3H), 3.38 (ddd, J = 11.3, 11.3, 2.1 Hz, 2H), 3.07 (dddd, J = 10.8, 10.8, 4.0, 
4.0 Hz, 1H), 1.88–1.81 (m, 2H), 1.68–1.57 (m, 2H). 
13C NMR (125 MHz, CDCl3): δ 159.6, 136.0, 123.5, 114.3, 67.3, 55.2, 44.4, 33.1. 
Rf = 0.27 (10% EtOAc/hexanes). 
Purification: (SiO2, 5 ® 10%  EtOAc/hexanes). 
All characterization data are consistent with that reported in the literature.20 

 

 
*1.0 mmol scale reaction 
Yield: 50% (132 mg). 
Physical State: white solid. 
1H NMR (500 MHz, CDCl3): δ 7.53 (dd, J = 8.6, 0.6 Hz, 2H), 7.45 (dd, J = 8.6, 0.6 Hz, 2H), 3.98 
(ddd, J = 11.8, 3.8, 3.8 Hz, 2H), 3.47 (ddd, J = 11.6, 10.8, 2.3 Hz, 2H), 3.42 (dddd, J = 10.5, 10.5, 
4.1, 4.1 Hz, 1H), 1.98–1.91 (m, 2H), 1.70 (dddd, J = 13.8, 10.5, 10.5, 4.1 Hz, 2H). 
13C NMR (125 MHz, CDCl3): δ 139.5 (q, JC–F = 1.3 Hz), 130.5, 128.5 (q, JC–F = 32.7 Hz), 125.6 
(q, JC–F = 3.8 Hz), 123.9 (q, JC–F = 271.9 Hz), 67.1, 42.4, 32.8. 
19F NMR (282 MHz, CDCl3): δ –62.6. 
MP: 55 ˚C. 
IR (neat, ATR): νmax 2953, 2846, 1606, 1322, 1120, 1094, 1063, 1012, 829 cm–1. 
HRMS (ESI-TOF): calc’d for C12H13F3OSNa [M + Na]+ 285.0471, found 285.0458. 
Rf = 0.24 (10% EtOAc/hexanes). 
Purification: (SiO2, 2 ® 5%  EtOAc/hexanes). 
 

 
*1.0 mmol scale reaction 
Yield: 70% (199 mg). 
Physical State: white solid. 
1H NMR (500 MHz, CDCl3): δ 3.96 (ddd, J = 11.8, 3.7, 3.7 Hz, 2H), 3.40 (ddd, J = 11.3, 11.3, 
2.3 Hz, 2H), 3.29 (dddd, J = 10.7, 10.7, 4.1, 4.1 Hz, 1H), 1.89–1.81 (m, 2H), 1.72–1.61 (m, 2H). 
13C NMR (125 MHz, CDCl3): δ 147.8 (ddddd, JC–F = 245.6, 10.5, 4.0, 4.0, 4.0 Hz), 141.5 (ddddd, 
JC–F = 256.5, 13.6, 13.6, 5.1, 5.1 Hz), 137.5 (ddddd, JC–F = 253.7, 18.2, 12.8, 5.5, 2.1 Hz), 106.9 
(ddd, JC–F = 21.5, 21.5, 4.1 Hz), 66.9, 43.9, 33.1. 
19F NMR (282 MHz, CDCl3): δ –131.0, –131.0, –131.0, –131.1, –131.1, –131.1. 
MP: 57 ˚C. 
IR (neat, ATR): νmax 2988, 2970, 2956, 2846, 1514, 1478, 970 cm–1. 
HRMS (ESI-TOF): calc’d for C11H10F5OS [M + H]+ 285.0367, found 285.0390. 
Rf = 0.40 (10% EtOAc/hexanes). 
Purification: (SiO2, 2 ® 5%  EtOAc/hexanes). 
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*1.0 mmol scale reaction 
Yield: 51% (134 mg). 
Physical State: white solid. 
1H NMR (500 MHz, CDCl3): δ 7.62–7.51 (m, 5H), 4.19 (dddd, J = 10.9, 10.9, 4.1, 4.1 Hz, 1H), 
3.99 (ddd, J = 11.9, 3.7, 3.7 Hz, 2H), 3.58 (ddd, J = 11.8, 10.9, 2.2 Hz, 2H), 2.26–2.19 (m, 2H), 
1.82 (dddd, J = 13.5, 10.8, 10.8, 4.2 Hz, 2H). 
13C NMR (125 MHz, CDCl3): δ 153.3, 133.6, 130.2, 129.8, 124.0, 67.2, 43.8, 33.0. 
Rf = 0.20 (20% EtOAc/hexanes). 
Purification: (SiO2, 15 ® 25%  EtOAc/hexanes). 
All characterization data are consistent with that reported in the literature.21 
 

 
*1.0 mmol scale reaction 
Yield: 75% (148 mg). 
Physical State: colorless oil. 
1H NMR (500 MHz, CDCl3): δ 8.41 (dd, J = 4.8, 0.8 Hz, 1H), 7.47 (ddd, J = 7.7, 7.7, 1.9 Hz, 
1H), 7.16 (d, J = 8.1 Hz, 1H), 6.97 (ddd, J = 7.3, 5.0, 0.8 Hz, 1H), 4.06 (dddd, J = 10.5, 10.5, 4.1, 
4.1 Hz, 1H), 3.97 (ddd, J = 11.7, 3.8, 3.8 Hz, 2H), 3.58 (ddd, J = 11.6, 10.5, 2.3 Hz, 2H), 2.11–
2.02 (m, 2H), 1.84–1.71 (m, 2H). 
13C NMR (125 MHz, CDCl3): δ 158.1, 149.4, 135.9, 122.9, 119.5, 67.4, 39.3, 33.0. 
IR (neat, ATR): νmax 3045, 2952, 2843, 1577, 1556, 1452, 1414, 1122, 1084, 755, 722 cm–1. 
HRMS (DART): calc’d for C10H14NOS [M + H]+ 196.0791, found 196.0780. 
Rf = 0.27 (10% EtOAc/hexanes). 
Purification: (SiO2, 5 ® 15%  EtOAc/hexanes). 
 

 
*1.0 mmol scale reaction 
Yield: 71% (184 mg). 
Physical State: white solid. 
1H NMR (500 MHz, CDCl3): δ 7.48–7.43 (m, 2H), 7.35–7.28 (m, 2H), 7.25–7.16 (m, 5H), 3.38 
(s, 2H), 3.15–3.03 (m, 4H), 2.62 (s, 1H). 
13C NMR (125 MHz, CDCl3): δ 140.6, 136.4, 129.7, 129.0, 126.7, 126.4, 124.8, 81.8, 46.2, 45.7. 
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MP: 72–74 ˚C. 
IR (neat, ATR): νmax 3418, 3069, 3058, 2937, 2922, 1480, 1023, 738 cm–1. 
HRMS (DART): calc’d for C16H15S [M – OH]+ 239.0889, found 239.0876. 
Rf = 0.50 (20% EtOAc/hexanes). 
Purification: (SiO2, 5 ® 10%  EtOAc/hexanes). 
 

 
*1.0 mmol scale reaction 
Yield: 80% (227 mg). 
Physical State: colorless oil. 
1H NMR (500 MHz, CDCl3): δ 7.86–7.78 (m, 2H), 7.76–7.67 (m, 2H), 7.45–7.39 (m, 2H), 7.28–
7.22 (m, 2H), 7.16–7.10 (m, 1H), 3.93 (dd, J = 7.0, 7.0 Hz, 2H), 3.23 (dd, J = 7.4, 6.7 Hz, 2H). 
13C NMR (125 MHz, CDCl3): δ 168.0, 134.7, 133.9, 131.9, 129.6, 128.9, 126.3, 123.2, 37.4, 31.5. 
Rf = 0.43 (20% EtOAc/hexanes). 
Purification: (SiO2, 5 ® 15%  EtOAc/hexanes). 
All characterization data are consistent with that reported in the literature.22 
 

 
*1.0 mmol scale reaction 
Yield: 58% (147 mg). 
Physical State: colorless oil. 
1H NMR (500 MHz, CDCl3): δ 7.44–7.39 (m, 2H), 7.32–7.27 (m, 2H), 7.24–7.19 (m, 1H), 6.21 
(d, J = 6.1 Hz, 1H), 4.87 (dt, J = 4.4, 7.6 Hz, 1H), 3.56 (s, 3H), 3.48 (dd, J = 14.3, 4.5 Hz, 1H), 
3.36 (dd, J = 14.3, 4.5 Hz, 1H), 1.87 (s, 3H). 
13C NMR (125 MHz, CDCl3): δ 170.6, 169.6, 134.6, 130.9, 129.0, 127.0, 52.4, 52.3, 36.4, 22.8. 
IR (neat, ATR): νmax 3281, 3063, 2951, 1743, 1657, 1536, 1439, 1216 cm–1. 
HRMS (DART): calc’d for C12H16NO3S [M + H]+ 254.0845, found 254.0830. 
Rf = 0.43 (50% EtOAc/hexanes). 
Purification: (SiO2, 30 ® 60% EtOAc/hexanes). 
 

 
*1.0 mmol scale reaction 
Yield: 82% (157 mg). 
Physical State: colorless oil. 

N

O

O

N
S

O

O
1c 3ca

1d 3da

MeO
NH

O

MeO S
NH

O

O O

S

1e 3ea



 S19 

1H NMR (500 MHz, CDCl3): δ 7.43–7.38 (m, 2H), 7.32–7.27 (m, 2H), 7.24–7.19 (m, 1H), 3.11 
(dddd, J = 10.4, 10.4, 3.6, 3.6 Hz, 1H), 2.06–1.95 (m, 2H), 1.84–1.74 (m, 2H), 1.67–1.58 (m, 1H), 
1.45–1.20 (m, 5H). 
13C NMR (125 MHz, CDCl3): δ 135.1, 131.8, 128.6, 126.5, 46.5, 33.2, 26.0, 25.7. 
Rf = 0.41 (pentane). 
Purification: (SiO2, pentane). 
All characterization data are consistent with that reported in the literature.23 
 

 
*1.0 mmol scale reaction 
Yield: 79% (231 mg). 
Physical State: colorless oil. 
1H NMR (500 MHz, CDCl3): δ 7.45–7.39 (m, 2H), 7.33–7.28 (m, 2H), 7.27–7.23 (m, 1H), 3.96 
(br s, 2H), 3.21 (dddd, J = 10.2, 10.2, 3.9, 3.9 Hz, 1H), 2.91 (dd, J = 11.2, 11.2 Hz, 2H), 1.97–1.87 
(m, 2H), 1.58–1.47 (m, 2H), 1.44 (s, 9H). 
13C NMR (125 MHz, CDCl3): δ 154.6, 133.7, 132.6, 128.8, 127.2, 79.5, 44.4, 32.0, 28.3, 28.2. 
Rf = 0.38 (10% EtOAc/hexanes). 
Purification: (SiO2, 2 ® 7% EtOAc/hexanes). 
All characterization data are consistent with that reported in the literature.24 
 

 
*1.0 mmol scale reaction 
Yield: 74% (181 mg). 
Physical State: white solid. 
1H NMR (500 MHz, CDCl3): δ 7.53–7.48 (m, 2H), 7.39–7.29 (m, 3H), 2.04–1.99 (m, 3H), 1.82 
(d, J = 2.5 Hz, 6H), 1.68–1.57 (m, 6H). 
13C NMR (125 MHz, CDCl3): δ 137.6, 130.4, 128.4, 128.2, 47.7, 43.5, 36.1, 29.9. 
Rf = 0.31 (hexanes). 
Purification: (SiO2, 0 ® 2% EtOAc/hexanes). 
All characterization data are consistent with that reported in the literature.25 
 

 
*1.0 mmol scale reaction 
Combined Yield: 77% (234 mg). 
Diastereomeric Ratio: 5.9:1 (determined from 1H NMR spectrum of the crude products). 
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Yield: 67% (205 mg). 
Physical State: yellow oil. 
1H NMR (500 MHz, CDCl3): δ 7.42–7.36 (m, 2H), 7.32–7.20 (m, 3H), 3.35 (dddd, J = 16.6, 8.4, 
4.1, 4.1 Hz, 1H), 2.81 (q, J = 6.6 Hz, 1H), 2.55 (ddd, J = 14.1, 14.1, 7.1 Hz, 1H), 2.33 (dd, J = 
14.2, 3.7 Hz, 1H), 2.06 (ddd, J = 13.9, 13.9, 5.0 Hz, 1H), 1.95–1.79 (m, 3H), 1.59–1.48 (m, 2H), 
1.46–1.36 (m, 2H), 1.24–1.26 (m, 1H), 1.22 (s, 3H), 1.00 (d, J = 6.7 Hz, 3H). 
13C NMR (125 MHz, CDCl3): δ 209.7, 134.0, 132.1, 128.8, 127.0, 78.3, 51.6, 42.0, 37.4, 37.3, 
35.2, 35.2, 31.3, 27.9, 21.3, 6.3. 
Rf = 0.32 (20% EtOAc/hexanes). 
Purification: (SiO2, 5 ® 20% EtOAc/hexanes). 
All characterization data are consistent with that reported in the literature.3 
 

 
Yield: 10% (29 mg). 
Physical State: white solid. 
1H NMR (500 MHz, CDCl3): δ 7.47–7.43 (m, 2H), 7.36–7.29 (m, 3H), 4.19 (br s, 1H), 3.61–3.57 
(m, 1H), 2.81 (q, J = 6.5 Hz, 1H), 2.60 (dddd, J = 21.3, 7.1, 7.1, 1.1 Hz, 1H), 2.30 (ddd, J = 14.1, 
4.9, 1.9 Hz, 1H), 2.16–1.95 (m, 3H), 1.85–1.78 (m, 2H), 1.47 (ddd, J = 13.9, 6.9, 2.0 Hz, 1H), 1.37 
(dd, J = 15.7, 4.8 Hz, 1H), 1.34–1.29 (m, 1H), 1.28 (s, 3H), 0.97 (d, J = 6.7 Hz, 3H). 
13C NMR (125 MHz, CDCl3): δ 210.8, 133.4, 132.9, 129.1, 127.9, 78.4, 51.2, 44.0, 38.0, 37.6, 
31.3, 30.6, 29.6, 24.7, 22.0, 6.5. 
Rf = 0.49 (20% EtOAc/hexanes). 
Purification: (SiO2, 5 ® 20% EtOAc/hexanes). 
All characterization data are consistent with that reported in the literature.3 

 

 
*1.0 mmol scale reaction 
Combined Yield: 67% (192 mg, inseparable mixture). 
Diastereomeric Ratio: 7:1 (determined from 1H NMR spectrum of the crude products). 
Physical State: yellow oil. 
1H NMR (500 MHz, CDCl3) major: δ 7.44–7.39 (m, 2H), 7.34–7.29 (m, 2H), 7.28–7.25 (m, 1H), 
5.75 (d, J = 1.1 Hz, 1H), 3.37 (dddd, J = 12.5, 12.5, 3.5, 3.5 Hz, 1H), 2.54–2.44 (m, 1H), 2.35 (ddd, 
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J = 15.3, 4.1, 2.6 Hz, 1H), 2.28–2.21 (m, 3H), 2.19–2.12 (m, 1H), 2.04–1.94 (m, 1H), 1.41 (ddd, 
J = 26.3, 12.8, 4.2 Hz, 1H), 1.30–1.21 (m, 1H), 1.10 (s, 3H), 0.93 (d, J = 6.8 Hz, 3H).   
1H NMR (500 MHz, CDCl3) minor: δ 7.46–7.21 (m, 5H), 5.79 (s, 1H), 3.64–3.58 (m, 1H), 2.93 
(dddd, J = 14.5, 12.7, 6.1, 1.7 Hz, 1H), 2.30–1.93 (m, 6H), 1.91–1.79 (m, 2H), 1.10 (s, 3H), 0.90 
(d, J = 6.8 Hz, 3H).   
13C NMR (125 MHz, CDCl3) major: δ 199.0, 168.2, 133.7, 132.3, 128.9, 127.2, 125.0, 44.9, 42.1, 
41.7, 40.1, 40.0, 33.3, 32.7, 16.7, 14.8. 
13C NMR (125 MHz, CDCl3) minor: δ 199.0, 170.8, 135.6, 131.3, 129.0, 126.9, 124.9, 43.1, 42.3, 
41.8, 39.8, 39.3, 30.5, 28.3, 18.8, 14.8. 
IR (neat, ATR): νmax 3052, 2969, 2939, 2887, 1664, 911, 731, 693 cm–1. 
Optical Rotation: [α]$%&.( 93.8 (c 1.00, CHCl3). 
HRMS (DART): calc’d for C18H23OS [M + H]+ 287.1464, found 287.1446. 
Rf = 0.35 (20% EtOAc/hexanes). 
Purification: (SiO2, 10 ® 20% EtOAc/hexanes). 
Note: 2D NMR spectra are consistent with the proposed structures of 3ia/3ia′. 
 

 
*1.0 mmol scale reaction 
Combined Yield: 74% (202 mg). 
Diastereomeric Ratio: 7.5:1 (determined from 1H NMR spectrum of the crude products). 
Note: 2D NMR spectra are consistent with the proposed structures of 3ja/3ja′. 
 

 
Yield: 65% (178 mg). 
Physical State: colorless oil. 
1H NMR (500 MHz, CDCl3): δ 7.43–7.37 (m, 2H), 7.33–7.28 (m, 2H), 7.26–7.23 (m, 1H), 5.73 
(d, J = 1.3 Hz, 1H), 3.79–3.73 (m, 1H), 2.77 (ddd, J = 15.3, 4.9, 2.0 Hz, 1H), 2.51 (ddd, J = 17.1, 
14.7, 5.1 Hz, 1H), 2.45–2.35 (m, 2H), 2.11 (dddd, J = 14.0, 14.0, 3.8, 3.8 Hz, 1H), 2.06–1.91 (m, 
2H), 1.89–1.76 (m, 2H), 1.49 (ddd, J = 13.6, 3.1, 3.1 Hz, 1H), 1.25 (s, 3H). 
13C NMR (125 MHz, CDCl3): δ 199.0, 166.1, 134.4, 132.3, 129.0, 127.2, 126.8, 45.8, 37.5, 36.7, 
35.6, 35.5, 34.0, 25.7, 22.1. 
IR (neat, ATR): νmax 3060, 2928, 2860, 1664, 1261, 908, 731, 689 cm–1. 
Optical Rotation: [α]$%(.) 34.2 (c 0.50, CHCl3). 
HRMS (DART): calc’d for C17H21OS [M + H]+ 273.1308, found 273.1291. 
Rf = 0.37 (20% EtOAc/hexanes). 
Purification: (SiO2, 5 ® 20% EtOAc/hexanes). 
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Yield: 9% (24 mg). 
Physical State: colorless oil. 
1H NMR (500 MHz, CDCl3): δ 7.46–7.40 (m, 2H), 7.35–7.26 (m, 3H), 5.71 (s, 1H), 3.12 (dddd, 
J = 12.4, 12.4, 4.0, 4.0 Hz, 1H), 2.59–2.38 (m, 3H), 2.35 (ddd, J = 17.1, 3.6, 3.6 Hz, 1H), 2.03–
1.95 (m, 1H), 1.84–1.79 (m, 2H), 1.79–1.71 (m, 2H), 1.43 (ddd, J = 14.0, 14.0, 3.9 Hz, 1H), 1.22 
(s, 3H). 
13C NMR (125 MHz, CDCl3): δ 199.2, 167.1, 133.3, 132.5, 128.9, 127.4, 125.0, 46.5, 40.8, 39.2, 
37.5, 35.2, 33.9, 28.8, 21.9. 
IR (neat, ATR): νmax 3060, 2928, 2860, 1668, 908, 727, 689 cm–1. 
Optical Rotation: [α]$%(.* 43.4 (c 0.50, CHCl3). 
HRMS (DART): calc’d for C17H21OS [M + H]+ 273.1308, found 273.1290. 
Rf = 0.43 (20% EtOAc/hexanes). 
Purification: (SiO2, 5 ® 20% EtOAc/hexanes). 
 

 
*1.0 mmol scale reaction 
Combined Yield: 75% (204 mg). 
Diastereomeric Ratio: 7.5:1 (determined from 1H NMR spectrum of the crude products). 
Note: 2D NMR spectra are consistent with the proposed structures of ent-3ja/ent-3ja′. 
 

 
Yield: 66% (180 mg). 
Physical State: colorless oil. 
1H NMR (500 MHz, CDCl3): δ 7.43–7.37 (m, 2H), 7.33–7.28 (m, 2H), 7.26–7.23 (m, 1H), 5.73 
(d, J = 1.3 Hz, 1H), 3.79–3.73 (m, 1H), 2.77 (ddd, J = 15.3, 4.9, 2.0 Hz, 1H), 2.51 (ddd, J = 17.1, 
14.7, 5.1 Hz, 1H), 2.45–2.35 (m, 2H), 2.11 (dddd, J = 14.0, 14.0, 3.8, 3.8 Hz, 1H), 2.06–1.91 (m, 
2H), 1.89–1.76 (m, 2H), 1.49 (ddd, J = 13.6, 3.1, 3.1 Hz, 1H), 1.25 (s, 3H). 
13C NMR (125 MHz, CDCl3): δ 199.0, 166.1, 134.4, 132.3, 129.0, 127.2, 126.8, 45.8, 37.5, 36.7, 
35.6, 35.5, 34.0, 25.7, 22.1. 
IR (neat, ATR): νmax 3060, 2928, 2860, 1664, 1261, 908, 731, 689 cm–1. 
Optical Rotation: [α]$%&.& –34.2 (c 0.50, CHCl3). 
HRMS (DART): calc’d for C17H21OS [M + H]+ 273.1308, found 273.1292. 
Rf = 0.37 (20% EtOAc/hexanes). 
Purification: (SiO2, 5 ® 20% EtOAc/hexanes). 
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Yield: 9% (24 mg). 
Physical State: colorless oil. 
1H NMR (500 MHz, CDCl3): δ 7.46–7.40 (m, 2H), 7.35–7.26 (m, 3H), 5.71 (s, 1H), 3.12 (dddd, 
J = 12.4, 12.4, 4.0, 4.0 Hz, 1H), 2.59–2.38 (m, 3H), 2.35 (ddd, J = 17.1, 3.6, 3.6 Hz, 1H), 2.03–
1.95 (m, 1H), 1.84–1.79 (m, 2H), 1.79–1.71 (m, 2H), 1.43 (ddd, J = 14.0, 14.0, 3.9 Hz, 1H), 1.22 
(s, 3H). 
13C NMR (125 MHz, CDCl3): δ 199.2, 167.1, 133.3, 132.5, 128.9, 127.4, 125.0, 46.5, 40.8, 39.2, 
37.5, 35.2, 33.9, 28.8, 21.9. 
IR (neat, ATR): νmax 3060, 2928, 2860, 1668, 908, 727, 689 cm–1. 
Optical Rotation: [α]$%&.+ –41.6 (c 0.50, CHCl3). 
HRMS (DART): calc’d for C17H21OS [M + H]+ 273.1308, found 273.1291. 
Rf = 0.43 (20% EtOAc/hexanes). 
Purification: (SiO2, 5 ® 20% EtOAc/hexanes). 
 

 
*1.0 mmol scale reaction 
Combined Yield: 73% (162 mg). 
Diastereomeric Ratio: 1.5:1 (determined from 1H NMR spectrum of the crude products). 
Note: To verify the stereochemistry of the newly formed C–S bond, approximately 5 mg of 3la′ 
was placed in a small crystallization tube and dissolved in a minimal amount of ethyl acetate. This 
vial was placed within a larger 4-mL vial containing approximately 1 mL of hexanes. The vial was 
capped and sealed with Teflon and Parafilm. After 2 days, single crystals suitable for X-ray 
diffraction had formed. 2D NMR spectra are also consistent with the proposed structures of 
3la/3la′. 
 

 
Yield: 44% (97 mg). 
Physical State: white solid. 
1H NMR (500 MHz, CDCl3): δ 7.52–7.44 (m, 2H), 7.35–7.27 (m, 3H), 3.35 (ddd, J = 10.5, 10.5, 
4.4 Hz, 1H), 2.95 (br s, 1H), 2.72 (ddd, J = 12.5, 10.1, 4.0 Hz, 1H), 2.13–2.04 (m, 2H), 1.69–1.62 
(m, 1H), 1.50–1.41 (m, 1H), 1.36 (ddd, J = 26.0, 13.3, 3.8 Hz, 1H), 1.06 (dd, J = 23.4, 12.3 Hz, 
1H), 0.96 (ddd, J = 25.1, 13.2, 3.6 Hz, 1H), 0.91 (d, J = 6.6 Hz, 3H). 
13C NMR (125 MHz, CDCl3): δ 133.7, 132.4, 128.8, 127.7, 71.6, 56.3, 42.3, 34.7, 32.2, 31.0, 
21.8. 
MP: 68–69 ºC. 
IR (neat, ATR): νmax 3421, 3063, 2947, 2925, 2852, 1449, 1047, 743, 689 cm–1. 
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Optical Rotation: [α]$%&.* –36.4 (c 1.00, CHCl3). 
HRMS (DART): calc’d for C13H17S [M – OH]+ 205.1045, found 205.1033. 
Rf = 0.26 (10% EtOAc/hexanes). 
Purification: (SiO2, 5 ® 10% EtOAc/hexanes). 
 

 
Yield: 29% (65 mg). 
Physical State: white solid. 
1H NMR (500 MHz, CDCl3): δ 7.51–7.45 (m, 2H), 7.32–7.19 (m, 3H), 3.80 (ddd, J = 11.5, 4.2, 
4.2 Hz, 1H), 3.64–3.59 (m, 1H), 2.31 (br s, 1H), 2.10 (ddd, J = 14.1, 6.5, 3.3 Hz, 1H), 1.86–1.78 
(m, 1H), 1.73 (dddd, J = 13.6, 13.6, 3.5, 3.5 Hz, 1H), 1.55–1.41 (m, 2H), 1.35–1.24 (m, 1H), 1.13 
(dd, J = 24.1, 11.6 Hz, 1H), 0.96 (d, J = 6.4 Hz, 3H). 
13C NMR (125 MHz, CDCl3): δ 136.2, 131.3, 128.9, 126.7, 71.0, 56.3, 40.4, 31.1, 30.9, 28.9, 
21.9. 
MP: 98–99 ºC. 
IR (neat, ATR): νmax 3327, 3048, 2947, 2925, 2856, 1439, 1028, 735 cm–1. 
Optical Rotation: [α]$%%.( 33.2 (c 1.00, CHCl3). 
HRMS (DART): calc’d for C13H17S [M – OH]+ 205.1045, found 205.1036. 
Rf = 0.20 (10% EtOAc/hexanes). 
Purification: (SiO2, 5 ® 10% EtOAc/hexanes). 
 

 
Combined Yield: 75% (1.0 mmol scale, 165 mg); 66% (10.0 mmol scale, 1.46 g). 
Diastereomeric Ratio: 1.6:1 (determined from 1H NMR spectrum of the crude products). 
Note: 2D NMR spectra are consistent with the proposed structures of 3ma/3ma′. 
 

 
Yield: 47% (1.0 mmol scale, 104 mg); 41% (10.0 mmol scale, 900 mg). 
Physical State: white solid. 
1H NMR (500 MHz, CDCl3): δ 7.44–7.39 (m, 2H), 7.34–7.24 (m, 3H), 3.86–3.80 (m, 1H), 2.67 
(ddd, J = 14.5, 5.0, 1.1 Hz, 1H), 2.53 (ddd, J = 14.5, 4.7, 1.7 Hz, 1H), 2.45–2.36 (m, 1H), 2.14–
2.05 (m, 1H), 1.98 (ddd, J = 8.8, 4.5, 1.7 Hz, 1H), 1.96–1.89 (m, 2H), 1.10 (d, J = 6.7 Hz, 3H). 
13C NMR (125 MHz, CDCl3): δ 210.3, 133.6, 132.8, 129.0, 127.5, 47.0, 45.3, 44.7, 30.5, 28.7, 
14.8. 
MP: 55 ºC. 
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IR (neat, ATR): νmax 3060, 2969, 2931, 2860, 1713, 746, 693 cm–1. 
Optical Rotation: [α]$%%.& –32.7 (c 1.00, CHCl3). 
HRMS (DART): calc’d for C13H17OS [M + H]+ 221.0995, found 221.0984. 
Rf = 0.39 (10% EtOAc/hexanes). 
Purification: (SiO2, 5 ® 10% EtOAc/hexanes). 
 

 
Yield: 28% (1.0 mmol scale, 61 mg); 26% (10.0 mmol scale, 563 mg). 
Physical State: white solid. 
1H NMR (500 MHz, CDCl3): δ 7.45–7.39 (m, 2H), 7.35–7.27 (m, 3H), 3.28 (dddd, J = 12.5, 12.5, 
4.0, 4.0 Hz, 1H), 2.70 (ddd, J = 13.5, 4.3, 2.2 Hz, 1H), 2.41–2.30 (m, 2H), 2.24–2.16 (m, 1H), 
2.16–2.09 (m, 1H), 1.76 (ddd, J = 25.3, 13.1, 3.7 Hz, 1H), 1.36 (ddd, J = 26.4, 13.1, 3.5 Hz, 1H), 
1.01 (d, J = 6.5 Hz, 3H). 
13C NMR (125 MHz, CDCl3): δ 209.9, 133.1, 132.8, 128.9, 127.7, 48.2, 46.7, 44.4, 33.8, 32.3, 
14.1. 
MP: 39–40 ºC. 
IR (neat, ATR): νmax 3063, 2968, 2932, 2861, 1710, 745, 693 cm–1. 
Optical Rotation: [α]$%%.+ 102.7 (c 1.00, CHCl3). 
HRMS (DART): calc’d for C13H17OS [M + H]+ 221.0995, found 221.0982. 
Rf = 0.57 (10% EtOAc/hexanes). 
Purification: (SiO2, 5 ® 10% EtOAc/hexanes). 
 

 
*1.0 mmol scale reaction 
Combined Yield: 60% (132 mg, inseparable mixture). 
Diastereomeric Ratio: 12:1 (determined from 1H NMR spectrum of the crude products). 
Physical State: colorless oil. 
1H NMR (500 MHz, CDCl3) major: δ 7.41–7.36 (m, 2H), 7.32–7.27 (m, 2H), 7.25–7.20 (m, 1H), 
3.33–3.25 (m, 1H), 3.04–3.00 (m, 1H), 2.37 (dd, J = 15.2, 5.1 Hz, 1H), 1.98 (ddd, J = 15.2, 6.1, 
6.1 Hz, 1H), 1.92–1.85 (m, 2H), 1.82–1.75 (m, 1H), 1.40 (dddd, J = 13.6, 8.5, 8.5, 6.0 Hz, 1H), 
1.33 (s, 3H).   
13C NMR (125 MHz, CDCl3) major: δ 134.4, 131.8, 128.8, 126.8, 59.1, 57.0, 39.5, 31.4, 27.5, 
26.2, 23.7. 
IR (neat, ATR): νmax 3067, 2980, 2928, 1435, 905, 727, 693 cm–1. 
Optical Rotation: [α]$%%., –11.8 (c 1.00, CHCl3). 
HRMS (DART): calc’d for C13H17OS [M + H]+ 221.0995, found 221.0983. 
Rf = 0.24 (5% EtOAc/hexanes). 
Purification: (SiO2, 2 ® 5% EtOAc/hexanes). 
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Note: 2D NMR spectra are consistent with the proposed structures of 3na/3na′. When solid ferrous 
sulfate heptahydrate was added at room temperature for the reaction with 1n, formation of the 
products SI-VI and SI-VI′ was observed. 
 

 
*1.0 mmol scale reaction 
Combined Yield: 57% (143 mg). 
Diastereomeric Ratio: 10:1 (determined from 1H NMR spectrum of the crude products). 
Note: Solid ferrous sulfate heptahydrate was added at room temperature. 
 

 
Yield: 53% (132 mg). 
Physical State: colorless oil. 
1H NMR (500 MHz, CDCl3): δ 7.43–7.38 (m, 2H), 7.31–7.26 (m, 2H), 7.24–7.19 (m, 1H), 3.79 
(br s, 1H), 3.48 (ddd, J = 13.4, 9.3, 4.2 Hz, 1H), 3.19 (s, 3H), 2.04 (ddd, J = 13.4, 9.8, 3.4 Hz, 1H), 
1.92–1.83 (m, 2H), 1.80–1.71 (m, 2H), 1.66–1.59 (m, 2H), 1.15 (s, 3H). 
13C NMR (125 MHz, CDCl3): δ 134.9, 131.6, 128.8, 126.6, 75.6, 72.0, 48.4, 41.3, 35.1, 28.7, 
27.8, 18.5. 
IR (neat, ATR): νmax 3428, 3071, 2931, 1435, 1077, 743, 693 cm–1. 
Optical Rotation: [α]$%%.- –17.8 (c 1.00, CHCl3). 
HRMS (ESI-TOF): calc’d for C14H20O2SNa [M + Na]+ 291.0816, found 291.0811. 
Rf = 0.33 (20% EtOAc/hexanes). 
Purification: (SiO2, 10 ® 30% EtOAc/hexanes). 
 

 
Yield: 4% (11 mg). 
Physical State: colorless oil. 
1H NMR (500 MHz, CDCl3): δ 7.45–7.38 (m, 2H), 7.34–7.25 (m, 3H), 3.62–3.53 (m, 1H), 3.21 
(s, 3H), 3.15–3.05 (m, 1H), 2.36 (br s, 1H), 2.21–2.12 (m, 1H), 2.00–1.85 (m, 2H), 1.55–1.47 (m, 
1H), 1.43–1.33 (m, 2H), 1.14 (s, 3H). 
13C NMR (125 MHz, CDCl3): δ 133.9, 132.8, 129.0, 127.4, 77.4, 74.7, 48.8, 43.8, 36.1, 32.2, 
29.7, 14.7. 
IR (neat, ATR): νmax 3436, 3048, 2943, 2868, 1126, 1073, 746 cm–1. 
Optical Rotation: [α]$%%.. –6.4 (c 0.10, CHCl3). 

SI-VI′1n

+
S

O

MeO
O

S

O

MeO

H H

SI-VI

S

OH

MeO

SI-VI

SI-VI′
S

OH

MeO



 S27 

HRMS (ESI-TOF): calc’d for C14H20O2SNa [M + Na]+ 291.0816, found 291.0822. 
Rf = 0.19 (20% EtOAc/hexanes). 
Purification: (SiO2, 10 ® 30% EtOAc/hexanes). 
 

 
*1.0 mmol scale reaction 
Combined Yield: 79% (175 mg). 
Diastereomeric Ratio: 2:1 (determined from 1H NMR spectrum of the crude products). 
Note: 2D NMR spectra are consistent with the proposed structures of 3oa/3oa′. 
 

 
Yield: 55% (121 mg). 
Physical State: white solid. 
1H NMR (500 MHz, CDCl3): δ 7.42–7.37 (m, 2H), 7.33–7.27 (m, 2H), 7.25–7.19 (m, 1H), 3.73–
3.68 (m, 1H), 3.67 (ddd, J = 8.7, 8.7, 3.7 Hz, 1H), 2.09 (dddd, J = 13.4, 4.3, 4.3, 1.3 Hz, 1H), 1.83–
1.40 (m, 7H), 1.05 (d, J = 6.5 Hz, 3H). 
13C NMR (125 MHz, CDCl3): δ 135.4, 131.3, 128.8, 126.6, 72.0, 44.7, 39.0, 38.3, 29.3, 28.1, 
17.8. 
MP: 48–49 ˚C. 
IR (neat, ATR): νmax 3346, 3067, 2925, 2872, 1439, 1055, 1028, 746, 693 cm–1. 
Optical Rotation: [α]$%%.- –0.8 (c 1.00, CHCl3). 
HRMS (DART): calc’d for C13H19OS [M + H]+ 223.1151, found 223.1141. 
Rf = 0.38 (20% EtOAc/hexanes). 
Purification: (SiO2, 5 ® 10% EtOAc/hexanes). 
 

 
Yield: 24% (54 mg). 
Physical State: white solid. 
1H NMR (500 MHz, CDCl3): δ 7.44–7.39 (m, 2H), 7.32–7.27 (m, 2H), 7.26–7.22 (m, 1H), 3.15 
(ddd, J = 10.3, 10.3, 4.1 Hz, 1H), 3.03 (dddd, J = 12.2, 12.2, 3.7, 3.7 Hz, 1H), 2.27 (dddd, J = 12.3, 
3.8, 3.8, 2.2 Hz, 1H), 2.00–1.93 (m, 1H), 1.77 (dq, J = 13.7, 3.5 Hz, 1H), 1.54 (br s, 1H), 1.40–
1.24 (m, 3H), 1.10–1.01 (m, 1H), 1.00 (d, J = 6.5 Hz, 3H). 
13C NMR (125 MHz, CDCl3): δ 134.1, 132.5, 128.7, 127.0, 75.5, 44.5, 42.0, 39.4, 32.7, 32.6, 
17.9. 
MP: 94–95 ˚C. 
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IR (neat, ATR): νmax 3364, 3063, 2925, 2864, 1439, 1043, 743, 689 cm–1. 
Optical Rotation: [α]$%%./ 2.0 (c 0.50, CHCl3). 
HRMS (DART): calc’d for C13H19OS [M + H]+ 223.1151, found 223.1143. 
Rf = 0.42 (20% EtOAc/hexanes). 
Purification: (SiO2, 5 ® 10% EtOAc/hexanes). 
 

 
*1.0 mmol scale reaction 
Combined Yield: 84% (200 mg). 
Diastereomeric Ratio: 4:1 (determined from 1H NMR spectrum of the crude products). 
Note: 2D NMR spectra are consistent with the proposed structures of 3pa/3pa′. 
 

 
Yield: 67% (159 mg). 
Physical State: white solid. 
1H NMR (500 MHz, CDCl3): δ 7.43–7.38 (m, 2H), 7.32–7.27 (m, 2H), 7.25–7.20 (m, 1H), 3.81 
(dd, J = 7.1, 3.2 Hz, 1H), 3.59–3.50 (m, 1H), 2.12 (br s, 1H), 2.05 (ddd, J = 13.7, 7.7, 3.5 Hz, 1H), 
1.84 (ddd, J = 13.6, 7.6, 4.3 Hz, 1H), 1.81–1.67 (m, 5H), 1.23 (s, 3H). 
13C NMR (125 MHz, CDCl3): δ 134.8, 131.7, 128.8, 126.8, 73.5, 72.3, 42.2, 35.6, 33.8, 28.0, 
23.0. 
MP: 66–68 ˚C. 
IR (neat, ATR): νmax 3368, 3063, 2935, 2864, 1439, 1051, 1028, 746, 689 cm–1. 
Optical Rotation: [α]$%%.* –7.2 (c 1.00, CHCl3). 
HRMS (ESI-TOF): calc’d for C13H18O2SK [M + K]+ 277.0659, found 277.0663. 
Rf = 0.45 (50% EtOAc/hexanes). 
Purification: (SiO2, 30 ® 50% EtOAc/hexanes). 
 

 
Yield: 17% (41 mg). 
Physical State: white solid. 
1H NMR (500 MHz, CDCl3): δ 7.46–7.40 (m, 2H), 7.33–7.24 (m, 3H), 3.52 (dd, J = 11.4, 4.3 Hz, 
1H), 3.14–3.06 (m, 1H), 2.16 (dddd, J = 12.9, 4.3, 4.3, 2.1 Hz, 1H), 1.98–1.92 (m, 1H), 1.85 (br s, 
2H), 1.82–1.77 (m, 1H), 1.50–1.38 (m, 3H), 1.20 (s, 3H). 
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13C NMR (125 MHz, CDCl3): δ 133.9, 132.9, 129.0, 127.5, 76.3, 73.5, 44.1, 37.7, 37.5, 30.3, 
19.3. 
MP: 80–82 ˚C. 
IR (neat, ATR): νmax 3384, 3056, 2992, 2935, 1134, 1069, 746, 693 cm–1. 
Optical Rotation: [α]$%%.* 6.4 (c 0.50, CHCl3). 
HRMS (ESI-TOF): calc’d for C13H19O2S [M + H]+ 239.1100, found 239.1109. 
Rf = 0.32 (50% EtOAc/hexanes). 
Purification: (SiO2, 30 ® 50% EtOAc/hexanes). 
 

 
*0.5 mmol scale reaction 
Combined Yield: approximately 78% (see Note). 
Diastereomeric Ratio: 1.2:1 (determined from 1H NMR spectrum of the crude products). 
Note: The thioether 3ql was inseparable from an unidentified byproduct (2.2:1 desired/undesired). 
Subsequent oxidation to the sulfone 8 (section 5.3.) enabled separation from this impurity. The 
combined yield is based on the yield of 3ql′ + the yield of the sulfone 8. 
 

 
Yield: 35% (91 mg). 
Physical State: white solid. 
1H NMR (500 MHz, CDCl3): δ 8.39 (dd, J = 4.9, 0.8 Hz, 1H), 7.44 (ddd, J = 7.7, 7.7, 1.8 Hz, 
1H), 7.11 (d, J = 8.1 Hz, 1H), 6.94 (ddd, J = 7.2, 5.1, 0.8 Hz, 1H), 4.35 (ddd, J = 8.5, 7.8, 2.9 Hz, 
1H), 3.83–3.72 (m, 2H), 3.18 (dd, J = 11.4, 4.8 Hz, 1H), 2.61 (ddd, J = 15.0, 9.0, 9.0 Hz, 1H), 
2.08–1.98 (m, 2H), 1.96–0.86 (m, 22H), 1.05 (s, 3H), 0.98 (s, 3H), 0.96 (s, 3H), 0.82 (s, 3H), 0.75 
(s, 3H), 0.72–0.67 (m, 1H). 
13C NMR (125 MHz, CDCl3): δ 159.7, 149.3, 135.9, 122.4, 119.1, 79.0, 61.3, 55.4, 50.9, 50.7, 
47.3, 43.3, 42.6, 41.0, 38.9, 38.7, 37.2, 35.4, 34.5, 34.5, 34.1, 29.1, 28.0, 27.4, 27.1, 25.4, 20.7, 
18.3, 16.1, 16.0, 15.3, 15.2. 
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MP: 130–132 ˚C. 
IR (neat, ATR): νmax 3380, 3048, 2939, 2872, 1578, 1453, 1412, 1126, 1032, 761, 735 cm–1. 
Optical Rotation: [α]$%+.& 35.8 (c 1.00, CHCl3). 
HRMS (ESI-TOF): calc’d for C32H50NO2S [M + H]+ 512.3557, found 512.3563. 
Rf = 0.32 (30% EtOAc/hexanes). 
Purification: (SiO2, 10 ® 30% EtOAc/hexanes). 
Note: The reaction was run at a concentration of 0.01 M because of the low solubility of 1q in 
MeOH.  
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4.4. General Procedure for Carboxylic Ester Synthesis 
 

 
 
A round-bottom flask equipped with a magnetic stirrer bar was charged with 4 (1.0 equiv) and 
MeOH (0.025 M), then cooled to –78 °C in a dry-ice/acetone bath while open to the air. Ozone 
was bubbled through the solution until complete consumption of the starting material (as indicated 
by TLC and/or a blue color in the reaction mixture). The solution was then sparged with argon for 
5 min to expel excess ozone. Diphenyl disulfide (2a, 3.0 equiv) was added, and then the reaction 
mixture was warmed to 0 °C in an ice-water bath and stirred for 10 min. An aqueous solution (5%, 
wt/vol) of ferrous sulfate heptahydrate (1.2 equiv) was added over a period of approximately 1 
min. Upon completion of the reaction (TLC), the mixture was diluted with water and transferred 
to a separatory funnel. The MeOH/water layer was extracted with dichloromethane (3x). The 
combined organic fractions were washed with brine, dried (anhydrous sodium sulfate), filtered, 
and concentrated under reduced pressure. Purification through flash column chromatography 
(SiO2) provided the thiylated carboxylic ester product 5. 
 
Any modification of the above procedure is described below with the specific entry. 
 
Note: Solid phenyl disulfide was ground to a fine powder prior to use. 
  

O3, MeOH (0.025 M), –78 ˚C;

Ph2S2 (2a) (3.0 equiv)
aq. FeSO4·7H2O (1.2 equiv)

0 ˚C, 1 min4 5
SPh

OMeO
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4.5. Characterization Data 
 

 
*1.0 mmol scale reaction 
Yield: 73% (164 mg). 
Physical State: colorless oil. 
1H NMR (500 MHz, CDCl3): δ 7.35–7.30 (m, 2H), 7.30–7.25 (m, 2H), 7.20–7.14 (m, 1H), 3.66 
(s, 3H), 2.93 (t, J = 7.2 Hz, 2H), 2.33 (t, J = 7.4 Hz, 2H), 1.82–1.73 (m, 2H), 1.71–1.63 (m, 2H). 
13C NMR (125 MHz, CDCl3): δ 173.6, 136.4, 129.0, 128.8, 125.8, 51.4, 33.4, 33.1, 28.4, 23.9. 
IR (neat, ATR): νmax 3060, 2943, 2860, 1736, 1439, 1205, 1172, 743, 686 cm–1. 
HRMS (ESI-TOF): calc’d for C12H16O2SK [M + K]+ 263.0503, found 263.0503. 
Rf = 0.44 (10% EtOAc/hexanes). 
Purification: (SiO2, 0 ® 10% Et2O/pentane). 
 

 
*1.0 mmol scale reaction 
Yield: 71% (168 mg). 
Physical State: colorless oil. 
1H NMR (500 MHz, CDCl3): δ 7.34–7.30 (m, 2H), 7.30–7.25 (m, 2H), 7.19–7.14 (m, 1H), 3.66 
(s, 3H), 2.91 (t, J = 7.3 Hz, 2H), 2.31 (t, J = 7.5 Hz, 2H), 1.71–1.59 (m, 4H), 1.52–1.41 (m, 2H). 
13C NMR (125 MHz, CDCl3): δ 173.9, 136.6, 128.9, 128.7, 125.7, 51.4, 33.8, 33.3, 28.7, 28.1, 
24.4. 
IR (neat, ATR): νmax 3063, 2939, 2856, 1736, 1435, 1257, 1201, 1168, 739, 689 cm–1. 
HRMS (ESI-TOF): calc’d for C13H18O2SK [M + K]+ 277.0659, found 277.0669. 
Rf = 0.44 (10% EtOAc/hexanes). 
Purification: (SiO2, 0 ® 10% Et2O/pentane). 
 

 
*1.0 mmol scale reaction 
Yield: 75% (190 mg). 
Physical State: colorless oil. 
1H NMR (500 MHz, CDCl3): δ 7.41–7.36 (m, 2H), 7.31–7.26 (m, 2H), 7.25–7.20 (m, 1H), 3.66 
(s, 3H), 3.25–3.15 (m, 1H), 2.31 (t, J = 7.5 Hz, 2H), 1.68–1.57 (m, 3H), 1.56–1.44 (m, 3H), 1.27 
(d, J = 6.7 Hz, 3H). 
13C NMR (125 MHz, CDCl3): δ 173.9, 135.1, 131.9, 128.7, 126.6, 51.4, 43.0, 36.1, 33.8, 26.4, 
24.6, 21.0. 
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IR (neat, ATR): νmax 3060, 2935, 2864, 1732, 1435, 1198, 1164, 746, 693 cm–1. 
HRMS (ESI-TOF): calc’d for C14H20O2SK [M + K]+ 291.0816, found 291.0828. 
Rf = 0.41 (10% EtOAc/hexanes). 
Purification: (SiO2, 2 ® 4% EtOAc/hexanes). 
 

 
*1.0 mmol scale reaction 
Yield: 80% (273 mg). 
Physical State: colorless oil. 
1H NMR (500 MHz, CDCl3): δ 7.39–7.33 (m, 2H), 7.30–7.26 (m, 2H), 7.21–7.14 (m, 1H), 3.68–
3.62 (m, 3H), 3.52–3.37 (m, 4H), 3.14–2.98 (m, 2H), 2.60–2.49 (m, 2H), 1.47–1.40 (m, 9H). 
13C NMR (125 MHz, CDCl3): δ 172.4, 172.1, 155.0, 135.9, 135.6, 129.3, 129.0, 128.9, 127.5, 
126.2, 126.0, 80.1, 51.7, 51.7, 48.0, 44.5, 44.1, 33.9, 33.4, 31.9, 31.5, 28.5, 28.4. 
IR (neat, ATR): νmax 3056, 2977, 2928, 1736, 1690, 1412, 1366, 1160, 739, 689 cm–1. 
HRMS (ESI-TOF): calc’d for C17H25NO4SNa [M + Na]+ 362.1309, found 362.1305. 
Rf = 0.19 (10% EtOAc/hexanes). 
Purification: (SiO2, 5 ® 10% EtOAc/hexanes). 
Note: The ester 5da exists as a mixture of rotamers. 
 

 
*1.0 mmol scale reaction 
Yield: 51% (139 mg). 
Physical State: colorless oil. 
1H NMR (500 MHz, CDCl3): δ 7.92 (dd, J = 7.8, 1.2 Hz, 1H), 7.44 (ddd, J = 7.5, 7.5, 1.4 Hz, 
1H), 7.42–7.37 (m, 2H), 7.33–7.24 (m, 4H), 7.21–7.16 (m, 1H), 3.86 (s, 3H), 3.32–3.26 (m, 2H), 
3.25–3.19 (m, 2H). 
13C NMR (125 MHz, CDCl3): δ 167.6, 141.7, 136.5, 132.0, 131.4, 130.8, 129.4, 129.0, 128.8, 
126.5, 125.7, 51.9, 34.7, 34.5. 
IR (neat, ATR): νmax 3060, 2992, 2951, 1716, 1431, 1269, 1251, 1119, 1077, 735, 686 cm–1. 
HRMS (ESI-TOF): calc’d for C16H16O2SK [M + K]+ 311.0503, found 311.0514. 
Rf = 0.48 (10% EtOAc/hexanes). 
Purification: (SiO2, 2 ® 3% EtOAc/hexanes). 
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*1.0 mmol scale reaction 
Combined Yield: 35% (100 mg). 
Regioisomeric Ratio: 1.6:1 (inseparable mixture). 
Physical State: colorless oil. 
1H NMR (500 MHz, CDCl3) 5fa: δ 7.41–7.09 (m, 9H), 3.65 (s, 3H), 3.61 (s, 2H), 3.15–3.10 (m, 
2H), 2.97–2.91 (m, 2H). 
1H NMR (500 MHz, CDCl3) 5fa′: δ 7.41–7.09 (m, 9H), 4.15 (s, 2H), 3.68 (s, 3H), 3.07–3.02 (m, 
2H), 2.70–2.65 (m, 2H). 
13C NMR (125 MHz, CDCl3) 5fa: δ 171.9, 138.8, 136.2, 132.3, 130.7, 129.7, 129.5, 129.0, 127.7, 
126.9, 126.2, 52.1, 38.3, 34.5, 32.9. 
13C NMR (125 MHz, CDCl3) 5fa′: δ 173.3, 139.1, 136.4, 134.8, 130.5, 130.3, 129.2, 128.9, 127.8, 
126.6, 126.6, 51.7, 37.0, 35.3, 27.5. 
IR (neat, ATR): νmax 3063, 3026, 2951, 2872, 1736, 1439, 1254, 1152, 743, 693 cm–1. 
HRMS (ESI-TOF): calc’d for C17H18O2SK [M + K]+ 325.0659, found 326.0665. 
Rf = 0.34 (10% EtOAc/hexanes). 
Purification: (SiO2, 2 ® 5% EtOAc/hexanes). 
 

 
*1.0 mmol scale reaction 
Yield: 74% (205 mg). 
Physical State: colorless oil. 
1H NMR (500 MHz, CDCl3): δ 7.36–7.31 (m, 2H), 7.30–7.25 (m, 2H), 7.19–7.14 (m, 1H), 3.64 
(s, 3H), 2.99 (ddd, J = 12.5, 9.6, 7.0 Hz, 1H), 2.85 (ddd, J = 12.5, 9.5, 6.9 Hz, 1H), 1.95–1.83 (m, 
2H), 1.58 (dd, J = 8.2, 5.7 Hz, 1H), 1.46 (sept, J = 6.9 Hz, 1H), 1.11 (dd, J = 5.3, 5.3 Hz, 1H), 0.94 
(dd, J = 8.3, 4.8 Hz, 1H), 0.92 (d, J = 6.8 Hz, 3H), 0.88 (d, J = 6.9 Hz, 3H). 
13C NMR (125 MHz, CDCl3): δ 172.9, 136.7, 128.9, 128.7, 125.7, 51.6, 35.1, 33.9, 31.6, 28.0, 
24.5, 19.4, 19.2, 18.8. 
IR (neat, ATR): νmax 3067, 2954, 2879, 1724, 1435, 1194, 1168, 739, 689 cm–1. 
HRMS (ESI-TOF): calc’d for C16H23O2S [M + H]+ 279.1413, found 279.1371. 
Rf = 0.48 (10% EtOAc/hexanes). 
Purification: (SiO2, 0 ® 5% Et2O/pentane). 
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*1.0 mmol scale reaction 
Yield: 51% (149 mg). 
Physical State: colorless oil. 
1H NMR (500 MHz, CDCl3): δ 7.43–7.38 (m, 2H), 7.32–7.27 (m, 2H), 7.24–7.19 (m, 1H), 3.66 
(s, 3H), 3.49 (dddd, J = 12.5, 12.5, 4.5, 4.5 Hz, 1H), 2.52 (dddd, J = 12.2, 12.2, 6.1, 6.1 Hz, 1H), 
2.25–2.06 (m, 4H), 1.93–1.85 (m, 2H), 1.67–1.59 (m, 1H), 1.55–1.41 (m, 4H), 1.21–1.13 (m, 1H). 
13C NMR (125 MHz, CDCl3): δ 176.8, 134.5, 131.8, 128.7, 126.6, 51.6, 40.0, 38.0, 35.5, 29.0, 
28.4, 25.9. 
IR (neat, ATR): νmax 3067, 2928, 2872, 1736, 1435, 1198, 1168, 746, 693 cm–1. 
HRMS (ESI-TOF): calc’d for C17H22O2SK [M + K]+ 329.0972, found 329.0965. 
Rf = 0.41 (10% EtOAc/hexanes). 
Purification: (SiO2, 2 ® 5% EtOAc/hexanes). 
Note: 2D NMR spectra are consistent with the proposed structure of 5ha. 
  

5ha4h
S

OMe

O



 S36 

4.6. General Procedure for Aldehyde Synthesis 
 

 
 

A round-bottom flask equipped with a magnetic stirrer bar was charged with 6 (1.0 equiv) and 
MeOH (0.025 M), then cooled to –78 °C in a dry-ice/acetone bath while open to the air. Ozone 
was bubbled through the solution until complete consumption of the starting material (as indicated 
by TLC and/or a blue color in the reaction mixture). The solution was then sparged with argon for 
5 min to expel excess ozone. Diphenyl disulfide (2a, 3.0 equiv) was added, and then the reaction 
mixture was warmed to 0 °C in an ice-water bath and stirred for 10 min. An aqueous solution (5%, 
wt/vol) of ferrous sulfate heptahydrate (1.2 equiv) was added over a period of approximately 1 
min. Upon completion of the reaction (TLC), the mixture was diluted with water and transferred 
to a separatory funnel. The MeOH/water layer was extracted with dichloromethane (3x). The 
combined organic fractions were washed with brine, dried (anhydrous sodium sulfate), filtered, 
and concentrated under reduced pressure. Purification through flash column chromatography 
(SiO2) provided the thiylated aldehyde product 7. 
  
Any modification of the above procedure is described below with the specific entry. 
 
Note: Solid phenyl disulfide was ground to a fine powder prior to use. 
  

O3, MeOH (0.025 M), –78 ˚C;

Ph2S2 (2a) (3.0 equiv)
aq. FeSO4·7H2O (1.2 equiv)

0 ˚C, 1 min6 7
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4.7. Characterization Data 
 

 
*1.0 mmol scale reaction 
Yield: 67% (121 mg). 
Physical State: white solid. 
1H NMR (500 MHz, CDCl3): δ 9.77 (t, J = 1.3 Hz, 1H), 7.36–7.32 (m, 2H), 7.31–7.27 (m, 2H), 
7.22–7.17 (m, 1H), 2.96 (t, J = 7.1 Hz, 2H), 2.62 (dt, J = 7.1, 1.3 Hz, 2H), 1.96 (tt, J = 7.1, 7.1 Hz, 
2H). 
13C NMR (125 MHz, CDCl3): δ 201.4, 135.7, 129.3, 128.9, 126.1, 42.4, 32.9, 21.4. 
Rf = 0.30 (10% EtOAc/hexanes). 
Purification: (SiO2, 5 ® 10% Et2O/pentane). 
All characterization data are consistent with that reported in the literature.26 

 

 
*1.0 mmol scale reaction 
Yield: 63% (122 mg). 
Physical State: white solid. 
1H NMR (500 MHz, CDCl3): δ 9.75 (t, J = 1.6 Hz, 1H), 7.35–7.31 (m, 2H), 7.30–7.26 (m, 2H), 
7.21–7.16 (m, 1H), 2.93 (t, J = 7.1 Hz, 2H), 2.45 (dt, J = 7.1, 1.6 Hz, 2H), 1.82–1.73 (m, 2H), 
1.72–1.64 (m, 2H). 
13C NMR (125 MHz, CDCl3): δ 201.9, 136.3, 129.1, 128.8, 125.9, 43.2, 33.3, 28.4, 21.0. 
Rf = 0.30 (10% EtOAc/hexanes). 
Purification: (SiO2, 2 ® 5% EtOAc/hexanes). 
All characterization data are consistent with that reported in the literature.27 

 

 
*1.0 mmol scale reaction 
Yield: 75% (203 mg). 
Physical State: white solid. 
1H NMR (500 MHz, CDCl3): δ 9.64 (dd, J = 1.9, 1.9 Hz, 1H), 7.35–7.30 (m, 2H), 7.28–7.14 (m, 
8H), 3.44–3.35 (m, 1H), 2.84–2.66 (m, 4H), 2.04–1.89 (m, 2H). 
13C NMR (125 MHz, CDCl3): δ 201.1, 142.3, 136.0, 129.0, 128.8, 128.8, 127.5, 126.9, 125.9, 
50.2, 38.8, 35.6, 31.0. 
MP: 58–59 ˚C. 
IR (neat, ATR): νmax 3052, 3030, 2931, 2822, 2721, 1724, 743, 697 cm–1. 
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HRMS (ESI-TOF): calc’d for C17H19OS [M + H]+ 271.1151, found 271.1149. 
Rf = 0.33 (10% EtOAc/hexanes). 
Purification: (SiO2, 2 ® 5% EtOAc/hexanes). 
 

 
*1.0 mmol scale reaction 
Yield: 65% (152 mg). 
Physical State: colorless oil. 
1H NMR (500 MHz, CDCl3): δ 9.51 (d, J = 5.6 Hz, 1H), 7.36–7.31 (m, 2H), 7.31–7.27 (m, 2H), 
7.21–7.16 (m, 1H), 3.01–2.89 (m, 2H), 2.14–2.00 (m, 2H), 1.66 (dd, J = 8.6, 5.6 Hz, 1H), 1.52 (dd, 
J = 15.9, 7.5 Hz, 1H), 1.29 (s, 3H), 1.19 (s, 3H). 
13C NMR (125 MHz, CDCl3): δ 201.4, 136.2, 129.0, 128.8, 125.9, 38.4, 36.5, 33.6, 30.0, 28.8, 
24.1, 15.0. 
IR (neat, ATR): νmax 3063, 2954, 2921, 2872, 2737, 1690, 739, 693 cm–1. 
Optical Rotation: [α]$%+.& 41.8 (c 1.00, CHCl3). 
HRMS (ESI-TOF): calc’d for C14H18OSK [M + K]+ 273.0710, found 273.0712. 
Rf = 0.39 (10% EtOAc/hexanes). 
Purification: (SiO2, 5 ® 10% Et2O/pentane). 
 

 
*1.0 mmol scale reaction 
Combined Yield: 42% (105 mg, inseparable mixture). 
Diastereomeric Ratio: 1.2:1. 
Physical State: colorless oil. 
1H NMR (500 MHz, CDCl3) major: δ 7.35–7.27 (m, 4H), 7.22–7.16 (m, 1H), 4.88 (d, J = 4.9 Hz, 
1H), 3.32 (s, 3H), 3.0–2.92 (m, 1H), 2.91–2.84 (m, 1H), 2.31–2.22 (m, 1H), 2.11 (dd, J = 12.5, 6.6 
Hz, 1H), 1.77–1.52 (m, 3H), 1.32 (s, 3H), 1.01 (s, 3H). 
1H NMR (500 MHz, CDCl3) minor: δ 7.35–7.27 (m, 4H), 7.22–7.16 (m, 1H), 4.97 (dd, J = 6.1, 
4.5 Hz, 1H), 3.35 (s, 3H), 3.03–2.92 (m, 1H), 2.91–2.78 (m, 1H), 2.50–2.42 (m, 1H), 1.99 (dddd, 
J = 10.7, 10.7, 8.5, 3.9 Hz, 1H), 1.77–1.52 (m, 3H), 1.23 (s, 3H), 1.12 (s, 3H). 
13C NMR (125 MHz, CDCl3) major: δ 136.2, 129.0, 128.8, 125.9, 102.9, 83.6, 54.1, 44.9, 38.6, 
32.8, 29.6, 23.5. 
13C NMR (125 MHz, CDCl3) minor: δ 136.1, 129.2, 128.8, 126.0, 104.2, 82.8, 55.3, 47.2, 38.7, 
32.8, 29.7, 27.9, 23.0. 
IR (neat, ATR): νmax 3063, 2973, 2928, 2830, 1096, 1032, 968, 735, 686 cm–1. 
HRMS (ESI-TOF): calc’d for C15H22O2SK [M + K]+ 305.0972, found 305.0964. 
Rf = 0.40 (10% EtOAc/hexanes). 
Purification: (SiO2, 2 ® 6% EtOAc/hexanes). 
Note: Solid ferrous sulfate heptahydrate was added at room temperature. 
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*1.0 mmol scale reaction 
Yield: 61% (179 mg). 
Physical State: colorless oil. 
1H NMR (500 MHz, CDCl3): δ 9.72 (dd, J = 2.8, 1.7 Hz, 1H), 7.37–7.27 (m, 4H), 7.22–7.17 (m, 
1H), 3.03 (ddd, J = 13.1, 9.1, 4.7 Hz, 1H), 2.86 (ddd, J = 13.0, 8.8, 7.4 Hz, 1H), 2.69–2.62 (m, 
1H), 2.55 (ddd, J = 16.8, 6.7, 2.9 Hz, 1H), 2.32 (ddd, J = 16.8, 5.3, 1.7 Hz, 1H), 1.91 (s, 3H), 1.85 
(dddd, J = 13.9, 9.3, 7.3, 2.8 Hz, 1H), 1.54–1.47 (m, 1H), 1.46 (s, 3H), 1.38 (s, 3H). 
13C NMR (125 MHz, CDCl3): δ 201.4, 169.9, 135.6, 129.3, 128.9, 126.2, 84.0, 44.7, 41.7, 32.1, 
29.8, 23.9, 22.2, 22.0. 
IR (neat, ATR): νmax 3056, 2939, 2830, 2729, 1724, 1370, 1247, 1134, 1024, 735, 693 cm–1. 
HRMS (ESI-TOF): calc’d for C16H22O3SNa [M + Na]+ 317.1182, found 317.1166. 
Rf = 0.38 (20% EtOAc/hexanes). 
Purification: (SiO2, 5 ® 15% EtOAc/hexanes). 
 

 
*1.0 mmol scale reaction 
Combined Yield: 50% (102 mg). 
Diastereomeric Ratio: 1.2:1 (determined from 1H NMR spectrum of the crude products). 
Note: 2D NMR spectra are consistent with the proposed structures of 7ga/7ga′. 
 

 
Yield: 27% (56 mg). 
Physical State: colorless oil. 
1H NMR (500 MHz, CDCl3): δ 9.67 (d, J = 1.7 Hz, 1H), 7.39–7.35 (m, 2H), 7.32–7.27 (m, 2H), 
7.24–7.19 (m, 1H), 3.69–3.62 (m, 1H), 3.10–3.02 (m, 1H), 2.35 (ddd, J = 13.7, 6.8, 6.8 Hz, 1H), 
2.15–2.02 (m, 2H), 1.98–1.90 (m, 1H), 1.87 (ddd, J = 14.0, 8.7, 5.4 Hz, 1H), 1.77–1.68 (m, 1H).  
13C NMR (125 MHz, CDCl3): δ 202.5, 135.8, 130.1, 128.8, 126.5, 50.3, 45.9, 33.1, 32.6, 24.9. 
IR (neat, ATR): νmax 3056, 2958, 2856, 2717, 1716, 1476, 1435, 739, 689 cm–1. 
HRMS (ESI-TOF): calc’d for C12H14OSK [M + K]+ 245.0397, found 245.0418. 
Rf = 0.39 (10% EtOAc/hexanes). 
Purification: (SiO2, 2 ® 3% EtOAc/hexanes). 
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Yield: 23% (46 mg). 
Physical State: colorless oil. 
1H NMR (500 MHz, CDCl3): δ 9.66 (d, J = 2.2 Hz, 1H), 7.40–7.35 (m, 2H), 7.32–7.27 (m, 2H), 
7.25–7.20 (m, 1H), 3.71–3.62 (m, 1H), 2.85–2.76 (m, 1H), 2.30 (ddd, J = 13.8, 9.0, 6.9 Hz, 1H), 
2.19–2.03 (m, 2H), 2.01–1.88 (m, 2H), 1.77–1.68 (m, 1H). 
13C NMR (125 MHz, CDCl3): δ 202.8, 135.6, 131.0, 128.8, 126.6, 50.6, 46.4, 34.0, 32.8, 25.1. 
IR (neat, ATR): νmax 3060, 2947, 2864, 2713, 1716, 1476, 1439, 1093, 1028, 743, 693 cm–1. 
HRMS (ESI-TOF): calc’d for C12H14OSK [M + K]+ 245.0397, found 245.0409. 
Rf = 0.33 (10% EtOAc/hexanes). 
Purification: (SiO2, 2 ® 3% EtOAc/hexanes). 
 

 
*1.0 mmol scale reaction 
Combined Yield: 95% (144 mg). 
 

 
Yield: 5% (12 mg). 
Physical State: colorless oil. 
1H NMR (500 MHz, CDCl3): δ 10.22 (s, 1H), 7.81 (dd, J = 7.7, 1.3 Hz, 1H), 7.50 (ddd, J = 7.5, 
7.5, 1.5 Hz, 1H), 7.38 (ddd, J = 7.5, 7.5, 1.0 Hz, 1H), 7.35–7.31 (m, 2H), 7.30–7.26 (m, 3H), 7.20–
7.15 (m, 1H), 3.18 (t, J = 7.7 Hz, 2H), 2.98 (t, J = 7.2 Hz, 2H), 2.00–1.91 (m, 2H). 
13C NMR (125 MHz, CDCl3): δ 192.5, 144.1, 136.3, 133.8, 133.8, 132.8, 131.2, 129.2, 128.9, 
126.8, 125.9, 33.1, 31.5, 31.1. 
IR (neat, ATR): νmax 3063, 2928, 2860, 2739, 1694, 739, 693 cm–1. 
HRMS (ESI-TOF): calc’d for C16H16OSK [M + K]+ 295.0553, found 295.0566. 
Rf = 0.51 (10% EtOAc/hexanes). 
Purification: (SiO2, 2 ® 6% EtOAc/hexanes). 
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Yield: 90% (132 mg). 
Physical State: colorless oil. 
1H NMR (500 MHz, CDCl3): δ 8.03 (dd, J = 7.8, 1.0 Hz, 1H), 7.46 (ddd, J = 7.5, 7.5, 1.4 Hz, 
1H), 7.33–7.27 (m, 1H), 7.26–7.23 (m, 1H), 2.96 (t, J = 6.1 Hz, 2H), 2.65 (t, J = 6.6 Hz, 2H), 2.18–
2.10 (m, 2H). 
13C NMR (125 MHz, CDCl3): δ 198.3, 144.4, 133.3, 132.5, 128.7, 127.0, 126.5, 39.1, 29.6, 23.2. 
Rf = 0.43 (10% EtOAc/hexanes). 
Purification: (SiO2, 2 ® 6% EtOAc/hexanes). 
All characterization data are consistent with that reported in the literature.28 
Note: A proposed mechanism for the formation of 7ha′ is provided below; it is consistent with a 
literature precedent.29 

 
Figure S4. Proposed mechanism for the formation of 7ha′.  
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5. Experimental Procedures for Synthetic Applications 
 
5.1. General Procedure A for Oxidation to Sulfones 
 

 
 
A round-bottom flask equipped with a magnetic stirrer bar was charged with the thioether (1.0 
equiv) and dichloromethane (0.1 M). mCPBA (2.5 equiv) was added in four portions over a period 
of 10 min at room temperature. The mixture was stirred until complete conversion to the sulfone 
had occurred (TLC; typically < 1 h). Upon its completion, the reaction was quenched through the 
addition of saturated aqueous sodium thiosulfate. The mixture was poured into saturated aqueous 
sodium bicarbonate and extracted with dichloromethane (3x). The combined organic fractions 
were washed with brine, dried, filtered, and concentrated under reduced pressure. If necessary, the 
sulfone was purified through flash column chromatography (SiO2). 
 
  

R SAr R SO2Ar
mCPBA
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5.2. General Procedure B for Oxidation to Sulfones 
 

 
 
The following procedure was adapted from the literature.30 
 
A round-bottom flask equipped with a magnetic stirrer bar was charged with the thioether (1.0 
equiv) and MeOH (0.25 M), then cooled to 0 °C in an ice-water bath. A solution of Oxone™ (3.0 
equiv) in water (0.75 M) was added. The cloudy mixture was warmed to room temperature and 
stirred until complete conversion to the sulfone had occurred (TLC). The mixture was diluted with 
water and extracted with dichloromethane (3x). The combined organic fractions were washed with 
water, brine, dried (anhydrous sodium sulfate), filtered, and concentrated under reduced pressure. 
If necessary, the sulfone was purified through flash column chromatography (SiO2). 
 
Note: Upon addition of Oxone™, the thioether was immediately oxidized to the sulfoxides (a 
mixture of diastereoisomers; the most polar components on TLC). Once the mixture had been 
warmed to room temperature, both of the sulfoxides had been converted to the sulfone (medium-
polarity component on TLC). 
  

R SAr R SO2Ar
Oxone™
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5.3. Synthesis of the Sulfone 8 
 

 
The thioether 3ql was oxidized to the sulfone 8 following General Procedure A. To verify the 
structure of the product, approximately 5 mg of 8 was placed in a small crystallization tube and 
dissolved in a minimal amount of dichloromethane. This vial was placed within a larger 4-mL vial 
containing approximately 1 mL of pentane. The outer vial was capped and sealed with Teflon and 
Parafilm. After 3 days, single crystals suitable for X-ray diffraction had formed. 
 

 
*0.5 mmol scale reaction (from 1q) 
Yield: 43% from 1q (116 mg). 
Physical State: white solid. 
1H NMR (500 MHz, CDCl3): δ 8.72 (ddd, J = 4.7, 1.6, 0.8 Hz, 1H), 8.07 (ddd, J = 7.8, 0.9, 0.9 
Hz, 1H), 7.93 (ddd, J = 7.7, 7.7, 1.7 Hz, 1H), 7.50 (ddd, J = 7.6, 4.7, 1.1 Hz, 1H), 3.92 (ddd, J = 
10.0, 10.0, 4.1 Hz, 1H), 3.85 (d, J = 11.0 Hz, 1H), 3.23 (d, J = 10.3 Hz, 1H), 3.20 (dd, J = 11.4, 
4.7 Hz, 1H), 2.35 (dd, J = 11.8, 10.2 Hz, 1H), 1.96–0.86 (m, 24H), 1.05 (s, 3H), 1.04 (s, 3H), 0.97 
(s, 3H), 0.83 (s, 3H), 0.76 (s, 3H), 0.73–0.67 (m, 1H). 
13C NMR (125 MHz, CDCl3): δ 158.8, 150.3, 137.9, 126.8, 122.0, 78.9, 61.2, 60.5, 55.1, 50.0, 
49.5, 47.8, 43.3, 41.2, 38.9, 38.6, 37.1, 35.4, 34.3, 32.8, 29.3, 28.0, 28.0, 28.0, 27.4, 26.8, 20.9, 
18.3, 16.1, 16.0, 15.4, 14.8. 
MP: 258 ˚C (decomp). 
IR (neat, ATR): νmax 3410, 3004, 2943, 2872, 1299, 1036, 739 cm–1. 
Optical Rotation: [α]$%+.% –6.4 (c 0.50, CHCl3). 
HRMS (ESI-TOF): calc’d for C32H50NO4S [M + H]+ 544.3455, found 544.3455. 
Rf = 0.32 (50% EtOAc/hexanes). 
Purification: (SiO2, 30 ® 60% EtOAc/hexanes). 
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5.4. Synthesis of the Sulfone 9 
 

 
The thioether 3oa (133 mg, 0.600 mmol) was oxidized to the sulfone SI-VII following General 
Procedure A, then used without further purification. 
 

 
*0.6 mmol scale reaction 
Physical State: white solid. 
1H NMR (500 MHz, CDCl3): δ 7.91–7.84 (m, 2H), 7.67–7.61 (m, 1H), 7.60–7.52 (m, 2H), 3.92–
3.86 (m, 1H), 3.35 (dddd, J = 10.0, 10.0, 4.7, 4.7 Hz, 1H), 1.96 (ddd, J = 13.7, 10.6, 3.1 Hz, 1H), 
1.91–1.68 (m, 6H), 1.54–1.46 (m, 1H), 0.94 (d, J = 7.1 Hz, 3H). 
13C NMR (125 MHz, CDCl3): δ 137.4, 133.5, 129.0, 128.7, 70.4, 58.7, 34.4, 27.7, 25.1, 20.0, 
16.3. 
MP: 122–124 ˚C. 
IR (neat, ATR): νmax 3500, 2949, 2932, 2876, 1444, 1297, 1143, 725, 689, 590 cm–1. 
Optical Rotation: [α]$%+.% –8.6 (c 1.00, CHCl3). 
HRMS (ESI-TOF): calc’d for C13H18O3SNa [M + Na]+ 277.0869, found 277.0860. 
Rf = 0.45 (50% EtOAc/hexanes). 
 

 
A round-bottom flask equipped with a magnetic stirrer bar was charged with the sulfone SI-VII 
(153 mg, 0.600 mmol, 1.0 equiv) and anhydrous dichloromethane (0.1 M), then cooled to 0 °C in 
an ice-water bath. Triethylamine (126 µL, 0.900 mmol, 1.5 equiv) was added, followed by 
dropwise addition of methanesulfonyl chloride (70.0 µL, 0.900 mmol, 1.5 equiv). The mixture was 
warmed to room temperature and stirred until complete conversion to the mesylate had occurred 
(TLC, ca. 30 min). Upon completion of the reaction, the mixture was diluted with water and 
extracted with dichloromethane (3x). The combined organic fractions were washed with brine, 
dried (anhydrous sodium sulfate), filtered, and concentrated under reduced pressure. The crude 
product was filtered through a short silica (SiO2) plug to give the mesylate SI-VIII, which was 
used without further purification. 
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*0.6 mmol scale reaction 
Physical State: colorless oil. 
1H NMR (500 MHz, CDCl3): δ 7.93–7.86 (m, 2H), 7.72–7.64 (m, 1H), 7.63–7.55 (m, 2H), 4.88–
4.81 (m, 1H), 3.31–3.22 (m, 1H), 2.98 (s, 3H), 2.17–2.03 (m, 3H), 1.97–1.87 (m, 1H), 1.87–1.72 
(m, 2H), 1.68–1.59 (m, 1H), 1.02 (d, J = 7.2 Hz, 3H). 
13C NMR (125 MHz, CDCl3): δ 136.8, 133.9, 129.2, 128.8, 81.5, 58.5, 38.5, 32.9, 26.6, 25.5, 
19.7, 16.1. 
IR (neat, ATR): νmax 2972, 2940, 1345, 1301, 1174, 1147, 928, 901 cm–1. 
Optical Rotation: [α]$%+., –16.4 (c 1.00, CHCl3). 
HRMS (ESI-TOF): calc’d for C14H20O5S2Na [M + Na]+ 355.0644, found 355.0630. 
Rf = 0.56 (50% EtOAc/hexanes). 
 

 
The following procedure was adapted from the literature.31 
 
A flame-dried round-bottom flask equipped with a magnetic stirrer bar was charged under argon 
protection with the mesylate SI-VIII (200 mg, 0.600 mmol, 1.0 equiv) and anhydrous THF (0.1 
M), then cooled to –20 °C in a NaCl/ice bath. n-Butyllithium (2.3 M, 391 µL, 0.900 mmol, 1.5 
equiv) was added dropwise. Once the starting material had been consumed (TLC), the reaction 
was quenched through the addition of saturated aqueous ammonium chloride. The aqueous layer 
was extracted with dichloromethane (3x). The combined organic fractions were washed with brine, 
dried (anhydrous sodium sulfate), filtered, and concentrated under reduced pressure. Purification 
through flash column chromatography (SiO2) provided the sulfone 9. 
 
Note: The mesylate SI-VIII was azeotroped with benzene three times prior to use. 
 

 
*0.6 mmol scale reaction 
Yield: 85% from 3oa (121 mg). 
Physical State: white solid. 
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1H NMR (500 MHz, CDCl3): δ 7.91–7.85 (m, 2H), 7.65–7.60 (m, 1H), 7.57–7.50 (m, 2H), 2.20–
2.10 (m, 2H), 1.95 (dd, J = 9.0, 5.1 Hz, 1H), 1.71 (dd, J = 12.4, 7.9 Hz, 1H), 1.65 (ddd, J = 9.0, 
5.6, 1.2 Hz, 1H), 1.46–1.31 (m, 2H), 0.95 (dd, J = 5.3, 5.3 Hz, 1H), 0.80 (d, J = 7.0 Hz, 3H). 
13C NMR (125 MHz, CDCl3): δ 139.2, 133.1, 128.8, 128.2, 48.0, 33.5, 33.4, 28.7, 25.0, 20.5, 
14.2. 
MP: 52–53 ˚C. 
IR (neat, ATR): νmax 3067, 2958, 2879, 1299, 1138, 1085, 723, 686, 592, 558 cm–1. 
Optical Rotation: [α]$%+., –2.5 (c 1.00, CHCl3). 
HRMS (DART): calc’d for C13H17O2S [M + H]+ 237.0944, found 237.0930. 
Rf = 0.32 (10% EtOAc/hexanes). 
Purification: (SiO2, 5 ® 10% EtOAc/hexanes). 
Note: The sulfone 9 was also synthesized in 78% overall yield starting from a mixture of the 
thioethers 3oa/3oa´ (2:1 d.r.) by following the procedures given above. 
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5.5. Synthesis of the Sulfone 10 
 

 
The thioether 3la (111 mg, 0.500 mmol) was oxidized to the sulfone SI-IX following General 
Procedure A, then used without further purification. 
 

 
*0.5 mmol scale reaction 
Physical State: white solid. 
1H NMR (500 MHz, CDCl3): δ 7.95–7.87 (m, 2H), 7.73–7.66 (m, 1H), 7.64–7.56 (m, 2H), 4.13 
(br s, 1H), 3.96 (ddd, J = 10.3, 10.3, 4.8 Hz, 1H), 2.94 (ddd, J = 12.9, 9.5, 3.7 Hz, 1H), 2.14–2.04 
(m, 1H), 1.88 (dddd, J = 13.3, 3.6, 3.6, 3.6 Hz, 1H), 1.71–1.62 (m, 1H), 1.46–1.34 (m, 1H), 1.33 
(ddd, J = 26.2, 13.2, 3.9 Hz, 1H), 1.07 (q, J = 12.1 Hz, 1H), 0.89 (d, J = 6.6 Hz, 3H), 0.86 (ddd, J 
= 25.4, 13.6, 3.5 Hz, 1H). 
13C NMR (125 MHz, CDCl3): δ 136.7, 134.0, 129.1, 128.9, 68.6, 67.8, 42.4, 32.7, 30.1, 25.3, 
21.4. 
MP: 101–102 ˚C. 
IR (neat, ATR): νmax 3500, 3067, 2954, 2928, 2864, 1445, 1291, 1134, 1081, 610 cm–1. 
Optical Rotation: [α]$%+.. –15.5 (c 1.00, CHCl3). 
HRMS (ESI-TOF): calc’d for C13H18O3SNa [M + Na]+ 277.0869, found 277.0850. 
Rf = 0.42 (30% EtOAc/hexanes). 
 

 
A round-bottom flask equipped with a magnetic stirrer bar was charged with the sulfone SI-IX 
(127 mg, 0.500 mmol, 1.0 equiv) and anhydrous dichloromethane (0.1 M), then cooled to 0 °C in 
an ice-water bath. Triethylamine (105 µL, 0.750 mmol, 1.5 equiv) was added, followed by 
dropwise addition of methanesulfonyl chloride (58 µL, 0.750 mmol, 1.5 equiv). The mixture was 
warmed to room temperature and stirred until complete conversion to the mesylate had occurred 
(TLC, ca. 30 min). The mixture was diluted with water and extracted with dichloromethane (3x). 
The combined organic fractions were washed with brine, dried (anhydrous sodium sulfate), filtered, 
and concentrated under reduced pressure. The crude product was filtered through a short silica 
(SiO2) plug to give the mesylate SI-X, which was used without further purification. 
 
 

SPh
3la

SO2Ph

mCPBAOH OH

SI-IX

OH

S
O OSI-IX

SO2Ph SO2Ph

MsCl, Et3NOH OMs

SI-IX SI-X



 S49 

 
*0.5 mmol scale reaction 
Physical State: white solid. 
1H NMR (500 MHz, CDCl3): δ 7.93–7.86 (m, 2H), 7.71–7.65 (m, 1H), 7.63–7.56 (m, 2H), 4.99 
(ddd, J = 10.7, 10.7, 4.7 Hz, 1H), 3.24 (ddd, J = 12.9, 10.2, 4.1 Hz, 1H), 3.09 (s, 3H), 2.47 (dddd, 
J = 12.7, 4.9, 3.0, 2.0 Hz, 1H), 1.79 (dq, J = 13.5, 3.7 Hz, 1H), 1.73–1.65 (m, 1H), 1.58–1.49 (m, 
1H), 1.46 (dq, J = 13.3, 3.9 Hz, 1H), 1.37 (q, J = 12.1 Hz, 1H), 0.92 (d, J = 6.5 Hz, 3H), 0.87 (dq, 
J = 11.9, 3.7 Hz, 1H). 
13C NMR (125 MHz, CDCl3): δ 138.0, 133.9, 129.2, 128.5, 77.7, 65.1, 41.9, 39.1, 32.2, 30.4, 
26.2, 21.1. 
MP: 180–182 ˚C. 
IR (neat, ATR): νmax 3028, 2953, 2932, 2873, 1349, 1305, 1178, 1143, 944, 749, 607 cm–1. 
Optical Rotation: [α]$%+.. –42.5 (c 1.00, CHCl3). 
HRMS (ESI-TOF): calc’d for C14H20O5S2Na [M + Na]+ 355.0644, found 355.0649. 
Rf = 0.30 (30% EtOAc/hexanes). 
 

 
A flame-dried round-bottom flask equipped with a magnetic stirrer bar under argon protection was 
charged with the mesylate SI-X (166 mg, 0.500 mmol, 1.0 equiv) and anhydrous THF (0.1 M), 
then cooled to –78 °C in a dry-ice/acetone bath. n-Butyllithium (2.3 M, 261 µL, 0.600 mmol, 1.2 
equiv) was added dropwise. After stirring for 20 min, the mixture was warmed to room temperature 
and stirred until the starting material had been consumed (TLC). The reaction was quenched 
through the addition of half-saturated aqueous ammonium chloride. The aqueous phase was 
extracted with dichloromethane (3x). The combined organic fractions were washed with brine, 
dried (anhydrous sodium sulfate), filtered, and concentrated under reduced pressure. Purification 
through flash column chromatography (SiO2) provided the sulfone 10. 
 
Note: The mesylate SI-X was azeotroped with benzene three times prior to use. 
 

 
*0.5 mmol scale reaction 
Yield: 96% from 3la (112 mg). 
Physical State: colorless oil. 
1H NMR (500 MHz, CDCl3): δ 7.90–7.83 (m, 2H), 7.63–7.57 (m, 1H), 7.57–7.49 (m, 2H), 7.07–
7.01 (m, 1H), 2.44–2.34 (m, 1H), 2.34–2.24 (m, 1H), 2.19–2.08 (m, 1H), 1.85 (ddddd, J = 19.1, 
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9.5, 3.9, 2.7, 2.7 Hz, 1H), 1.80–1.72 (m, 1H), 1.69–1.60 (m, 1H), 1.28–1.16 (m, 1H), 0.95 (d, J = 
6.7 Hz, 3H). 
13C NMR (125 MHz, CDCl3): δ 139.4, 139.4, 138.1, 133.0, 128.9, 127.9, 33.6, 29.8, 27.0, 22.8, 
20.9. 
IR (neat, ATR): νmax 3063, 2954, 2928, 2875, 1307, 1288, 1148, 1081, 915, 735, 719, 686, 618, 
569 cm–1. 
Optical Rotation: [α]$%+.. 53.3 (c 1.00, CHCl3). 
HRMS (ESI-TOF): calc’d for C13H16O2SNa [M + Na]+ 259.0763, found 259.0774. 
Rf = 0.33 (10% EtOAc/hexanes). 
Purification: (SiO2, 10% EtOAc/hexanes). 
Note: The silyl ether SI-XI also underwent elimination to provide the sulfone 10 in 95% yield 
from 3la. 
 

 
Physical State: white solid. 
1H NMR (500 MHz, CDCl3): δ 7.90–7.83 (m, 2H), 7.62–7.56 (m, 1H), 7.55–7.48 (m, 2H), 4.17 
(ddd, J = 10.7, 9.5, 4.5 Hz, 1H), 3.09 (ddd, J = 12.9, 9.3, 3.6 Hz, 1H), 2.04–1.97 (m, 1H), 1.74–
1.63 (m, 2H), 1.51–1.38 (m, 1H), 1.10 (dd, J = 23.6, 12.4 Hz, 1H), 0.94–0.78 (m, 2H), 0.90 (d, J 
= 6.6 Hz, 3H), 0.86 (s, 9H), 0.12 (s, 3H), 0.04 (s, 3H). 
13C NMR (125 MHz, CDCl3): δ 140.2, 132.8, 128.8, 127.9, 70.2, 68.3, 44.6, 32.8, 30.4, 25.8, 
21.5, 18.0, –4.1, –4.2. 
MP: 54–56 ˚C. 
IR (neat, ATR): νmax 3063, 2954, 2928, 2852, 1303, 1145, 829, 780, 607 cm–1. 
Optical Rotation: [α]$%+.. –45.6 (c 1.00, CHCl3). 
HRMS (ESI-TOF): calc’d for C19H32O3SSiNa [M + Na]+ 391.1734, found 391.1759. 
Rf = 0.42 (10% EtOAc/hexanes). 
Note: The silyl ether SI-XI was prepared from the sulfone SI-IX by following a procedure adapted 
from the literature.32  
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5.6. Synthesis of the Ketals 11/11′ 
 

 
The thioether 3ma´ (528 mg, 2.40 mmol) was oxidized to the sulfone SI-XII following General 
Procedure B. 
 

 
*2.4 mmol scale reaction 
Yield: 94% (569 mg). 
Physical State: white solid. 
1H NMR (500 MHz, CDCl3): δ 7.92–7.83 (m, 2H), 7.73–7.65 (m, 1H), 7.64–7.55 (m, 2H), 3.27 
(dddd, J = 12.5, 8.8, 8.8, 3.7 Hz, 1H), 2.58 (d, J = 9.4 Hz, 2H), 2.38 (sept, J = 6.4 Hz, 1H), 2.33–
2.26 (m, 1H), 2.21 (dddd, J = 13.7, 5.8, 3.5, 3.5 Hz, 1H), 2.00 (dddd, J = 13.0, 13.0, 13.0, 3.7 Hz, 
1H), 1.34 (dddd, J = 13.3, 13.3, 13.3, 3.5 Hz, 1H), 1.01 (d, J = 6.5 Hz, 3H). 
13C NMR (125 MHz, CDCl3): δ 207.8, 136.6, 134.1, 129.3, 128.8, 62.9, 44.3, 40.4, 32.5, 24.0, 
13.9. 
MP: 146–148 ˚C. 
IR (neat, ATR): νmax 2977, 2931, 2872, 1709, 1281, 1257, 1141 cm–1. 
Optical Rotation: [α]$%+.- 66.1 (c 1.00, CHCl3). 
HRMS (ESI-TOF): calc’d for C13H16O3SNa [M + Na]+ 275.0712, found 275.0721. 
Rf = 0.43 (30% EtOAc/hexanes). 
Purification: (SiO2, 20 ® 30% EtOAc/hexanes). 
 

 
A round-bottom flask equipped with a magnetic stirrer bar was charged with the sulfone SI-XII 
(252 mg, 1.00 mmol, 1.0 equiv), pyridinium p-toluenesulfonate (38.0 mg, 0.15 mmol, 0.15 equiv), 
ethylene glycol (168 µL, 3.00 mmol, 3.0 equiv), and anhydrous benzene (0.1 M). The mixture was 
heated under reflux for 4 h using a Dean–Stark apparatus. Upon completion of the reaction (TLC), 
the mixture was cooled, poured into saturated aqueous sodium bicarbonate, and extracted with 
EtOAc (3x). The combined organic fractions were washed with brine, dried (anhydrous sodium 
sulfate), filtered, and concentrated under reduced pressure. Purification through flash column 
chromatography (SiO2) provided the ketal SI-XIII.  
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*1.1 mmol scale reaction 
Yield: 91% (301 mg). 
Physical State: white solid. 
1H NMR (500 MHz, CDCl3): δ 7.89–7.83 (m, 2H), 7.68–7.62 (m, 1H), 7.59–7.52 (m, 2H), 4.00–
3.85 (m, 4H), 3.19 (dddd, J = 12.6, 12.6, 3.4, 3.4 Hz, 1H), 2.18 (ddd, J = 12.7, 3.2, 2.4 Hz, 1H), 
1.97–1.88 (m, 1H), 1.71 (ddd, J = 13.1, 7.1, 3.9 Hz, 1H), 1.71–1.59 (m, 1H), 1.51 (dd, J = 12.8, 
12.8 Hz, 1H), 1.41 (dddd, J = 12.9, 12.9, 12.9, 3.8 Hz, 1H), 1.29 (dddd, J = 12.9, 12.9, 12.9, 3.6 
Hz, 1H), 0.82 (d, J = 6.6 Hz, 3H). 
13C NMR (125 MHz, CDCl3): δ 136.9, 133.6, 129.0, 128.9, 109.4, 65.3, 65.1, 61.4, 38.9, 34.0, 
30.1, 25.0, 13.3. 
MP: 104–105 ˚C. 
IR (neat, ATR): νmax 3067, 2958, 2935, 2883, 1299, 1148, 1081 cm–1. 
Optical Rotation: [α]$%+.- 6.5 (c 1.00, CHCl3). 
HRMS (ESI-TOF): calc’d for C15H20O4SNa [M + Na]+ 319.0975, found 319.0969. 
Rf = 0.50 (30% EtOAc/hexanes). 
Purification: (SiO2, 20 ® 30% EtOAc/hexanes). 
 

 
The ketal SI-XIII was converted to the arylated products 11/11´ by following a procedure adapted 
from the literature.33 

 

A flame-dried vial was charged with the ketal SI-XIII (148 mg, 0.500 mmol, 1.0 equiv) and 
Fe(acac)3 (35.4 mg, 0.100 mmol, 0.2 equiv) in a glove box, then sealed with a rubber septum and 
removed. A flame-dried round-bottom flask equipped with a magnetic stirrer bar was charged 
under argon protection with tetramethylethylenediamine (598 µL, 4.00 mmol, 8.0 equiv) and 
stirring was commenced. The first vial was charged with cyclopentyl methyl ether (3.0 mL), then 
sonicated until the contents became homogeneous. The clear-red solution was transferred via 
syringe to the reaction flask. The vial was rinsed with another portion of cyclopentyl methyl ether 
(3.0 mL) and then the contents were also transferred to the reaction flask via syringe. 
Phenylmagnesium bromide (3.0 M in Et2O, 0.500 mL, 1.50 mmol, 3.0 equiv) was added over 30 
s (the color changed from red to black upon addition of the Grignard reagent). After stirring for 24 
h, the reaction was quenched through the addition of water (5.0 mL). The mixture was filtered 
through a Celite plug and then the filter cake was washed with water (2x) and EtOAc (3x). The 
mixture was transferred to a separatory funnel. The aqueous phase was extracted with EtOAc (3x). 
The combined organic fractions were washed with brine, dried (anhydrous sodium sulfate), filtered, 
and concentrated under reduced pressure. Purification through flash column chromatography 
(SiO2) provided the arylated products 11/11´. 
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Note: The ketal SI-XIII was azeotroped with benzene three times prior to use. 
 

 
*0.5 mmol scale reaction 
Yield: 55% (64 mg combined). 
Diasteromeric Ratio: 4.3:1. 
Physical State: white solid. 
1H NMR (500 MHz, CDCl3) major: δ 7.34–7.27 (m, 2H), 7.26–7.17 (m, 3H), 4.05–3.92 (m, 4H), 
2.84 (dddd, J = 12.5, 12.5, 3.4, 3.4 Hz, 1H), 1.97 (ddd, J = 12.9, 3.4, 2.1 Hz, 1H), 1.91–1.72 (m, 
3H), 1.62 (t, J = 12.9 Hz, 1H), 1.56–1.42 (m, 2H), 0.94 (d, J = 6.5 Hz, 3H). 
1H NMR (500 MHz, CDCl3) minor: δ 7.34–7.27 (m, 2H), 7.26–7.17 (m, 3H), 4.05–3.92 (m, 4H), 
2.94–2.85 (m, 1H), 2.05–1.39 (m, 7H), 1.12 (d, J = 7.3 Hz, 3H). 
13C NMR (125 MHz, CDCl3) major: δ 146.1, 128.3, 126.7, 126.0, 110.6, 65.3, 64.8, 42.4, 41.8, 
39.3, 33.8, 32.3, 13.8. 
13C NMR (125 MHz, CDCl3) minor: δ 146.2, 128.3, 126.7, 126.0, 111.4, 64.2, 64.1, 41.7, 36.7, 
35.6, 29.8, 27.3, 14.6. 
MP: 67–68 ˚C. 
IR (neat, ATR): νmax 2972, 2925, 2885, 2857, 1170, 1087, 761 cm–1. 
Optical Rotation: [α]$%(./ –6.4 (c 0.50, CHCl3). 
HRMS (ESI-TOF): calc’d for C15H21O2 [M + H]+ 233.3305, found 233.3301. 
Rf = 0.36 (5% EtOAc/hexanes). 
Purification: (SiO2, 2 ® 5% EtOAc/hexanes). 
Note: Approximately 25 mg of the major diastereoisomer 11 was separated from the mixture of 
11 and 11´ (the major product is slightly more polar). In contrast, the minor diastereoisomer could 
not be separated completely from the major product. NMR spectra are provided for both pure 11 
and a mixture of 11 and 11´ (2.3:1 d.r.). All presented characterization data (MP, IR, optical 
rotation, HRMS) are those for pure 11. 2D NMR spectra are consistent with the proposed structure 
of 11. 
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5.7. Synthesis of the Lactone 12 
 

 
The thioether 3ma (682 mg, 3.10 mmol) was oxidized to the sulfone SI-XIV following General 
Procedure B. 
 

 
*3.1 mmol scale reaction 
Yield: 95% (751 mg). 
Physical State: white solid. 
1H NMR (500 MHz, CDCl3): δ 7.92–7.86 (m, 2H), 7.72–7.66 (m, 1H), 7.62–7.56 (m, 2H), 3.40 
(dddd, J = 8.5, 8.5, 4.9, 4.9 Hz, 1H), 2.71 (dd, J = 15.4, 8.7 Hz, 1H), 2.52–2.41 (m, 2H), 2.31 
(dddd, J = 14.1, 8.4, 8.4, 4.5 Hz, 1H), 2.15–2.06 (m, 1H), 2.05–1.96 (m, 1H), 1.96–1.87 (m, 1H), 
1.15 (d, J = 7.0 Hz, 3H). 
13C NMR (125 MHz, CDCl3): δ 208.9, 136.9, 134.0, 129.3, 128.8, 61.8, 43.4, 37.7, 29.5, 20.5, 
15.6. 
MP: 119–120 ˚C. 
IR (neat, ATR): νmax 3063, 2973, 2939, 2872, 1709, 1291, 1148, 1073, 723 cm–1. 
Optical Rotation: [α]$%+./ –63.3 (c 1.00, CHCl3). 
HRMS (ESI-TOF): calc’d for C13H16O3SK [M + K]+ 291.0452, found 291.0492. 
Rf = 0.52 (50% EtOAc/hexanes). 
Purification: (SiO2, 30 ® 50% EtOAc/hexanes). 
 

 
The sulfone SI-XIV was converted to the lactone 12 by following a procedure adapted from the 
literature.34 
 
mCPBA (671 mg, 2.80 mmol, 1.4 equiv) was added to a stirred solution of the sulfone SI-XIV 
(504 mg, 2.00 mmol, 1.0 equiv) in dichloromethane (0.5 M) at room temperature. The mixture was 
stirred until complete conversion to the lactone had occurred (TLC, ca. 6 h). The mixture was 
filtered to remove solids and then the filter cake washed with dichloromethane (3x). The organic 
fractions were washed with aqueous sodium bisulfite (5%, wt/vol), saturated aqueous sodium 
bicarbonate (3x), and brine (2x), then dried (anhydrous sodium sulfate), filtered, and concentrated 
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under reduced pressure. Purification through flash column chromatography (SiO2) provided the 
lactone 12. 
 

 
*2.0 mmol scale reaction 
Yield: 73% (390 mg). 
Physical State: white solid. 
1H NMR (500 MHz, CDCl3): δ 8.02–7.96 (m, 2H), 7.73–7.67 (m, 1H), 7.65–7.58 (m, 2H), 4.45 
(ddq, J = 10.1, 6.2, 2.4 Hz, 1H), 3.31 (ddd, J = 10.9, 5.5, 5.5 Hz, 1H), 3.05 (dd, J = 15.7, 5.7 Hz, 
1H), 2.92 (ddd, J = 15.8, 5.3, 0.7 Hz, 1H), 2.44 (dddd, J = 14.8, 6.3, 6.3, 4.2 Hz, 1H), 2.28 (dddd, 
J = 15.1, 9.6, 9.6, 4.1 Hz, 1H), 2.09 (dddd, J = 14.6, 9.6, 4.8, 4.8 Hz, 1H), 1.88 (J = 15.1, 6.9, 4.9, 
2.0 Hz, 1H), 1.42 (d, J = 6.4 Hz, 3H). 
13C NMR (125 MHz, CDCl3): δ 170.0, 136.8, 134.3, 129.4, 129.2, 75.7, 58.1, 34.5, 32.6, 25.1, 
21.8. 
MP: 173–175 ˚C. 
IR (neat, ATR): νmax 3060, 2935, 1720, 1307, 1287, 1263, 1181, 1143, 1081, 735, 693 cm–1. 
Optical Rotation: [α]$%+./ –26.7 (c 1.00, CHCl3). 
HRMS (ESI-TOF): calc’d for C13H16O4SNa [M + Na]+ 291.0662, found 291.0661. 
Rf = 0.22 (50% EtOAc/hexanes). 
Purification: (SiO2, 50 ® 75% EtOAc/hexanes). 
Note: 2D NMR spectra are consistent with the proposed structure of 12. 
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6. Copies of 1H, 13C, and 19F NMR Spectra 
 

 
 

1H (500 MHz, CDCl3) and 13C (125 MHz, CDCl3) NMR Spectra of 1a  
  

O

1a
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1H (500 MHz, CDCl3) and 13C (125 MHz, CDCl3) NMR Spectra of SI-II/SI-II′ (1:1 cis/trans) 
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1H (500 MHz, CDCl3) and 13C (125 MHz, CDCl3) NMR Spectra of 6h 
 
  

6h
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1H (500 MHz, CDCl3) and 13C (125 MHz, CDCl3) NMR Spectra of 3aa 
  

3aa
O

S



 S60 

 
 

 
 

1H (500 MHz, CDCl3) and 13C (125 MHz, CDCl3) NMR Spectra of 3ab 
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1H (500 MHz, CDCl3) and 13C (125 MHz, CDCl3) NMR Spectra of 3ac   
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1H (500 MHz, CDCl3) and 13C (125 MHz, CDCl3) NMR Spectra of 3ad 
  

3ad
O

S



 S63 

 
 

 
 

1H (500 MHz, CDCl3) and 13C (125 MHz, CDCl3) NMR Spectra of 3ae 
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1H (500 MHz, CDCl3) and 13C (125 MHz, CDCl3) NMR Spectra of 3af 
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1H (500 MHz, CDCl3) and 13C (125 MHz, CDCl3) NMR Spectra of 3ag 
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1H (500 MHz, CDCl3) and 13C (125 MHz, CDCl3) NMR Spectra of 3ah 
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1H (500 MHz, CDCl3), 13C (125 MHz, CDCl3), and 19F (282 MHz, CDCl3) NMR Spectra of 3ai 
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1H (500 MHz, CDCl3), 13C (125 MHz, CDCl3), and 19F (282 MHz, CDCl3) NMR Spectra of 3aj 
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1H (500 MHz, CDCl3) and 13C (125 MHz, CDCl3) NMR Spectra of 3ak 
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1H (500 MHz, CDCl3) and 13C (125 MHz, CDCl3) NMR Spectra of 3al 
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1H (500 MHz, CDCl3) and 13C (125 MHz, CDCl3) NMR Spectra of 3ba 
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1H (500 MHz, CDCl3) and 13C (125 MHz, CDCl3) NMR Spectra of 3ca 
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1H (500 MHz, CDCl3) and 13C (125 MHz, CDCl3) NMR Spectra of 3da  
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1H (500 MHz, CDCl3) and 13C (125 MHz, CDCl3) NMR Spectra of 3ea 
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1H (500 MHz, CDCl3) and 13C (125 MHz, CDCl3) NMR Spectra of 3fa 
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1H (500 MHz, CDCl3) and 13C (125 MHz, CDCl3) NMR Spectra of 3ga 
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1H (500 MHz, CDCl3) and 13C (125 MHz, CDCl3) NMR Spectra of 3ha  
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1H (500 MHz, CDCl3) and 13C (125 MHz, CDCl3) NMR Spectra of 3ha′   
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1H (500 MHz, CDCl3) and 13C (125 MHz, CDCl3) NMR Spectra of 3ia/3ia′ (7:1 d.r.) 
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COSY (400 MHz, CDCl3) and NOESY (400 MHz, CDCl3) NMR Spectra of 3ia/3ia′ 
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HSQC (400 MHz, CDCl3) and HMBC (400 MHz, CDCl3) NMR Spectra of 3ia/3ia′ 
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1H (500 MHz, CDCl3) and 13C (125 MHz, CDCl3) NMR Spectra of 3ja/ent-3ja 
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COSY (400 MHz, CDCl3) and NOESY (400 MHz, CDCl3) NMR Spectra of 3ja/ent-3ja 
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HSQC (400 MHz, CDCl3) and HMBC (400 MHz, CDCl3) NMR Spectra of 3ja/ent-3ja 
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1H (500 MHz, CDCl3) and 13C (125 MHz, CDCl3) NMR Spectra of 3ja′/ent-3ja′ 
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COSY (400 MHz, CDCl3) and NOESY (400 MHz, CDCl3) NMR Spectra of 3ja′/ent-3ja′ 
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HSQC (400 MHz, CDCl3) and HMBC (400 MHz, CDCl3) NMR Spectra of 3ja′/ent-3ja′ 
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1H (500 MHz, CDCl3) and 13C (125 MHz, CDCl3) NMR Spectra of 3la 
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COSY (400 MHz, CDCl3) and NOESY (400 MHz, CDCl3) NMR Spectra of 3la 
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HSQC (400 MHz, CDCl3) and HMBC (400 MHz, CDCl3) NMR Spectra of 3la 
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1H (500 MHz, CDCl3) and 13C (125 MHz, CDCl3) NMR Spectra of 3la′  
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COSY (400 MHz, CDCl3) and NOESY (400 MHz, CDCl3) NMR Spectra of 3la′ 
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HSQC (400 MHz, CDCl3) and HMBC (400 MHz, CDCl3) NMR Spectra of 3la′ 
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1H (500 MHz, CDCl3) and 13C (125 MHz, CDCl3) NMR Spectra of 3ma  
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COSY (400 MHz, CDCl3) and NOESY (400 MHz, CDCl3) NMR Spectra of 3ma 
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HSQC (400 MHz, CDCl3) and HMBC (400 MHz, CDCl3) NMR Spectra of 3ma 
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1H (500 MHz, CDCl3) and 13C (125 MHz, CDCl3) NMR Spectra of 3ma′  
  

3ma′

O

S



 S98 

 
 

 
 

COSY (400 MHz, CDCl3) and NOESY (400 MHz, CDCl3) NMR Spectra of 3ma′ 
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HSQC (400 MHz, CDCl3) and HMBC (400 MHz, CDCl3) NMR Spectra of 3ma′   
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1H (500 MHz, CDCl3) and 13C (125 MHz, CDCl3) NMR Spectra of 3na/3na′ (12:1 d.r.) 
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COSY (400 MHz, CDCl3) and NOESY (400 MHz, CDCl3) NMR Spectra of 3na/3na′ (12:1 d.r.) 
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HSQC (400 MHz, CDCl3) and HMBC (400 MHz, CDCl3) NMR Spectra of 3na/3na′ (12:1 d.r.)  
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1H (500 MHz, CDCl3) and 13C (125 MHz, CDCl3) NMR Spectra of SI-VI   
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1H (500 MHz, CDCl3) and 13C (125 MHz, CDCl3) NMR Spectra of SI-VI′   
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1H (500 MHz, CDCl3) and 13C (125 MHz, CDCl3) NMR Spectra of 3oa  
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COSY (400 MHz, CDCl3) and NOESY (400 MHz, CDCl3) NMR Spectra of 3oa 
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HSQC (400 MHz, CDCl3) and HMBC (400 MHz, CDCl3) NMR Spectra of 3oa   
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1H (500 MHz, CDCl3) and 13C (125 MHz, CDCl3) NMR Spectra of 3oa′  
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COSY (400 MHz, CDCl3) and NOESY (400 MHz, CDCl3) NMR Spectra of 3oa′ 
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HSQC (400 MHz, CDCl3) and HMBC (400 MHz, CDCl3) NMR Spectra of 3oa′  
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1H (500 MHz, CDCl3) and 13C (125 MHz, CDCl3) NMR Spectra of 3pa  
  

3pa

HO

OH

S



 S112 

 
 

 
 

COSY (400 MHz, CDCl3) and NOESY (400 MHz, CDCl3) NMR Spectra of 3pa 
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HSQC (400 MHz, CDCl3) and HMBC (400 MHz, CDCl3) NMR Spectra of 3pa 
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1H (500 MHz, CDCl3) and 13C (125 MHz, CDCl3) NMR Spectra of 3pa′ 
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COSY (400 MHz, CDCl3) and NOESY (400 MHz, CDCl3) NMR Spectra of 3pa′ 
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HSQC (400 MHz, CDCl3) and HMBC (400 MHz, CDCl3) NMR Spectra of 3pa′ 
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1H (500 MHz, CDCl3) and 13C (125 MHz, CDCl3) NMR Spectra of 3ql′ 
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1H (500 MHz, CDCl3) and 13C (125 MHz, CDCl3) NMR Spectra of 5aa 
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1H (500 MHz, CDCl3) and 13C (125 MHz, CDCl3) NMR Spectra of 5ba 
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1H (500 MHz, CDCl3) and 13C (125 MHz, CDCl3) NMR Spectra of 5ca 
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1H (500 MHz, CDCl3) and 13C (125 MHz, CDCl3) NMR Spectra of 5da 
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1H (500 MHz, CDCl3) and 13C (125 MHz, CDCl3) NMR Spectra of 5ea 
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1H (500 MHz, CDCl3) and 13C (125 MHz, CDCl3) NMR Spectra of 5fa/5fa′ (1.6:1 r.r.)   
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1H (500 MHz, CDCl3) and 13C (125 MHz, CDCl3) NMR Spectra of 5ga 
  

OMeO

S

5ga



 S125 

 
 

 
 

1H (500 MHz, CDCl3) and 13C (125 MHz, CDCl3) NMR Spectra of 5ha 
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COSY (400 MHz, CDCl3) and NOESY (400 MHz, CDCl3) NMR Spectra of 5ha 
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HSQC (400 MHz, CDCl3) and HMBC (400 MHz, CDCl3) NMR Spectra of 5ha 
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1H (500 MHz, CDCl3) and 13C (125 MHz, CDCl3) NMR Spectra of 7aa 
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1H (500 MHz, CDCl3) and 13C (125 MHz, CDCl3) NMR Spectra of 7ba 
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1H (500 MHz, CDCl3) and 13C (125 MHz, CDCl3) NMR Spectra of 7ca 
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1H (500 MHz, CDCl3) and 13C (125 MHz, CDCl3) NMR Spectra of 7da 
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1H (500 MHz, CDCl3) and 13C (125 MHz, CDCl3) NMR Spectra of 7ea and 7ea′ 
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1H (500 MHz, CDCl3) and 13C (125 MHz, CDCl3) NMR Spectra of 7fa   
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1H (500 MHz, CDCl3) and 13C (125 MHz, CDCl3) NMR Spectra of 7ga  
  

7ga

S
O

H



 S135 

 
 

   
 

COSY (400 MHz, CDCl3) and NOESY (400 MHz, CDCl3) NMR Spectra of 7ga 
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HSQC (400 MHz, CDCl3) and HMBC (400 MHz, CDCl3) NMR Spectra of 7ga 
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1H (500 MHz, CDCl3) and 13C (125 MHz, CDCl3) NMR Spectra of 7ga′  
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COSY (400 MHz, CDCl3) and NOESY (400 MHz, CDCl3) NMR Spectra of 7ga′ 
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HSQC (400 MHz, CDCl3) and HMBC (400 MHz, CDCl3) NMR Spectra of 7ga′ 
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1H (500 MHz, CDCl3) and 13C (125 MHz, CDCl3) NMR Spectra of 7ha 
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1H (500 MHz, CDCl3) and 13C (125 MHz, CDCl3) NMR Spectra of 7ha′ 
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1H (500 MHz, CDCl3) and 13C (125 MHz, CDCl3) NMR Spectra of 8 
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1H (500 MHz, CDCl3) and 13C (125 MHz, CDCl3) NMR Spectra of SI-VII 
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1H (500 MHz, CDCl3) and 13C (125 MHz, CDCl3) NMR Spectra of SI-VIII 
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1H (500 MHz, CDCl3) and 13C (125 MHz, CDCl3) NMR Spectra of 9 
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1H (500 MHz, CDCl3) and 13C (125 MHz, CDCl3) NMR Spectra of SI-IX 
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1H (500 MHz, CDCl3) and 13C (125 MHz, CDCl3) NMR Spectra of SI-X 
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1H (500 MHz, CDCl3) and 13C (125 MHz, CDCl3) NMR Spectra of 10 
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1H (500 MHz, CDCl3) and 13C (125 MHz, CDCl3) NMR Spectra of SI-XI 
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1H (500 MHz, CDCl3) and 13C (125 MHz, CDCl3) NMR Spectra of SI-XII 
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1H (500 MHz, CDCl3) and 13C (125 MHz, CDCl3) NMR Spectra of SI-XIII 
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1H (500 MHz, CDCl3) and 13C (125 MHz, CDCl3) NMR Spectra of 11 
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COSY (400 MHz, CDCl3) and NOESY (400 MHz, CDCl3) NMR Spectra of 11 
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HSQC (400 MHz, CDCl3) and HMBC (400 MHz, CDCl3) NMR Spectra of 11 
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1H (500 MHz, CDCl3) and 13C (125 MHz, CDCl3) NMR Spectra of 11/11′ (2.3:1 d.r.) 
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1H (500 MHz, CDCl3) and 13C (125 MHz, CDCl3) NMR Spectra of SI-XIV 
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1H (500 MHz, CDCl3) and 13C (125 MHz, CDCl3) NMR Spectra of 12 
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COSY (400 MHz, CDCl3) and NOESY (400 MHz, CDCl3) NMR Spectra of 12 
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HSQC (400 MHz, CDCl3) and HMBC (400 MHz, CDCl3) NMR Spectra of 12 
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7. ORTEP Representations of the Thioether 3la′ and the Sulfone 8 
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