

# Supplementary Material

# 1 Supplementary Data

### 1.1 Preparation of HA

Nano-scaled HA was synthesized by procedures reported previously (Motskin et al.,2009), with slight modifications. Briefly, 0.3M (NH<sub>4</sub>)<sub>2</sub>HPO<sub>4</sub> solution was added into 0.5M CaCl<sub>2</sub> solution with controlled speed (12.5 ml/min). This mixture was magnetic stirred for 2 hours at 60°C, followed by adjusting pH to 10 with ammonium hydroxide. After placed at room temperature for 24 hours, the solution was centrifuged at 5000 rpm/min. Then the resulting precipitate was washed with deionized water for 5 times and freeze-dried for 24 hours to generate HA powder.

### 1.2 Preparation of SF

Briefly, bombyx mori silk cocoons were cut into pieces and boiled for 1 hour with 0.02M Na<sub>2</sub>CO<sub>3</sub> added. Then the silk fibroins were washed for several times to remove the sericins. After the degummed silk fibroins were dried at 50°C for 24 hours, they were dissolved in 9.3M LiBr for 4 hours at 60°C and dialyzed against distilled water to remove LiBr by using dialysis cassettes (Mw=8-14kDa) for 3 days. The final concentration of the silk fibroin solution was 6% (w/v).

# 1.3 Preparation of USPIO

Briefly, 1.78g FeCl<sub>2</sub> and 1.5g polyethylene glycol were each dissolved by 15 ml deionized water. Then they were blended to get a uniform suspension, followed by addition of 17 ml ammonium hydroxide, 5 ml 3% hydrogen peroxide and 50 ml deionized water. The reaction pH was kept to 11 by using ammonium hydroxide. The mixture was heated at 60°C for an hour and purified with distilled water. Finally, we obtained USPIO nanoparticles by an external magnetic field.

#### 1.4 Isolation of BMSCs

Four-week-old SD rats were sacrificed with bilateral tibias and femurs harvested under aseptic circumstances. Osteoepiphysis of all bones were removed, and bone marrow was flushed out through a 19-gage needle to obtain single cell suspension. After centrifugation, cells were cultured in α-MEM medium supplemented with 10% (v/v) fetal bovine serum, 1% (v/v) penicillin and streptomycin. The primary BMSCs were cultured in a humidified atmosphere with 5% CO<sub>2</sub> at 37°C and the medium was changed every 2 days. The cells were passaged after digestion with 0.25% trypsin (Gibco, USA) till they reached 80% confluence. BMSCs cultured to the third passages were used in this study.

### 2 Supplementary Figures and Tables

## 2.1 Supplementary Tables

**Table** 1 Primers for qRT-PCR.

| Genes | Forward primer (5'->3') | Reverse primer (5'->3') |
|-------|-------------------------|-------------------------|
|-------|-------------------------|-------------------------|

| Alp        | TGCAGGATCGGAACGTCAAT | GAGTTGGTAAGGCAGGGTCC |
|------------|----------------------|----------------------|
| Bmp-2      | CACGAGAATGGACGTGCCC  | GCTTCAGGCCAAACATGCTG |
| Collagen I | AAGGCTCCCCTGGAAGAGA  | CAGGATCGGAACCTTCGCTT |
| Runx       | CCAGTTCTGCTCCTCTCCAG | GCCCACAGATTCCTCTTCTG |
| GAPDH      | AGTGCCAGCCTCGTCTCATA | GATGGTGATGGGTTTCCCGT |

Table 2 Pore sizes and porosities of SF and SF-based scaffolds.

|                   | Pore diameter $(\mu m) \pm SD$ | Porosity(%)±SD |
|-------------------|--------------------------------|----------------|
| SF/HA             | 115.3±1.5                      | 91.7±3.7       |
| USPIO(0.25)/SF/HA | 118.6±2.5                      | 90.6±2.6       |
| USPIO(0.5)/SF/HA  | 120±2.6                        | 92.4±4.1       |
| USPIO(0.75)/SF/HA | 116±4.2                        | 93.4±2.5       |
| USPIO(1.0)/SF/HA  | 123.2±2.9                      | 91.4±3.6       |
| USPIO(1.5)/SF/HA  | 117.3±3.3                      | 89.8±1.9       |

# **REFERENCES**

Motskin M, Wright DM, Muller K, et al. (2009). Hydroxyapatite nano and microparticles: correlation of particle properties with cytotoxicity and biostability. *Biomaterials*. 30,3307 - 3317. doi:10.1016/j.biomaterials.2009.02.044