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S1 Performance modeling methods

This section contains supplementary materials concerning
the performance modeling methods employed in this paper.

S1.1 Single-node ECM performance model

The Execution-Cache-Memory performance model is a grey-
box model developed by the HPC group at the university
of Erlangen. It uses a mixed approach combining an ana-
lytic formulation with some phenomenological input, and
outputs a runtime prediction at the granularity of individ-
ual clock cycles. The ECM model was first introduced by
Treibig and Hager (2010) and successively refined and val-
idated on modern Intel and AMD multicore architectures
(Hofmann et al. 2017, 2018; Stengel et al. 2015). A recent
review provides a clean and detailed description by abstract-
ing, formalizing and recasting it as a universal modelling ap-
proach based on a strict differentiation between application
and machine models (Hofmann et al. 2019).

In the ECM model, one must first define several contri-
butions to the runtime of a given loop. The notation of these
contributions is as follows:

— Tpr: the in-core execution time assuming data is already
loaded in registers;

— Thor: the time needed to load data into registers from the
L1 cache;

— T1112, Tio13: the data traffic time between caches;

— Ti3pmem: the read-only data traffic time from main mem-
ory to L2, and the write-only data traffic time from L3 to
main memory;

— Tiore: the total time spent in the execution of CPU in-
structions, assumed to overlap perfectly with data traffic;

— Taaq: total time spent in data traffic, typically as a sum of
individual data traffic contributions on Intel architecture.

To estimate T, one typically assumes that all instruc-
tions occur at maximum throughput, even though in this
work we are sometimes forced to extend the model by dis-
carding this assumption to obtain more accurate results. Code
analysis tools such as the Intel Architecture Code Analyzer
(TACA) (Intel 2017) or the experimental Open Source Code
Analyzer (OSACA) (Laukemann et al. 2018) can provide
some non-analytical input to the model, allowing to greatly
increase its prediction accuracy at the cost of losing some
interpretability.

To estimate Ty,,, one needs to provide two kinds of in-
formation: the contributions to the runtime from individual
caches as well as a formula to combine them. For individual
caches we must find the memory traffic, a difficult task that
can be affected by the following aspects:

— total memory requirements of the kernel;

cache reuse or blocking;
cache associativity;
victim caching;

cache replacement policy.

For the relatively simple case of a kernel with no reuse, re-
quiring a data traffic of b, denoting the L.1L.2 bandwidth with
BWrp112 we compute the contribution:

T = (S1)

BWiin

To combine the individual caches’ contributions into 7Ty,
on all recent Intel server microarchitectures, the best ac-
curacy in predictions is obtained assuming that there is no
temporal overlap between any cache transfers (Hager and
Wellein 2016). Thus the formula to compute 744, assum-
ing the dataset must be fetched from main memory, is

T — oL+ Trara + Tiars + Tiavem- (S2)

Assuming there is no overlap between caches, the pre-
dictions for data originating in different levels of the cache
hierarchy are defined using eq. (1) as:

Tén = max (Tor, Thor)

(

TI:CM max (Tor, Toor + Tr112) ,
(
(

(S3)
T FCM = max (Tor, Tnor + Trir2 + Tro13)
T = max (Tor, Tyor, + Trara + Trarz + Timem) -

To make predictions on the parallel runtime (in a shared
memory configuration), an additional assumption is required.
The standard ECM model assumes that performance scales
linearly with the number of threads, until a bottleneck from
a shared serial resource is used, typically the memory inter-
face (Hofmann et al. 2015). Thus starting from the defini-
tion of an amount W of work done — e.g. one fully processed
Cache Line (CL) worth of data — we can define the single
thread performance as

P(1) = (S4)

T
where T is the runtime required to complete the amount of
work W and can be obtained from eq. (1). From the assump-
tion that performance scales linearly until a bottleneck is
reached, e.g. Pgw determined by the memory bandwidth, we
can easily obtain the formula for shared memory parallelism
using n, threads

P(n;) = min(nP(1),Pgw). (S5)

The ECM model allows to compute the saturation point,
defined as the number of threads at which the serial memory
bottleneck is saturated and dominates performance. Once
this point is reached, the kernel’s performance cannot be im-
proved by increasing the number of threads. It is possible to
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explicitly compute the number of threads at which saturation
occurs, using the formula:

TM em "
TL3M em

Nsatur = " (S6)

Another quantity that we are often interested in comput-
ing is bandwidth utilization, defined based on the kernels’s
data traffic requirements b as:

BW,, pressed

BW,i = BW,
em

(87

b
BWexpressed = THem [GB/s].

To put the emphasis on the hardware bottlenecks identi-
fied by the ECM model, we can “invert” the runtime predic-
tion formulas to obtain a description in terms of hardware
contributions. In the serial case, hardware contributions are
simply defined based on the regular ECM dimensions. We
define the contributions as follows:

ToL Tor > Tiaa
Tcore = .
otherwise
0 ToL > T,
Teaches = OL = . daia (S8)
Toor + Trio + Trorz  otherwise
0 Tor > Tyaa
Tpram = .
T13Mem otherwise

In the parallel case, however, special care must be taken
to distinguish scalable and non-scalable contributions. Scal-
able contributions are logically improved by adding more
threads, and usually correspond to physical hardware that
is replicated for each thread. The scalable contributions are
Teore and Ty 405, While the non-scalable contribution is Tpgaps.
In a parallel execution using n, threads, we define the hard-
ware contributions as follows: non-scalable contributions re-
main unchanged from the serial execution; scalable contri-
butions are scaled by % until saturation of the memory band-
width, then set to 0.

Reference architecture: Intel Skylake-X The methodology
proposed in this paper is general, but to obtain concrete per-
formance predictions and bottleneck analysis we are required
to focus on a target architecture. To uphold a satisfactory
level of relevance for the high performance computing com-
munity as well as generalizability to future architectures, we
picked a modern, general-purpose Intel server architecture,
a Intel Skylake (SKX) Intel(R) Xeon(R) Gold 6140 with
AVX512 vectorization and Sub-NUMA clustering turned off.
The most relevant hardware characteristics required by the
performance model are summarized in Table S3, but we re-
fer to (Cremonesi et al. 2019) for the full details. We ob-
tained these values ecither directly from the vendor’s spec
sheets, by custom-designed benchmarks or from the refer-
ence tables in (Fog 2017).

Table S3 Hardware characteristics of reference architecture SKX
AVX512.

value unit
CPU freq 2.3 GHz
Peak DP performance 1324.8 Gflop/s
Mem BW 105 GB/s
L1-L2 BW per core 64 B/cy
L2-L3 BW per core 2 x 16 B/cy
vector exp () throughput 1.5 cy/scalar iter

scalar exp () latency 222 cy/scalar iter
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Fig. S10 Validation of performance model applied to clock-driven ker-
nels of in silico models. Performance is measured as Giga iterations
per wallclock second for a single instance of the kernel. The reference
architecture is SKX AVX512. Lines represent our predictions using
the ECM model, while markers represent median benchmark measure-
ments. Error bars represent the 25%-75% percentiles, but variability
is so low that they are often hidden. To improve readability we used
dashed lines for state update kernels and solid lines for current kernels.
All benchmarks were designed with big enough datasets to ensure data
was always coming from DRAM. A,B,C Clock-driven kernels of the
Brunel, Simplified and Reconstructed model respectively.

ECM model of clock-driven kernels We computed the ECM
model for all the relevant kernels constituting the simulation
workflow presented in Fig 2. We present the results in Table
S4. The units for all runtime predictions are cycles per scalar
iteration, denoted as [cy], while the units for performance
are Giga-scalar iterations per second, denoted by [Giga/s].

Validation of clock-driven kernels To validate our predic-
tions we benchmarked and measured the serial and paral-
lel runtime of the individual kernels in a simulation that
is representative of a typical workload. Due to overheads
it was impossible to design benchmarks for the L2 and L3
caches for the point neuron kernels described above. There-
fore all the benchmarks presented here have a sufficiently
large dataset to only fit in DRAM. For all in silico mod-
els we validated our predictions for the serial execution as
well as for shared memory scaling. ealidation results for the
Brunel, Simplified and Reconstructed model are presented
in Figure S10 and Table S5. We scale all our performance
measurements by the reported average frequency during the
execution of that kernel.
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Table S4 ECM model of clock-driven kernels of in silico models and experiments. For simplicity, we only report the model based on the AVX512
vectorisation. The ECM contributions and predictions are reported in cy per scalar iteration. Horizontal lines distinguish the three in silico models:

Brunel (B), Simplified (S), Reconstructed (R).

kernel name To. Twor Tuz Tz Twem Tl TR TRw  THGH
B iaf update 241 175 262 8.00 3.68 2.41 438 1238 16.05
iaf psc 0.62 0.38 1.25 3.00 175 0.62 1.62 4.62 6.38
synapse current 744 350 351 9.03 492 7.44 744  16.03 20.95
S gif current 988 338 375 11.00 526 9.88 9.88 18.12 23.38
synapse state 1331 262  2.00 550 280 1331 1331 1331 1331
gif state 2850 625 238 6.50 333 2850 2850 28.50 28.50
synapse current 720 350 321 833 450 7.20 720 15.04 19.54
ion channel current 4.68 2.56 1.92 5.07 270 4.68 4.68 9.55 1225
R linear algebra 8.10 6.00 1.40 4.00 1.90 8.10 8.10 1140 13.30
synapse state 9.70  1.70 1.50 4.00 210 9.70 9.70 9.70 9.70
ion channel state 1582 2.16 1.59 356 224 1582 1582 1582 15.82

Table S5 Validation of ECM performance model for clock-driven kernels from all in silico models and experiments. Validation conducted using
the SKX AVX512 reference architecture. The parallel column refers to full-chip shared memory parallelism (18 threads). Measurements are
shown as median values =+ interquartile range from a dataset of 10 independent benchmark executions. Runtime measurements and predictions are
reported in cy per scalar iteration. Horizontal lines distinguish the three in silico models: Brunel (B), Simplified (S), Reconstructed (R).

serial parallel memory volume
kernel name pred [cy] meas[cy] pred[cy] meas[cy] pred[B] meas [B]
B iaf update 16.1  26.440.9 3.7 4.5+0.0 168 193.6+0.9
iaf psc 6.4 8.21+0.6 1.8 1.7+0.0 80 76.2+0.8
synapse current 21.0 28.9+1.8 4.9 4.940.1 224 225+£1.7
S gif current 234 337417 5.3 6.04+0.2 232 237.14+12.7
’ synapse state 133 21.1+£04 2.8 2.84+0.1 128 127.7£0.1
gif state 28.5  25.440.0 33 3.14+0.0 144 1234+0.6
syn current 19.5 24.6+1.5 4.5 4.440.1 205 207.1£2.1
ion channel current 122 15.240.3 2.7 3.3+0.1 123 120.3+11.0
R linear algebra 133 18.8453 1.9 2.240.2 88 90.7+4.2
syn state 9.7 13.840.2 2.1 2.0+0.0 96 943+1.3
ion channel state 158  20.640.1 2.2 2.3+0.0 100 99.9+4+2.0

In the serial case, the prediction errors are all within
20-30% of the measured runtime. Obtaining more accurate
predictions is challenging, and the reasons for this can vary
across kernels. For G-based state kernels a long critical path
in the loop kernel code could be weakening the accuracy
of our predictions due to a failure of the full throughput as-
sumption, while errors in the ion channel current predictions
could be imputable to memory traffic overhead due to in-
direct memory addressing. While it is still possible to ob-
tain reasonably accurate predictions for the state kernels, it
must be noted that ultimately it is extremely hard to pre-
dict the dynamic behaviour of the out-of-order engine in a
complex, modern architecture. Finally, given that most of
the predictions in this case are optimistic, it is reasonable to
assume that performance limiting factors such as dynamic
CPU throttling, as well as intrinsic factors such as critical
paths and instruction latencies, could be impacting the per-
formance negatively.

Validation of the event-driven spike delivery kernel This ker-
nel is characterised by erratic memory accesses, because the
order of activation of synapses is unpredictable. We always
consider the worst possible case in which every spike to be
delivered could not be cached and thus must come from
main memory. This approximation has a strong impact on
our estimates of the memory traffic and the scalability of the
spike delivery kernel, notably in the strong scaling scenario,
but we believe it represents a valid heuristic because of the
very low activation of individual synapses. Indeed, given
that physiological values of the firing frequency lie around
1Hz, this means that each synapse would receive an event
roughly once every 40000 time iterations, such that caches
implementing a LRU policy would most likely have gotten
rid of the corresponding cache line by then. Due to the er-
ratic access, one is tempted to speculate that memory latency
will be a dominant factor in the performance of this kernel.
Upon deeper analysis, we find that spike delivery kernels are
indeed affected by the latency of the memory system, albeit
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not dominated by it. The reason is that while the CPU is
handling the delivery of one spike, it has potentially access
to the information about the index of the next spikes to be
handled, since it already read several values from the spike
events array. Thus the CPU is in principle able to sched-
ule as many memory accesses in advance as its queue of
outstanding memory requests allows it to, partially hiding
the latency of processing individual spikes. This is differ-
ent from the classic purely latency bound kernels in which
the CPU is only allowed to begin a loop iteration after the
previous one is fully completed. On the other hand, all the
requests for data are non-contiguous and therefore we ex-
pect that none of the pipelining and prefetching techniques
are very effective in hiding the latency of fetching the data.

We assume that a full cache line of data needs to be
brought in from memory for every data access, since the
unpredictable order of activation of synapses renders data
prefetching and data blocking largely ineffective. Note that
because of write-allocate, every write operation counts as
two accesses. To build a performance model, we are now
tasked with figuring out which memory accesses should be
considered non-contiguous and thus represent a potential is-
sue for performance. For non-contiguous memory accesses,
the predicted memory traffic is quite large because we as-
sume that a full cache line (64 B) must pulled from the mem-
ory even though only a single double-precision variable (i.e.
8 B) would be required. We consider that only accesses to
synapse-specific data are non-contiguous and thus require
a full cache line (64 B) of data to be transferred for every
memory request. In our implementation, the G-based ker-
nel requires 22 non-contiguous data accesses for a total of
1408 B per iteration, and the I-based kernel a meagre 2 ac-
cesses for a total of 128 B per iteration. In benchmarks, we
measure a memory traffic of 1396.9 £ 2.2 B per iteration
for the G-based kernel, and 149.3 £ 11.9B for the I-based
kernel, thus lending high credibility to this assumption. Fig-
ure S11B shows a validation of the estimated memory traffic
against realistic benchmarks.

Estimating the runtime proves to be a very challenging
task. We find that the naive approach of multiplying the
DRAM latency by the number of non-contiguous accesses
yields very pessimistic predictions. This can be attributed to
the fact that, since spikes are independent, it is not neces-
sary to wait until one spike has been processed before is-
suing request for the data of the next spike. It thus seems
that the spike delivery kernel’s performance is determined
by the number of concurrent, independent data requests that
can be handled by the processor and memory. This is differ-
ent from the classical purely latency bound kernels in which
the CPU is only allowed to begin a loop iteration after the
previous one is fully completed. The number of indepen-
dent memory requests that can be handled concurrently is
known as memory level parallelism (MLP) and allows to

A 12007 % G-based AMPANMDA measurements B

— G-based AMPANMDA predictions
T I == predictions
@
'

10007 * I-based STATIC measurements
@ -
e X X !
——————

Performance [Mega It/s]
N B [} ©
o (=] o (=3
o o o o

o

— I-based STATIC predictions
0 2 4 6 & 10 12 14 16 18 0 500 1000 1500
Number Shared Memory Threads ~ Memory data volume [B/iteration]

Fig. S11 Validation of the spike delivery kernel. A Performance pre-
dictions (dashed lines) and benchmark measurements (X markers).
Performance is measured in Mega-delivered spikes per wallclock sec-
ond. Error bars represent the 25% and 75% percentiles. B Validation
of memory traffic per delivered spike. Bars represent measurements,
dashed lines represent our predictions based on the worst-case sce-
nario. Memory traffic is measured in B per delivered spike.

mitigate the performance impact of memory latency by al-
lowing multiple accesses in parallel (Levinthal 2014). Using
an appropriate benchmark (see e.g. Lemire 2018) for an ex-
ample we measured an adjusted memory latency of roughly
20cy per memory access on our reference architecture. For
shared memory parallelism, we assume that performance
scales linearly with the number of threads until the bottle-
neck of memory bandwidth is reached.

In the case of the G-based model, the procedure above
leads us to a single-thread prediction of 22 x 20 = 440 cy
per delivered spike, to be compared to the benchmark mea-
surement of 571.6 £ 14.9 cy, which represents roughly a
23% error. For multiple threads, we assume that the perfor-
mance scales linearly with the number of threads until the
bottleneck of memory bandwidth is exhausted. At the maxi-
mum number of threads, this amounts to a predicted runtime
of 30.8 cy per delivered spike, against benchmark measure-
ments of 45.0 + 0.1cy, i.e. a 31% error. For the I-based
model, we predict a serial runtime of 40 cy and measure 38.0
+ 1.8 cy, giving a small error margin of 5%, while at max-
imum thread we predict a runtime of 2.8 cy and measure
2.8 £ 0.04. The memory traffic estimates and the runtime
estimates are all within an acceptable margin of error for
both models. Given the complexity introduced by the out-
of-order execution and memory access scheduling, we deem
these predictions quite satisfactory. In Fig.S11 we present
the predicted and measured performance and memory traf-
fic for the spike delivery kernel

S1.2 Interprocess communication LogGP performance
model

The LogGP model is part of a family of analytic perfor-
mance models developed initially at Berkeley, was adapted
and extended by researchers from other centres. Historically,
the first model in this family was LogP (Culler et al. 1993).



Understanding computational costs of cellular-level brain tissue simulations through analytical performance models 5

In the LogP model all complex MPI operations are defined
on the basis of point-to-point communication, i.e. the cost
of sending a message from one compute node to another
within the same network. LogP was developed with a fo-
cus solely on short (single Byte) messages, but it quickly
became clear that the accuracy of its predictions degraded
in the case of long messages. Therefore the LogGP model
(Alexandrov et al. 1997; Hoefler et al. 2009) was developed
to overcome this problem. In the LogGP model, the cost of
sending a single message of size m B is given by the analytic
formula

Tpiopr =L+20+G(m—1), (S9)

where

— L is the network latencys;

— o is the overhead from non-network operations;

— g is the inverse of the injection rate;

— G is the inverse of the network bandwidth;

— P is the number of processes involved in the communi-
cation.

Note that g does not appear above because a single message
is considered, while g represents the delay that must occur
between two consecutive sends of a message.

LogGP model on Infiniband EDR with HPE-MPI While the
performance modelling tools considered here can generalize
well to several types of architectures (Hoefler et al. 2009), to
validate our performance predictions we restrict our focus
to a representative example of an HPC network architec-
ture: a vendor (HPE) MPI implementation based on MPT
2.16 and the MPI 3.0 standard, over an Infiniband EDR 100
GB/s fabric. While it would be possible to take the nominal
vendor values for the hardware parameters such as L, g, G,
it is highly advised to obtain the values of these parame-
ters through a set of benchmarks. A low-overhead method
to compute all the necessary parameters has been proposed
(Hoefler et al. 2007a), and ultimately led to the development
of the Netgauge tool (Hoefler et al. 2007b). The model pa-
rameters can be obtained once and for all, and after that the
LogGP model does not require any additional benchmark-
ing efforts. We used the Netgauge v2.4.6 tool introduced
in (Hoefler et al. 2007a) to make a first assessment of the
LogGP parameters, and the parameters reported in Table S6.

The LogGP framework allows us to directly model the
latency of point-to-point communication using the formula
(L+20;) 4+ (G +205)m, where m is the message size. How-
ever, additional work is required to model collective com-
munication because different algorithms can be used to dis-
seminate the messages across the network. For the Allgather
operation there are several implementations available, and
the decision of which one to use can be a complex func-
tion of the static network characteristics such as the topol-
ogy as well as dynamic specifications such as the message

Table S6 LogGP parameters.

small sizes large sizes unit

L 1.54 1.54 us
0; 0.133 0.0249 us
0y 459%x107°  6.48x107° us/B
g 0.526 6.12 us
G 142x107* 207x10* us/B

size and number of ranks involved (Thakur et al. 2005). In
this work we consider only the ring algorithm, because it is
the mosts commonly used (Thakur et al. 2005) (especially
for large message sizes) and we wish to keep our analsys
simple. Therefore, the total latency to perform an Allgather
operation among P parallel ranks with a total message size
of m is:

P—1
TAllgather = (P— 1)(L—|— 201') + T(G+ ZO‘g)m. (S10)

Validation and inference The original CoreNEURON im-
plementation of the spike exchange algorithm uses an MPI
custom datatype to represent a spike as an aggregate of a
double-precision variable representing the time of spike and
an integer variable representing the ID of the source neuron.
This implementation, however, can turn out to be unsatisfac-
tory in terms of performance, in particular when one tries to
predict the runtime of a collective communication, because
hidden data shuffling and copy operations can take place
(Carpen-Amarie et al. 2017). To address the performance
issues deriving from custom datatypes, we reimplemented
the spike exchange operation to perform two consecutive
MPI_allgatherv operations: the first on the array of timings
and the second on the array of source neuron IDs. To mea-
sure the latency of the communication itself, we executed
a simulation where we artificially filled every communica-
tion buffer on each distributed rank with the same number
of spikes, and measured the communication time per rank.

We tested our model in the actual simulation environ-
ment, by artificially contriving neurons to fire a predeter-
mined amount of spikes at each time interval. Results are
presented in Figure S12. Computation of the LogGP pre-
dictions in this case requires careful treatment of the mes-
sage size. We identify three regions of interest: the first one
where the total message size is so small that the condition
(m < 65P) is satisfied for communication of both the neuron
IDs (integers) and the spike times (doubles); a second region
where the performance penalty is valid for the communica-
tion of the spike times, but not the neuron IDs; a third region
where the performance penalty applies to both communica-
tion phases. Our model seems to have small optimistic bias,
but overall it always falls within a 10% error region.
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Fig. S12 Validation of LogGP model for interprocess spike exchange
in the simulation environment. Weak scaling of a CoreNEURON sim-
ulation where individual neurons are contrived to emit a predetermined
number of spikes per timestep. All neurons emit the same number
of spikes. Measurements are obtained by summing the contributions
from communicating the IDs of spiking neurons and the time of spik-
ing Teomm.ip + Teomm,, While predictions are split in three regions ac-
cording to message size as described in the text. Red lines represent
the model’s predictions, while blue markers represent the measured la-
tency averaged across parallel ranks. Error bars represent the minimum
and maximum latency across parallel ranks. The shaded area represents
a 10% error w.r.t measurements.

S2 Effect of model parameters on simulation
performance

Parameters of the in silico models have an important, yet
often difficult to explain, impact on performance. We test
the impact of the firing frequency, minimum network delay
and fan in using our performance model, and present the
results in this section. We neglect the timestep because it has
a generally straightforward relationship with performance,
and was omitted for brevity.

Firing frequency’s differential effect on communication and
computation Firing frequency is commonly cited as one of
the most impactful parameters on simulation performance
(Yavuz et al. 2016). In this work we consider it a param-
eter even though it usually cannot be explicitly set by the
user, and is instead an emerging property of the simulation.
Fig.S13A shows the predictions of our performance model
for the three in silico models, for values of the firing fre-
quency in a physiological range. To take into account the
obvious fact that the total number of neurons and distributed
ranks can introduce a large variability in our predictions, we
randomly generate 1000 value pairs of [number of neurons,
number of distributed ranks] and plot the median predicted
performance, additionally broken down into its two compo-

nents of inter-node communication and on-node computa-
tion. For the number of neurons we consider values in the
range [1,10%] while for the number of ranks we consider
values in the range [1,10°]; furthermore, we discard the few
configurations for which the number of neurons was ran-
domly chosen to be smaller than the number of ranks, as
that would imply the splitting of neurons. We generate ran-
dom numbers of neurons and ranks following a log-uniform
distribution, with the effect that all orders of magnitude are
equally likely, thus introducing a very large variability. Fir-
ing frequency has an effect on communication by chang-
ing the size of the spike message as well as on computation
by changing the amount of events that must be integrated
by neurons. In Fig.S13A it is noticeable that there exists a
threshold frequency below which f does not affect perfor-
mance, but once this threshold is passed firing frequency be-
comes a primary factor, inducing a linear, almost unit-slope
degradation in performance. This effect is clearly visible in
the Simplified model, and even more so in the Brunel mod-
els. For the Reconstructed model this threshold value exists,
but is so large that we can safely assume that, in the me-
dian case, firing frequency has no effect on performance.
To investigate the reasons for performance degradation we
look at the breakdown of relative importance of different
hardware features as a function of the firing frequency, plot-
ted in Fig.9A. Similarly to before, we randomly generate
1000 couples of [number of neurons, number of distributed
ranks] but we plot the mean relative importance instead of
the median to keep the total constantly equal to 100%. Our
analysis shows an interesting behaviour: as the firing fre-
quency becomes larger, the relative pressure on the memory
bandwidth (and eventually the network bandwidth) becomes
larger, while the relative pressure on the network latency be-
comes smaller. So not only there is more computation to be
done as firing frequency gets larger, but also the mix of hard-
ware bottlenecks changes. This behaviour was observed em-
pirically not only on general-purpose CPUs (Zenke and Ger-
stner 2014) but also on GPUs which are additionally more
susceptible to dynamic load balancing because of the ex-
tremely large number of parallel cores (Yavuz et al. 2016)
We remark that the large variability in the performance pre-
dictions in Fig.S13A,B,C can be at least partially explained
by our choice of sampling strategy as mentioned above.

Minimum network delay affects the relative importance of
hardware features Another parameter of interest is the min-
imum network delay, denoted 8py. In terms of communi-
cation, the minimum network delay affects the number of
times that global communication must happen to simulate
one second of biological time, although it does not affect
the total number of spikes communicated. In terms of com-
putation, assuming that the loop ordering strategy to min-
imise pressure on the memory bandwidth is employed then
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Fig. S13 Effect of model parameters on performance. A Effect of firing frequency on the performance of distributed simulations. We plot the
median performance over 1000 randomly generated simulation samples defined by number of neurons and number of distributed ranks. The shaded
area surrounding the total performance represents the 25th and 75th percentiles. B Effect of 8y, on the performance of distributed simulations.
The range of acceptable values for 8y, changes across different in silico models because they were computed as multiples of the model’s timestep.

C Effect of fan in K on the performance of distributed simulations.

the minimum network delay affects the number of time it-
erations in which data locality can be exploited. Fig.S13B
shows the predictions of our performance model for the three
in silico models, for different values of the minimum net-
work delay. Since this delay can only be an integer multi-
ple of the timestep, we exploit the concept of coupling ra-
tio to define a range of plausible minimum delay values by
setting a range of values for the coupling ratio and obtain-
ing the corresponding &, by multiplication with Af. By
looking at the breakdown of performance, we see that larger
minimum network delay values improve the performance
of inter-node communication but also, somewhat surpris-
ingly, on-node computation. However, while the communi-
cation performance seems to improve indefinitely, the im-
provement of on-node computation saturates quite quickly.
For the point neuron models, within the range of minimum
network delay values considered here, there is a transition
from a regime dominated by communication to one dom-
inated by computation, while the Reconstructed model is
dominated by computation for all minimum network de-
lay values. To investigate the reasons for changes in per-
formance, we plot the breakdown of relative importance of
different hardware features in Fig.9B. In the case of G-based
models, larger minimum network delay values correspond to
decreased pressure on the memory bandwidth and network
latency, and larger pressure on more scalable hardware fea-
tures such as CPU instruction throughput and caches through-
put. This points to the fact that simulations based on G-based
models with a large minimum network delay could strongly
benefit from shared-memory parallelism. On the other hand,

a larger minimum network delay in the I-based model results
in decreased pressure on the network latency, but a higher
pressure on memory bandwidth.

Large fan in can be advantageous for performance of point
neuron models, but has almost no effect on Reconstructed
model Finally, we examine the effect of fan in, defined as
the average number of incoming connections per neuron and
denoted by K. This parameter has subtle effects on perfor-
mance that are difficult to analyse. For G-based models, a
larger fan in technically means more synapses to simulate
thus an expected degradation of performance. Additionally,
for all models a larger K determines an increase in event-
driven computation, thus once again an expected degrada-
tion of performance. We confirm this with the analysis in
Fig.S13C showing that K does not affect communication
but has a very strong effect on the Reconstructed model.
Unexpectedly, fan in seems to only marginally affect the
performance of the Simplified model, in spite of it being
a G-based model too. This can be easily explained by the
fixed number of synaptic instances in this model (28 ex-
citatory and 8 inhibitory (Rossert et al. 2016)), such that
much like the I-based Brunel model, ultimately the fan in
affects only the average number of events a neuron must
integrate within a certain time period. Another important
point should be made about the effect of fan in, because
changing the number of connections of a neuron has an im-
pact on the in silico model’s memory requirements. Fig.9C
shows the ratio of neurons that can fit in 1 GB of mem-
ory, according to our performance model, as a function of
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fan in. In a strong scaling scenario, this information sheds
new light on the conclusions above, because if only ;% neu-
rons fit in 1 GB, this can result potentially in a x-fold in-
crease in performance from parallelism (disregarding poten-
tial communication bottlenecks). Therefore for the Brunel
and Simplified model it can be advantageous to have a large
number of incoming connections per neuron, because the
performance price paid is more than compensated by the
required increase in parallelism. Conversely, in the Recon-
structed model, these two effects appear to balance out al-
most evenly.

For very large scale simulations, another subtle effect
of fan in is represented by the size of the connection table,
an issue that was raised and investigated in (Kunkel et al.
2014). The connections table of a given rank contains all
the global identifiers of presynaptic neurons that are rele-
vant for at least one neuron in that rank. The size of the
connection table depends, among other things, on K as well
as the total number of neurons and number of distributed
ranks (Kunkel et al. 2014). In Fig.9D we plot the values of
the expected total size of the connection table on the (to-
tal number of neurons, number of distributed ranks)-plane
as a contour plot, highlighting the contours corresponding
to a total size of 1kB, IMB and 1GB. Although in some in
silico models connectivity may be determined by complex
rules influenced by cell type and spatial locality, for sim-
plicity we compute here the expected size of the connections
table assuming uniform connection probability and random
distribution of neurons across ranks. In a strong scaling sce-
nario the size of the connections table steadily decreases as
the number of ranks increases, starting from the minimum
of two ranks required by a distributed simulation. This can
be explained by the fact that fixing the network size and in-
creasing the number of ranks entails that there will be less
incoming connections to a given rank. In a weak scaling sce-
nario, such as the maximum filling regime, the size of the
connections table transiently increases when the number of
distributed ranks is low, but at large scale reaches a constant
value steady state determined only by K.
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