Supplementary Material

Assessment of patient clinical descriptions and pathogenic variants from gene panel sequences in the CAGI-5 intellectual disability challenge

Marco Carraro^{1,*}, Alexander Miguel Monzon^{1,*}, Luigi Chiricosta¹, Francesco Reggiani^{1,2}, Maria Cristina Aspromonte³, Mariagrazia Bellini^{3, 4}, Kymberleigh Pagel⁵, Yuxiang Jiang⁵, Predrag Radivojac⁵, Kunal Kundu^{6,7}, Lipika R. Pal⁶, Yizhou Yin^{6, 7}, Ivan Limongelli⁸, Gaia Andreoletti^{6, 9}, John Moult^{6, 9}, Stephen J. Wilson¹⁰, Panagiotis Katsonis¹⁰, Olivier Lichtarge¹⁰, Jingqi Chen¹¹, Yaqiong Wang¹¹, Zhiqiang Hu¹¹, Steven E. Brenner¹¹, Carlo Ferrari², Alessandra Murgia^{3, 4}, Silvio C.E. Tosatto^{1,12,*}, Emanuela Leonardi^{3, 4,*}

¹ Department of Biomedical Sciences, University of Padua, Padua, Italy

² Department of Information Engineering, University of Padua, Padua, Italy

³ Department of Woman and Child Health, University of Padua, Padua, Italy

⁴ Fondazione Istituto di Ricerca Pediatrica (IRP), Città della Speranza, Padova, Italy

⁵ Khoury College of Computer and Information Sciences, Northeastern University, 440, Huntington Avenue, Boston, MA 02115, USA

⁶ Institute for Bioscience and Biotechnology Research, University of Maryland, 9600 Gudelsky Drive, Rockville, MD 20850, USA

⁷ Computational Biology, Bioinformatics and Genomics, Biological Sciences Graduate Program, University of Maryland, College Park, MD 20742, USA

⁸ enGenome srl, via Ferrata 5, Pavia, Italy.

⁹ Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA

¹⁰ Baylor College of Medicine, Department of Molecular and Human Genetics, Houston, TX 77030, USA

¹¹ Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA.

¹² CNR Institute of Neuroscience, Padua, Italy

* *Contributed equally*

Corresponding authors: Silvio Tosatto <<u>silvio.tosatto@unipd.it</u>>, Emanuela Leonardi <emanuela.leonardi@unipd.it>

Supplementary Figures

Suppl. Figure S1. Patient submission coverage by phenotype. Each bar represents the number of patients for whom a probability value was submitted by the predictor. Each color represents true positive (TP), true negative (TN), false positive (FP) and false negative (FN) predicted patient phenotypes. In addition, blue (P) and yellow (N) bars indicate the experimentally identified positive and negative cases, respectively.

Suppl. Figure S2: Matrix layout for all intersections of seven phenotypes, sorted by size. Dark circles in the matrix indicate phenotypes that are part of the intersection. Gray bars indicate the amount of patients in each intersection and blue bars are the amount of patients with the phenotype positively identified in the whole data set.

Supplementary Tables

Phenotypic traits	Description
Intellectual disability (ID)	Intellectual disability is characterized by significant limitations in both intellectual functioning and in adaptive behavior, which covers many everyday social and practical skills. This disability originates during development. Intellectual functioning (also called intelligence) refers to general mental capacity, such as learning, reasoning, problem solving, and so on. Adaptive behavior is the collection of conceptual, social, and practical skills that are learned and performed by people in their everyday lives.
Autism spectrum disorder (ASD)	This term can be used to refer to autism spectrum disorder as a phenotypic feature that can be a component of a disease. A disorder beginning in childhood, it is marked by the presence of markedly abnormal or impaired development in social interaction and communication and a markedly restricted repertoire of activity and interest. Manifestations of the disorder vary greatly depending on the developmental level and chronological age of the individual (DSM-IV). Autism spectrum disorders range from a severe form, called autistic disorder, to a milder form, Asperger syndrome.
Epilepsy	Seizures are an intermittent abnormality of the central nervous system due to a sudden, excessive, disorderly discharge of cerebral neurons characterized clinically by some combination of disturbance of sensation, loss of consciousness, impairment of psychic function, or convulsive movements. The term epilepsy is used to describe chronic, recurrent seizures.
Microcephaly	Occipitofrontal (head) circumference less than -3 standard deviations compared to appropriate, age matched, normal standards (Potter 1978). Alternatively, decreased size of the cranium.
Macrocephaly	Occipitofrontal (head) circumference greater than the 97 th centile compared to appropriate, age matched, sex-matched normal standards. Alternatively, an apparently increased size of the cranium.
Hypotonia	Muscular hypotonia (abnormally low muscle tone) manifesting in infancy.
Ataxic gait	A type of ataxia characterized by impairment of the ability to coordinate movements required for normal walking. Gait ataxia is characterized by a wide-based staggering gait with a tendency to fall.

Suppl. Table S1. Summary of the seven diseases classes in the CAGI-5 intellectual disability challenge.

C A G I - I D	N a m e	S e x	Class of variant	Chr: POS :RE F:A LT	E x o n c F u n c t i o n	AAChange	M o d e f i n h e ri t a n c e	Inherit ance	N u b e r o f G r o u p s	Nu mb er of pre dic tio ns	ID of Groups	Predictio ns ID
135	M R2 40 9	F	Contributin g factor	chr22:51 117766: T:G	nons yno nym ous	SHANK3:NM_0 33517:exon7:c.T 795G:p.H265Q	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1, 2, 4, 5	1.1, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 4.1, 4.2, 4.3, 5.1		
97	M R2 25 0	М	Contributin g factor	chr14:21 863113: G:C	nons yno nym ous	CHD8:NM_001 170629:exon29: c.C5348G:p.A17 83G	AD	paternal	3	9	2, 4, 5	2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 4.1, 4.3, 5.1
125	M R2 36 8	М	Contributin g factor	chr3:110 78549:G :A	nons yno nym ous	SLC6A1:NM_0 03042:exon16:c. G1697A:p.R566 H	AD	paternal	3	9	2, 4, 5	2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 4.1, 4.3, 5.1
83	M R2 18 9	М	Contributin g factor	chr17:84 02701:C :G	nons yno nym ous	MYH10:NM_00 1256012:exon30 :c.G3838C:p.E1 280Q	AD	paternal	3	8	2, 4, 5	2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 4.3, 5.1
17	M R1 63 5	Μ	Contributin g factor	chr11:70 653140: C:T	unk now n	SHANK2:NM_0 12309.3:c.G148 4A:p.E544K	AD	materna	3	8	2, 4, 5	2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 4.3, 5.1
112	M R2 33 7	F	Contributin g factor	chr11:70 653124: C:T	nons yno nym ous	SHANK2:NM_0 12309.4:c.G164 6A:p.R549H	AD	girl adopted	2	8	2,4	2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 4.1, 4.3
6	M R1 28 9	М	Contributin g factor	chr14:21 860898: C:T	nons yno nym ous	CHD8:NM_001 170629:exon33: c.G6539A:p.R21 80H	AD	maternal	1	6	2	2.1, 2.2, 2.3, 2.4, 2.5, 2.6
47	M R2 03 3	М	Contributin g factor	chr7:146 829601: G:A	nons yno nym ous	CNTNAP2:NM_ 014141:exon8:c. G1348A:p.G450 S	AR, AD	maternal	3	6	1, 3, 4	1.1, 3.1, 3.2, 3.3, 4.1, 4.3

34	M R1 98 0	F	Contributin g factor	chr7:103 243828: C:A	nons yno nym ous	RELN:NM_005 045:exon24:c.G 3256T:p.V1086 F	AR, AD	paternal, paternal grandmothe r	1	6	2	2.1, 2.2, 2.3, 2.4, 2.5, 2.6
94	M R2 24 1	М	Contributin g factor	chr7:103 130201: C:T	nons yno nym ous	RELN:NM_005 045:exon60:c.G 9751A:p.E3251 K	AR, AD	paternal	1	6	2	2.1, 2.2, 2.3, 2.4, 2.5, 2.6
127	M R2 37 5	F	Contributin g factor	chr11:70 319321: G:A	nons yno nym ous	SHANK2:NM_1 33266:exon11:c. C3439T:p.P1147 S	AD	n.d.	3	5	3, 4, 5	3.1, 3.2, 3.3, 4.3, 5.1
12	M R1 54 3	М	Contributin g factor	chr7:148 112649: A:C	nons yno nym ous	CNTNAP2:NM_ 014141:exon24: c.A3937C:p.N13 13H	AR, AD	maternal	2	4	3, 4	3.1, 3.2, 3.3, 4.3
17	M R1 63 5	М	Contributin g factor	chr5:144 71497:C :T	nons yno nym ous	TRIO:NM_0071 18:exon38:c.C58 34T:p.S1945L	AD	maternal	1	1	1	1,1
105	M R2 27 6	М	Disease causing	chrX:76 909661: T:C	nons yno nym ous	ATRX:NM_138 270:exon13:c.A 4130G:p.N1377 S	XLD, XLR	maternal; X- inactivation : balanced	5	14	1.1, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 3.1, 3.2, 3.3, 4.1, 4.2, 4.3, 5.1	
140	M R4 14	F	Disease causing	chrX:15 3296777 :G:A	stop gain	MECP2:NM_00 1110792:exon3: c.C538T:p.R180 X	XLD	n.d.	4	2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 3.2, 3.3, 4.1, 4.2, 4.3, 5.1		
79	M R2 16 6	М	Disease causing	chr9:140 728837: G:C	nons yno nym ous	EHMT1:NM_02 4757:exon26:c. G3577C:p.G119 3R	AD	de novo	4	11	1, 2, 3, 5	1.1, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 3.1, 3.2, 3.3, 5.1
142	M R6 02	F	Disease causing	chrX:41 401980: G:A	stop gain	CASK:NM_003 688:exon22:c.C2 119T:p.Q707X	XL	de novo	3	10	2, 4, 5	2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 4.1, 4.2, 4.3, 5.1
64	M R2 11 3	М	Disease causing	chr12:11 6445337 :C:T	nons yno nym ous	MED13L:NM_0 15335:exon11:c. G2117A:p.G706 E	AD	De novo	3	10	1, 2, 3	1.1, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 3.1, 3.2, 3.3
90	M R2 23 3	М	Disease causing	chr6:334 11228:C :T	stop gain	SYNGAP1:NM_ 006772:exon15: c.C2899T:p.R96 7X	AD	de novo	novo 4 10 2, 3, 4, 5		2, 3, 4, 5	2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 3.2, 3.3, 4.3, 5.1
69	M R2	F	Disease causing	chr6:157 528165: G:T	stop gain	ARID1B:NM_0 01346813:exon2	AD de novo 3 9				2, 3, 5	2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 3.2, 3.3, 5.1

	12 7					0:c.G6010T:p.E 2004X						
72	M R2 14 0	М	Disease causing	chrX:12 2460015 :G:A	nons yno nym ous	GRIA3:NM_000 828:exon4:c.G6 47A:p.R216Q	XL	maternal, X- inactivation : mutated allele 30%	4	9	1, 2, 4, 5	1.1, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 4.3, 5.1
35	M R1 98 5	М	Disease causing	chr2:200 213882: G:A	stop gain	SATB2:NM_00 1172509:exon7: c.C715T:p.R239 X	AD	de novo	3	9	2, 3, 5	2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 3.2, 3.3, 5.1
104	M R2 27 4	М	Disease causing	chr18:42 531498: AAGAG C:A	fram eshi ft dele tion	SETBP1:NM_01 5559:exon4:c.21 94_2198del:p.R 732fs	AD	de novo	3	9	2, 4, 5	2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 4.1, 4.3, 5.1
23	M R1 74 9	М	Disease causing	chr22:51 160432: GA:G	fram eshi ft dele tion	SHANK3:NM_0 33517:exon21:c. 4130delA:p.E13 77fs	AD	de novo	3	9	2, 4, 5	2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 4.1, 4.2, 5.1
106	M R2 27 8	М	Disease causing	chr12:13 761626: T:G	nons yno nym ous	GRIN2B:NM_0 00834:exon9:c. A1921C:p.I641L	AD	de novo	3	8	2, 4, 5	2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 4.3, 5.1
89	M R2 23 0	F	Disease causing	chr22:51 153476: G:A	splic ing	SHANK3:NM_0 33517:exon19:c. 2223+1G>A	AD	de novo	3	8	2, 4, 5	2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 4.3, 5.1
150	M R9 84	М	Disease causing	chr5:143 90392:C :T	nons yno nym ous	TRIO:NM_0071 18:exon26:c.C41 11T:p.H1371Y	AD	de novo	3	8	1, 2, 5	1.1, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 5.1
96	M R2 24 3	М	Disease causing	chr9:140 657209: GA:G	fram eshi ft dele tion	EHMT1:NM_02 4757:exon10:c.1 585delA:p.S529f s	AD	de novo	2	7	2, 5	2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 5.1
41	M R2 01 9	М	Disease causing	chr12:13 724822: C:T	nons yno nym ous	GRIN2B:NM_0 00834:exon10:c. G2087A:p.R696 H	AD	de novo	2	7	2, 5	2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 5.1
21	M R1 73 0	F	Disease causing	chrX:67 273488: C:T	nons yno nym ous	OPHN1:NM_00 2547:exon22:c. G2323A:p.V775 M	XLR	De novo	4	6	1, 3, 4, 5	1.1, 3.1, 3.2, 3.3, 4.3, 5.1

32	M R1 97 4	М	Disease causing	chrX:15 4490151 :A:C	nons yno nym ous	RAB39B:NM_1 71998:exon2:c.T 579G:p.F193L	XLR	maternal, mother affected	3	3	1, 4, 5	1.1, 4.3, 5.1
64	M R2 11 3	М	Disease causing	chr1:155 449342: T:C	nons yno nym ous	ASH1L:NM_01 8489:exon3:c.A 3319G:p.11107V	AD	de novo	1	2	4	4.1, 4.3
87	M R2 22 2	М	Disease causing	chr21:38 858777: G:C	nons yno nym ous	DYRK1A:NM_ 101395:exon7:c. G525C:p.K175N	AD	de novo	2	2	1, 5	1.1, 5.1
113	M R2 33 8	F	Disease causing	chr16:89 346136: CAG:C	fram eshi ft dele tion	ANKRD11:NM _013275:exon9: c.6812_6813del: p.P2271fs	AD	n.d.	1	5	5,1	
47	M R2 03 3	М	Disease causing	chr16:89 345974: CCTTC GGGG: C	fram eshi ft dele tion	ANKRD11:NM _013275:exon9: c.6968_6975del: p.A2323fs AD de novo 1 1 5						5,1
102	M R2 27 1	М	Disease causing	chr22:51 159718: C:T	stop gain	SHANK3:NM_0 33517:exon21:c. C3415T:p.R113 9X	AD	de novo	1	1	5	5,1
78	M R2 16 5	М	Disease causing	chr5:143 94159:C :T	stop gain	TRIO:NM_0071 18:exon28:c.C42 31T:p.R1411X	AD	maternal, mother affected	1	1	5	5,1
31	M R1 97 0	F	Disease causing	chr22:51 159830: A:TTC	fram eshi ft deli ns	SHANK3:NM_0 33517:exon21:c. 3527delinsTTC: p.D1176fs	AD	de novo	0	0		
48	M R2 03 9	Μ	Putative	chr16:37 88561:C :T	nons yno nym ous	CREBBP:NM_0 04380:exon26:c. G4393A:p.G146 5R	AD	n.d.	5	14	1, 2, 3, 4, 5	1.1, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 3.1, 3.2, 3.3, 4.1, 4.2, 4.3, 5.1
109	M R2 32 2	М	Putative	chrX:76 764055: T:A	nons yno nym ous	ATRX:NM_000 489:exon35:c.A 7253T:p.Y2418 F	XLD, XLR	n.d.	4	13	2, 3, 4, 5	2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 3.1, 3.2, 3.3, 4.1, 4.2, 4.3, 5.1
103	M R2 27 2	М	Putative	chr10:89 690828: G:A	nons yno nym ous	PTEN:NM_0003 14:exon4:c.G23 5A:p.A79T	AD	maternal	3	12	2, 3, 4	2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 3.1, 3.2, 3.3, 4.1, 4.2, 4.3

24	M R1 76 9	М	Putative	chr3:710 26867:A :C	nons yno nym ous	FOXP1:NM_03 2682:exon16:c.T 1355G:p.I452S	AD	paternal	3	8	1, 2, 5	1.1, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 5.1
24	M R1 76 9	М	Putative	chr7:146 829502: G:T	nons yno nym ous	CNTNAP2:NM_ 014141:exon8:c. G1249T:p.D417 Y	AR, AD	maternal	1	3	3	3.1, 3.2, 3.3
114	M R2 34 0	М	Putative	chr2:166 165900: C:T	nons yno nym ous	SCN2A:NM_02 1007:exon6:c.C6 44T:p.A215V	SCN2A:NM_02 1007:exon6:c.C6 44T:p.A215V AD maternal, 3 8 1, 2, 4 epilepsy 3 8 1, 2, 4		1, 2, 4	1.1, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 4.3		
40	M R2 00 7	М	Putative	chr11:70 644598: G:A	nons yno nym ous	SHANK2:NM_0 12309:exon13:c. C1727T:p.P576 Q	SHANK2:NM_0 AD n 12309:exon13:c. C1727T:p.P576 Q		3	8	2, 4, 5	2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 4.3, 5.1
30	M R1 96	М	Putative	chrX:41 448842: A:G	nons yno nym ous	CASK:NM_003 688:exon13:c.T1 159C:p.Y387H	CASK:NM_003 XL 688:exon13:c.T1 159C:p.Y387H		3	5	1, 4, 5	1.1, 4.1, 4.2, 4.3, 5.1
99	M R2 26 4	М	Putative	chr16:89 349967: T:C	nons yno nym ous	ANKRD11:NM AD n.d. 2 7 1, 2 013275:exon9: c.A2983G:p.K99 5E 1 1 1 1		1, 2	1.1, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6			
73	M R2 14 1	М	Putative	chr14:21 876977: G:A	nons yno nym ous	CHD8:NM_001 170629:exon11: c.C2372T:p.P79 1L	AD	Not in the mother	2	7	2, 4	2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 4.3
130	M R2 38 9	F	Putative	chr14:21 882498: T:C	nons yno nym ous	CHD8:NM_001 170629:exon8:c. A2104G:p.K702 E	AD	n.d.	2	7	2, 5	2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 5.1
127	M R2 37 5	F	Putative	chr11:68 4897:C: T	splic ing	DEAF1:NM_02 1008:exon6:c.87 0+1G>A	AR, AD	n.d.	2	7	2, 5	2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 5.1
5	M R1 19 2	F	Putative	chr12:13 720096: C:G	nons yno nym ous	GRIN2B:NM_0 00834:exon12:c. G2461C:p.V821 L	AD	n.d.	2	7	2, 5	2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 5.1
33	M R1 97 5	М	Putative	chr18:44 595922: C:T	nons yno nym ous	KATNAL2:NM _031303:exon10 :c.C743T:p.A24 8V	AD	maternal, gene with low penetrance	, 1 6 h ce		2	2.1, 2.2, 2.3, 2.4, 2.5, 2.6
126	M R2 37 4	F	Putative	chr7:148 080864: C:T	nons yno nym ous	CNTNAP2:NM_ 014141:exon22: c.C3599T:p.S12 00L	AR, AD	n.d.	2	4	3, 4	3.1, 3.2, 3.3, 4.3

					SN V							
116	M R2 34 4	М	Putative	chrX:53 964467: A:G	nons yno nym ous SN V	PHF8:NM_0011 84897:exon22:c. T2794C:p.C932 R	XLR	maternal, X- inactivation : mutated allele 70%	1	3	4	4.1, 4.2, 4.3
56	M R2 05 3	F	Putative	chr2:171 702114: C:T	nons yno nym ous SN V	GAD1:NM_000 817:exon8:c.C85 0T:p.L284F	AR	paternal	0	0		
56	M R2 05 3	F	Putative	chr2:171 678594: T:C	splic e regi on	GAD1:NM_013 445.3:c.83-3T>C	AR	maternal	0	0		

Table S2. Causative experimentally identified variants and groups predictions

		II	D			A	SD		I	Epile	eps	y	м	icro	сер	haly	Ма	cro	ceph	aly	н	јуро	oton	ia		Ata	axia	
Submis sion	A U C	M C C	A C C	F1	A U C	M C C	A C C	F1	A U C	M C C	A C C	F1	A U C	M C C	A C C	F1	A U C	N C C	AC C	F1	A U C	N C C	A C C	F1	A U C	M C C	A C C	F1
1.1	0. 57	0. 20	0. 95	0. 98	0. 51	0. 20	0. 73	0. 84	0. 53	0. 24	0. 61	0. 71	0. 57	0. 16	0. 46	0.41	0. 64	0. 27	0.8 6	0.1 5	0. 49	0. 20	0. 63	0.3 6	0. 46	0. 08	0. 78	0.14
2.1	0. 70	0. 16	0. 71	0. 82	0. 55	0. 10	0. 36	0. 22	0. 38	- 0. 01	0. 48	0. 07	0. 51	0. 37	0. 81	0.29	0. 55	0. 18	0.8 1	0.2 9	0. 52	0. 06	0. 51	0.5 1	0. 61	0. 27	0. 81	0.17
2.2	0. 75	0. 22	0. 81	0. 89	0. 5	0. 09	0. 36	0. 25	0. 41	0. 03	0. 49	0. 10	0. 55	0. 36	0. 81	0.40	0. 50	0. 09	0.7 5	0.2 3	0. 47	0. 11	0. 60	0.2 3	0. 66	0. 28	0. 81	0.29
2.3	0. 71	0. 16	0. 71	0. 82	0. 56	0. 11	0. 59	0. 68	0. 39	- 0. 01	0. 48	0. 07	0. 49	0. 37	0. 81	0.29	0. 56	0. 18	0.8 1	0.2 9	0. 51	0. 07	0. 53	0.5 0	0. 66	0. 33	0. 72	0.48
2.4	0. 78	0. 21	0. 79	0. 88	0. 49	0. 09	0. 36	0. 25	0. 41	0. 03	0. 49	0. 10	0. 48	0. 36	0. 81	0.40	0. 56	0. 14	0.7 5	0.2 9	0. 49	0. 11	0. 60	0.2 3	0. 72	0. 37	0. 72	0.52
2.5	0. 64	0. 09	0. 55	0. 70	0. 55	0. 10	0. 36	0. 22	0. 40	- 0. 01	0. 48	0. 07	0. 53	0. 37	0. 81	0.29	0. 57	0. 18	0.8 1	0.2 9	0. 49	0. 06	0. 59	0.1 8	0. 56	0. 27	0. 81	0.17
2.6	0. 74	0. 18	0. 75	0. 86	0. 46	0. 09	0. 36	0. 25	0. 41	0. 03	0. 49	0. 10	0. 49	0. 36	0. 81	0.40	0. 55	0. 14	0.7 5	0.2 9	0. 5	0. 11	0. 60	0.2 3	0. 66	0. 32	0. 78	0.45
3.1	0. 51	0. 12	0. 38	0. 53	0. 52	0. 10	0. 36	0. 22	0. 43	- 0. 10	0. 47	0	0. 50	0. 11	0. 78	0.10	0. 62	0. 18	0.6 5	0.3 3	0. 54	0. 21	0. 62	0.1 3	0. 49	- 0. 07	0. 78	0
3.2	0. 55	0. 13	0. 42	0. 58	0. 52	0. 12	0. 36	0. 23	0. 43	- 0. 07	0. 46	0. 17	0. 50	0. 11	0. 78	0.10	0. 62	0. 18	0.6 5	0.3 3	0. 52	0. 15	0. 60	0.0 7	0. 49	- 0. 07	0. 78	0

3.3	0. 68	0. 34	0. 97	0. 99	0. 48	0. 05	0. 36	0. 24	0. 44	- 0. 05	0. 47	0. 20	0. 50	0. 11	0. 78	0.10	0. 62	0. 18	0.6 5	0.3 3	0. 52	0. 15	0. 60	0.0 7	0. 49	- 0. 07	0. 78	0
4.1	0. 61	0. 15	0. 83	0. 91	0. 56	0. 18	0. 36	0. 19	0. 54	0. 19	0. 51	0. 14	0. 57	0. 23	0. 56	0.44	0. 70	0. 39	0.7 9	0.4 8	0. 51	0. 17	0. 62	0.1 9	0. 45	0. 27	0. 81	0.17
4.2	0. 61	0. 11	0. 78	0. 87	0. 56	0. 18	0. 36	0. 19	0. 53	0. 19	0. 51	0. 14	0. 56	0. 23	0. 56	0.44	0. 69	0. 39	0.7 9	0.4 8	0. 52	0. 17	0. 62	0.1 9	0. 47	0. 27	0. 81	0.17
4.3	0. 68	0. 19	0. 88	0. 94	0. 56	0. 20	0. 73	0. 84	0. 56	0. 22	0. 59	0. 51	0. 63	0. 30	0. 52	0.47	0. 67	0. 39	0.8 8	0.3 8	0. 56	0. 25	0. 65	0.3 3	0. 46	0. 28	0. 81	0.29
5.1	0. 84	0. 23	0. 68	0. 80	0. 49	- 0. 02	0. 45	0. 51	0. 50	0. 01	0. 50	0. 39	0. 56	0. 13	0. 72	0.30	0. 48	- 0. 08	0.8 1	0	0. 46	- 0. 08	0. 47	0.3 8	0. 47	- 0. 12	0. 74	0

Suppl. Table S3. Summary of performance measures for all submissions and phenotypes.

Submission	nC	nCV	nC-CV	nC1	nC2	nC3	nC4	nC5	nC6	nC7
1.1	49	16	6	3	22	14	2	5	2	1
2.1	21	37	3	2	8	1	6	1	1	2
2.2	24	37	7	3	7	1	4	2	1	6
2.3	25	37	4	2	11	2	5	3	0	2
2.4	23	37	7	3	7	1	4	1	0	7
2.5	18	37	3	2	7	1	2	2	1	3
2.6	24	37	7	3	7	1	4	2	1	6
3.1	16	12	2	3	7	0	0	3	0	3
3.2	18	16	3	3	7	0	0	4	0	4
3.3	26	16	3	3	10	1	3	3	1	5
4.1	19	16	1	3	7	1	2	2	1	3
4.2	17	10	1	3	7	1	2	2	1	1
4.3	46	29	11	3	19	11	7	4	1	1
5.1	18	35	4	3	8	2	2	1	0	2

Suppl. Table S4: Summary of phenotype and variant prediction for all patients. nC is the number of patients where their phenotypic trait/s was/were correctly predicted. nC1, nC2, nC3, nC4, nC5, nC6 and nC7 are similar to nC but considering the number of phenotypic traits (from 1 to 7) provided for that patients by Padua NDD Lab. nCV is the number of patients for whom variants were correctly predicted. nC-Cv mean the number of patients for whom their phenotype/s and variant/s were well predicted.

Performance measures

All quantitative measures used for the determination of a ranking between the submissions are listed:

Accuracy (ACC):

$$ACC = \frac{TP + TN}{TP + TN + FP + FN}$$

Matthew Correlation Coefficient (MCC):

$$MCC = \frac{TP \times TN - FP \times FN}{\sqrt{(TP + FP)(TP + FN)(TN + FP)(TN + FN)}}$$

F₁ score (**F**₁):

$$F_1 = 2\frac{TPR \times PPV}{TPR + PPV}$$

Late submission assessment: Group 5 (enGenome)

Group 5 performed well in predicting most of the causative, putative and contributing factor variants indicated by the Padua NDD Lab. This group predicted most of causative variants (22 out of 25) compared to other groups, and a total amount of 36 out of 56 well predicted variants. For the ID phenotype, group 5 achieved the highest AUC value (0.84). However, as was explained before this phenotype is highly biased to true positive values and the AUC didn't reflect the real performance. For the other phenotypes the performance of this method was poor, obtaining an overall rank of 9 among all the submissions (Suppl. Table S3). Moreover, group 5 was one of the least accurate in predicting the correct combination of patient phenotypes, correctly predicting just 7 patients where the Padua NDD Lab provided at least three phenotypic traits (Suppl. Table S3).

Prediction methodology

VCF files have been annotated and interpreted by the EVAI software v0.3.1¹. EVAI uses various omics databases to annotate variants at genomic region, domain, gene, and disease level. Publicly available resources have been used for this purpose. EVAI generates a set of evidences to support variant pathogenicity assessment, according to ACMG/AMP guidelines² used to assign a five-tier class. EVAI classifies and scores variants according to every possible condition associated to the corresponding genes as reported in resources such as MedGen and ClinVar. Variability in diseasebased classification can be related, for instance, to variant type or information about the gene (e.g. loss-of-function is a known mechanism for a certain disease). The expected incidence for a certain disease is taken into account as well while evaluating variant allele frequency in population databases. To identify gene-phenotype association, EVAI generated a list of annotated and ACMG-classified variants, prioritized by pathogenicity score (score ≥ 3). Variants present in more than 8 cases (about 5% allele frequency) and low quality INDELS (Quality by Depth < 4) were filtered out. Moreover, among variants with pathogenicity score ≥ 0 , we retained those absent in the general populations (ExAC, 1TGP, ESP), that were unique for each sample, coding and predicted damaging (without conflict) by at least one in-silico functional predictors integrated in EVAI (PaPI, PolyPhen-2, SIFT, DANN). We then excluded variants that did not match the expected inheritance pattern reported by MedGen and OMIM. Finally, each selected variant has been associated to one or more target phenotypes according to OMIM.

¹ Nicora G, Limongelli I, Gambelli P, Memmi M, Malovini A, Mazzanti A, Napolitano C, Priori S, Bellazzi R. 2018. CardioVAI: An automatic implementation of ACMG-AMP variant interpretation guidelines in the diagnosis of cardiovascular diseases. Hum Mutat 39:1835–1846.

² Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, Grody WW, Hegde M, Lyon E, Spector E, Voelkerding K, Rehm HL, et al. 2015. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 17:405–424.

Additional description of prediction methodology

Group 2: Moult Lab

QC Analysis

We performed routine QC analysis to see if there were obvious outlier samples. Figure 1 shows the results of the QC analysis. Variants flagged as PASS in the VCF file and with a genotype quality (GQ) greater than 30 were considered for the QC analysis. The transition/transversion ratio (Ts/Tv) and heterozygous/homozygous ratio across all the samples were comparable to 1000 Genomes dataset for the genomic regions captured for sequencing in the challenge dataset. Comparison of common, rare, and novel variant counts across samples was also performed. We based this analysis on the 1000 Genomes³ database, with a variant considered novel if it was not present in 1000 Genomes, and considered low frequency if present in 1000 Genomes with a MAF less than 5%. Other 1000 Genomes variants were considered common. We generated two comparison plots – one for SNVs and the other for INDELs. We observed that the rare SNV and INDEL count distribution is comparable to 1000 Genomes samples, while the common SNV and INDEL count distributions are low compared to the variant count distribution of the 1000 Genomes. The novel SNV count varied from zero to 16 across samples and the novel INDEL count varied from zero to 22.

³ Exome Aggregation Consortium (ExAC), Cambridge, MA (URL:http://exac.broadinstitute.org).

Figure 1: Comparison of variant calling quality for 150 challenge samples versus 2,504 1000 Genomes samples across the 74 genes in the intellectual disability panel. ID: Intellectual Disability Challenge Samples, KGS: 1000 Genomes samples, KGS_AFR: African samples in 1000Genomes, KGS_NonAFR: Non-African samples in 1000 Genomes. Figure 1A shows the distribution of Transition vs. Transversion (Ts/Tv) and Heterozygous SNVs vs. Homozygous SNVs (Het/Hom). By both measures, ID and KGS data are similar. Figure 1B shows the distribution of common, rare and novel SNV types. There are fewer common variants compared to 1000 genome data, but an approximately similar distribution of rare variants. Figure 1C shows the distribution of common, rare and novel Indels.

Building the Gene-Phenotype list

All the genes annotated in the bed files provided as part of the challenge were extracted for building the gene-phenotype list. These 74 genes were mapped to one or more of the seven phenotypes (intellectual disability, autism spectrum disorder, epilepsy, microcephaly, macrocephaly and ataxic gait) using two independent approaches generating two different genephenotype mapped files. The first approach used the OMIM database and Genetic Home Reference databases to map the phenotypes to the genes. The second approach using the Human Phenotype Ontology in addition to OMIM to map the phenotypes to the genes. The variant prioritization procedure was performed on each of these phenotypes lists.

Putative Causative Variant Search Method

The putative causative variant searches considered only rare or novel variants flagged as PASS in the VCF files. We considered a variant as rare if it was reported in ExAC with a MAF less than or equal to 1% and considered it novel if it was not reported in ExAC. Indels in low complexity regions (LCR) were excluded from the analysis, based on the LCR dataset precomputed for the human genome by Heng Li⁴. A strand bias filter was used to remove variants whose alternate allele was present only on one strand of the reads mapped to the variant position. Search criteria were applied consecutively, starting with criteria deemed most reliable for finding causative variants and progressing to those considered less reliable. Two criteria were used: Variant quality and Variant impact. Five levels of variant quality were defined –

1. Variant with GQ>=30, variant not shared with any other sample,

2. Variant with GQ>=20, variant shared with one or no samples,

3. Variant with GQ>=20 and read depth (DP)>=30 and variant not shared with any other sample,

4. Variant with GQ>=10, read depth (DP)>=30 and variant not shared with any other sample, and

5. Variant with GQ>=30, variant shared with five or fewer samples.

13 types of variant impact were defined based on the variant impact severity -

1. Variant reported in ClinVar with Pathogenic or Likely Pathogenic clinical significance.

2. Loss of Function variant (Nonsense, Frameshift, Non-Frameshift, Direct splicing acceptor/donor)

⁴ Li H. Toward better understanding of artifacts in variant calling from high coverage samples. Bioinformatics.2014; 30:2843–2851.

- 3. Missense predicted damaging by four out of four methods.
- 4. Missense predicted damaging by three methods.
- 5. Variant reported in HGMD with DM status.
- 6. Variant predicted to alter splicing by either dbscSNV or SPIDEX.
- 7. Missense predicted damaging by only two methods.
- 8. Intronic, UTR or synonymous variant predicted damaging by CADD.
- 9. Missense predicted damaging by only one method.
- 10. Variant in a regulatory site (Promoter, Enhancer, TFBS or CTCF binding site).
- 11. Intronic variant
- 12. UTR variant
- 13. Synonymous variant.

The variant quality and impact filters were applied in a sequential manner to each sample as shown in Figure 2. If a putative causative variant was found in a sample for a specific combination of variant quality and impact filter, the search was terminated and that assignment was taken as final for that sample. Variants identified were further filtered for inheritance model associated with the gene. Variants were assigned to autosomal dominant, autosomal recessive, compound heterozygous, or X-linked models according to the available information for the gene concerned in OMIM and Genetic Home Reference database. Since the genotypes of the variants were not phased, we assumed a gene to follow a compound heterozygous model if two or more heterozygous variants were observed in that gene, but assigned a lower probability to such cases (see later) In practice, there was only one such case. Using this procedure we were able to assign 150 patients to one or more of the seven phenotypes, although a substantial fraction of assignments are of very low confidence (Figure 2).

2	ClinVar – Pathogenic, Likely Pathogenic	2						
B	LoF - NonSense, FrameShift, NonFrameshift, Splice Acceptor, Splice Donor	10						
d, 58	Missense – 4 Methods	- 14						
ł.	Missense – 3/4 Methods	17						
	HGMD - DM	2						
ы Ц								
	ClinVar – Pathogenic, Likely Pathogenic	0						
	LoE - NonSense, FrameShift, NonFrameshift, Splice Acceptor, Splice Donor	1						
	Missense – 4 Methods							
	Missense – 3/4 Methods	0						
	HGMD - DM	0						
10	Altered splicing – <u>dbscstvv</u> , <u>spidex</u>	0						
	Missense – 2/4 Methods	0						
	Intronic/LITR/Syn - Damaging by CADD	0						
	SS,GQ>=30, =0 Shared, SB filtered							
Mi	sense – 1/4 Method	13						
Reg	ulatory region – Promotor, Enhancer, TFBS, CTCF binding site	9						
	kSS, GQ>=30, =0 Shared, SB filtered							
Clo	se to Splice Site	4						
UT	l Variant	2						
De	p Intronic Variants	24						
Syn	onymous Variants	2						

Figure 2. Variant prioritization strategy. The blue boxes show the variant quality filter and the yellow boxes show the variant impact filters. The arrows show the sequence in which the combination of quality and impact filters were applied to each sample. The numbers next to the impact filters represent the number of samples in which putative causative variants were found at that filtering stage.

Probability score computation

Developing a proper model for assigning a probability of variant causing a disease phenotype in principle possible, but requires substantial analysis to properly calibrate. For this reason, we used a number of ad hoc procedures. An exception was for missense variants, where we assigned the probability of disease using the extent of consensus among the four missense analysis methods, previously calibrated from HGMD data and a control set of inter-species variants. Other variant types were subjectively assigned probabilities as shown in Table 1. For autosomal recessive situations, we assumed both contributing variants must have high impact, and so used the product of the corresponding probabilities. We further assumed that the occurrence of homozygous cases increased the likelihood of a correct disease assignment, and added 0.2 to probabilities in these situations. A smaller increment was used for compound heterozygous situations since these have a significant probability of occurring by chance and in some cases may be on the same copy of the

gene. Ad hoc probabilities of a correct variant call were also assigned to each variant (Table 2). A prior probability of each phenotype was computed from the 93 high confidence prediction set.

The final probability for the 93 high confidence sample set was taken as the product of the call and impact probabilities and was scaled to match the prior probability of the predicted phenotypes. For the remaining 57 sample sets, the prior probability of the phenotypes

We made six submissions based on the two different gene-phenotype lists and different combination of probabilities.

- Submission 1: Gene-Phenotype files based on OMIM, probabilities for 93 high confidence sample set are based on the product of the call and impact probabilities and further scaled to match the prior probabilities of the each phenotypes. The remaining 57 samples were assigned prior probabilities of individual phenotypes ignoring the weak genetic signal.
- Submission 2: Gene-Phenotype files based on OMIM+HPO, probabilities for 93 high confidence sample set are based on the product of the call and impact probabilities and further scaled to match the prior probabilities of the each phenotypes. The remaining 57 samples were assigned prior probabilities of individual phenotypes ignoring the weak genetic signal.
- Submission 3: Gene-Phenotype files based on OMIM, probabilities for 93 high confidence sample set are based on the product of the call and impact probabilities and further scaled to match the prior probabilities of the each phenotypes. For 22 low confidence samples where the prioritized variant were either missense predicted damaging by ¹/₄ methods or regulatory variants, the predicted phenotype's prior probabilities were increased compared to prior probabilities of other non-predicted phenotypes. The remaining 35 samples were assigned prior probabilities of individual phenotypes ignoring the weak genetic signal.
- Submission 4: Gene-Phenotype files based on OMIM+HPO, probabilities for 93 high confidence sample set are based on the product of the call and impact probabilities and further scaled to match the prior probabilities of the each phenotypes. For 22 low confidence samples where the prioritized variant were either missense predicted damaging by ¹/₄ methods or regulatory variants, the predicted phenotype's prior probabilities were increased compared to prior probabilities of other non-predicted phenotypes. The remaining 35 samples were assigned prior probabilities of individual phenotypes ignoring the weak genetic signal.
- Submission 5: Gene-Phenotype files based on OMIM, probabilities for all sample set are based on the product of the call and impact probabilities and further scaled to match the prior probabilities of the each phenotypes.
- Submission 6: Gene-Phenotype files based on OMIM+HPO, probabilities for all sample set are based on the product of the call and impact probabilities and further scaled to match the prior probabilities of the each phenotypes.

Variant Type	Probability
	Score
Reported in ClinVar as pathogenic	1
Reported in HGMD as DM	0.7
NonSyn – Predicted damaging by 4/4 tools	0.8
NonSyn – Predicted damaging by 3/4 tools	0.7
NonSyn – Predicted damaging by 2/4 tools	0.5
NonSyn – Predicted damaging by 1/4 tools	0.25
NonSyn - Not predicted damaging by any tools	0.15
Nonsense	1
Frameshift / Non-Frameshift	1
Direct Splice Site – Donor/Acceptor	1
Variant predicted to affect splicing	0.7
UTR/Intronic/Syn predicted damaging by CADD	0.55
Variant at Regulatory Site	
Variant close to Splice Donor site	0.2
Variant close to Splice Acceptor site	0.2
UTR Variant	0.05
Intronic Variant	0.05
Synonymous Variant	0.05

Table 1. Probability assignments for each variant type.

Variant Type	Probability Score
PASS, GQ>=30, 0 shared	1
PASS, GQ>=30, 1 shared	0.9
PASS, GQ >= 20, DP>30, 0 shared	0.7
PASS, GQ >= 10, DP>30, 0 shared	0.6
PASS, GQ>=30, 5 shared	0.5

Table 2. Probability of a correct variant call based the variant quality filters. GQ=Genotype Quality, DP=Read Depth, # shared indicates considering variant for prioritization that was shared in <=# samples.

Group 4: Brenner Lab

The methodology of CHESS (v0.1)

Public data used in CHESS

We downloaded and processed the variant frequency data from GNOMAD v2.0.2⁵, pre-calculated variant deleterious scores by REVEL⁶, and the clinical evidence data from ClinVar⁷ downloaded on 2017-10-02.

The scoring scheme

Firstly, for each case, we first collect the phenotype terms of the case and calculate the **phenotype matching scores for all the genes** in the human genome that have relevant information with the phenotypes or have functional relationships with the genes that are known to be associated with the phenotypes. We use **Phenolyzer**⁸ to calculate these gene-phenotype scores.

Secondly, we take the pre-called variants from the case exome as the input data, and annotate the data with VEP⁹, GNOMAD variant frequency data, ClinVar evidence, and the pre-calculated REVEL scores. To reduce the computing burden, we exclude common variants (variants with MAF \geq 5%) from our analysis, given the notion that the diseases of interest are rare mendelian diseases. Severest annotation by VEP are used for each variant, and thus variants with no annotation that they are protein-altering are excluded from the analysis.

Thirdly, we calculate all possible events based on both dominant and recessive models, preferably with data from the parents available. For cases where family information is not available, single variant events for the dominant model and compound heterozygous events for the recessive model are estimated, with false positive events expected. This can be adjusted on a case-by-case basis.

Fourthly, we systematically score all the remaining variants using the following equation:

$$V_{score} = \log \frac{e^{qual+w} + e^{del+w} + e^{pheno+w}}{3}$$

Where:

- Qual is 0-1, variant quality (transformed GQ value)
- del is 0-1, variant deleterious value, a sum of two components:
 - Impact annotation: 0.25 for missense/inframe, 0.5 for frameshift
 - REVEL score
- pheno -0-1, phenotype match score of the gene (Phenolyzer)

⁵ Lek, M., et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature 2016;536(7616):285-291.

⁶ Ioannidis, N.M., et al. REVEL: An Ensemble Method for Predicting the Pathogenicity of Rare Missense Variants. Am J Hum Genet 2016;99(4):877-885.

⁷ Landrum, M.J., et al. ClinVar: public archive of interpretations of clinically relevant variants. Nucleic Acids Res 2016;44(D1):D862-868.

⁸ Yang, H., Robinson, P.N. and Wang, K. Phenolyzer: phenotype-based prioritization of candidate genes for human diseases. Nat Methods 2015;12(9):841-843.

⁹ McLaren, W., et al. The Ensembl Variant Effect Predictor. Genome Biol 2016;17(1):122.

- w- a supplement weight to help weigh down benign/common variants, with two components:
 - Default benign = 0; benign = -1 if annotated as benign in clinVar with >=2 stars
 - Rareness = (0.01 MAF) / 0.05
- Please note that log averaged exponential privileges the larger value, so that we could catch a variant that has one feature that stands out.

Lastly, we calculate a score for each possible event in each gene, by combining the scores of each involved variant.

Special adjustments of CHESS v0.1 made for the CAGI intellectual disability panel challenge:

- Since no family info is available, the single gene dominant events are estimated and may not be real, which will give a high false positive rate. The scores for these events were adjusted by dividing the scores for such single variants by 2 as the event scores.
- Similarly, the scores for "compound heterozygous" events were calculated as the sum of two variants involved divided by 3 (or 2, in less stringent version).
- Since the challenge is to identify the disease from a total of seven diseases, a score was calculated for each event for each disease in each proband.
- The stringent model:
 - Variant called in more than 30% of the samples were excluded from the analysis.
 - Only top hit for each disease was reported, and events scoring lower than 0.5 would not be reported.
 - The medium stringent model:
 - Variant called in more than 30% of the samples were excluded from the analysis.
 - Only top hit for each disease was reported.
 - The less stringent model:
 - Variant called in more than 50% of the samples were excluded from the analysis.
 - The scores for "compound heterozygous" events were calculated as the sum of two variants involved divided by 2.
 - Top 2 hits for each disease was reported, and the probability (score) used for each prediction was the mean of the top 2 hits.